サイバーメディアセンター 大規模計算機システムの利用

大阪大学 情報推進部 情報基盤課

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

SX-ACE

NEC製のベクトル型スーパーコンピュータ

	ノード毎	1クラスタ (512ノード)	総合 (3クラスタ)
CPU数	1	512	1536
コア数	4	2048	6144
演算性能	276 GFLOPS	141 TFLOPS	423 TFLOPS
ベクトル 性能	256 GFLOPS	131 TFLOPS	393 TFLOPS
メモリ	64GB	32TB	96TB

VCC (大規模可視化対応PCクラスタ)

NEC製のスカラ型クラスタシステム GPU計算や可視化装置との連動が可能

	1ノード	総合(66ノード)	
CPU数	2	132	
コア数	20	1320	
演算性能	0.4 TFlops 26.0 Tflops		
メモリ	64 GB 4.160 TB		
GPU	59枚 (69.03 Tflops)		

2017/4 増設	1ノード	総合 (3ノード)
CPU数	2	6
コア数	28	84
演算性能	1.5 TFlops	4.7 Tflops
メモリ	64 GB	192 GB

HCC (汎用コンクラスタ)

NEC製のスカラ型クラスタシステム 学生用の端末PCとしても使用している

2017年9月末 サービス終了

	豊中地区		吹田地区		箕面地区	
	1 ノード	全体	1ノード	全体	1ノード	全体
CPU数	2	536	2	338	2	276
演算性能	28.8 GFLOPS	7.7 TFLOPS	28.8 GFLOPS	4.9 TFLOPS	28.8 GFLOPS	4.0 TFLOPS
メモリ	4GB	1.1TB	4GB or 12GB	1.2TB	4GB	0.6TB
ノード数	268ノード 169ノード 138ノード			ノード		
全ノード 数	575ノード					

フロントエンド端末

プログラムのコンパイルや計算結果の確認を行う ための作業用端末

フロントエンド端末から各計算機に対して 処理の実行を指示 ※詳細は後述

計算機自体へのログインは原則禁止(一部例外有)

Octopus (HCCの後継機)

総演算性能 : 1.446 PFLOPS (予定)

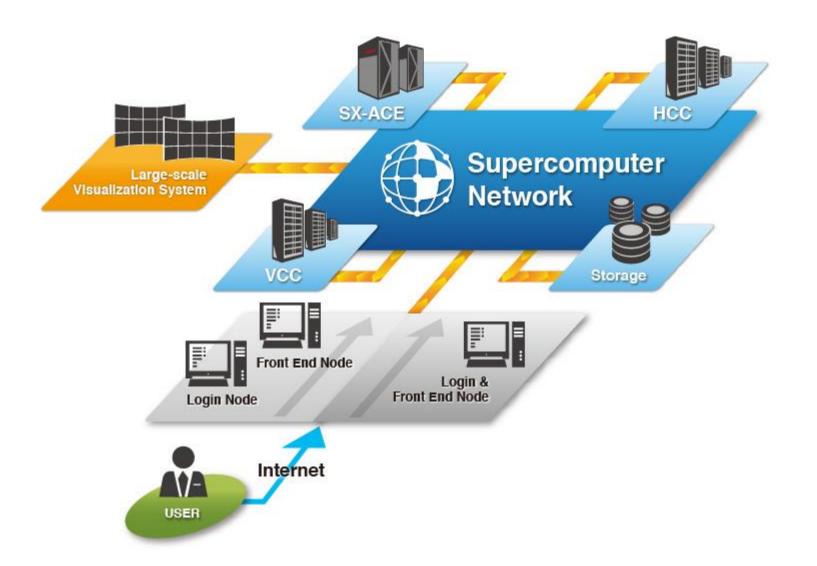
フロントエンドノード Intel SKL x 2, 192GB (3 ノード) 汎用計算CPUノード

Intel SKL x 2, 192GB (155~280ノード)

インターコネクト

InfiniBand EDR (100Gbps)

大容量主記憶計算ノード Intel SKL x 8, 6TB (2 ノード)


GPUノード

Intel SKL x 2, 192GB, NVIDIA P100 x 4 (16~ ノード) 並列ファイルシステム DDN Lustre (3 PB)

Xeon Phiノード Intel KNL x 1, 192GB (36~ ノード)

2017年末 サービス開始予定

システム全体図

本日のプログラム

I. システムのご紹介

Ⅱ. 利用方法の解説・実習

- i. システムへの接続
- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

利用方法の解説・実習

本項では初心者を対象に 大規模計算機システムの利用方法を解説します

途中、実習も行います

配布したアカウントは講習会後もしばらく利用可能 ご自宅からでもシステムに接続できます

利用の流れ

ユーザー

フロントエンド端末

システムへの接続

プログラム作成

コンパイル

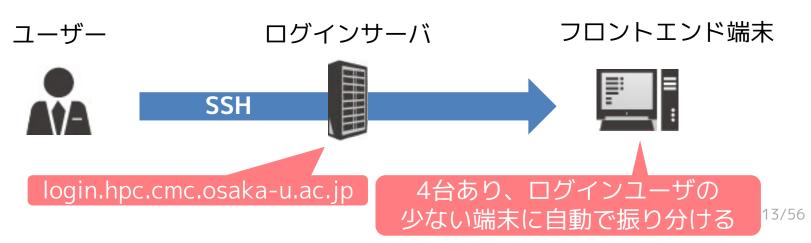
ジョブスクリプト 作成

ジョブスクリプト 投入

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

システムへの接続


ログインはSSH (Secure Shell)接続

Win: TeraTermなど, Mac: ターミナルを使用

接続先は login.hpc.cmc.osaka-u.ac.jp

【参考】ファイル転送はSFTP接続

接続先は ftp.hpc.cmc.osaka-u.ac.jp

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

プログラムの作成

計算機を利用するために、まずプログラム を作成する必要があります

今回はプログラムを用意しました

当センターの計算機で使用可能な言語

Fortran言語、C言語、C++言語

「プログラムの書き方」については 特に説明しません

コンパイル

プログラムを「機械が実行できる形式」に 変換すること

コンパイルの種類

セルフコンパイル

コンパイルした環境と同じ環境で実行

クロスコンパイル

コンパイルした環境とは別の環境で実行

コンパイルの方法

コンパイルを行う際のコマンド

	Fortran言語	C言語	C++言語
SXクロスコンパイラ (SX-ACE用)	sxf90	sxc++	
Intelコンパイラ (HCC,VCC用)	ifort	icc	ісрс

コマンド例(SX-ACE用Fortranプログラム)

\$ sxf90 program.f

→実行形式ファイル「a.out」が生成

コンパイルオプション

コンパイル時にオプションを指定することで 様々な機能を使用することが可能 \$ sxf90 program.f -option

オプションの一例

- -o [filename]: 実行形式のファイル名を指定 指定しない場合は「a.out」が出力
- -Rn:翻訳リスト出力(nには0~5を指定) 最適化等によるプログラムの変形内容を出力
- **-ftrace: 簡易性能解析機能** ジョブスクリプトに"setenv F_FTRACE YES"の指定が必要 プログラム実行後に解析ファイルを出力

コンパイルオプション(参考)

オプションの一例

-P [suboption]: 並列化オプション

並列化処理を使用する場合に指定 suboptionには、auto、openmp、multi等を指定可能

-C [suboption]: 最適化オプション

ベクトル化、最適化のレベル指定 suboptionには、hopt、vopt、vsafe、ssafe、debugを指定可

詳しい解説は下記の講習会にて行います

SX-ACE 高速化技法の基礎

日時: 2017年6月19日(月) 13:30 - 17:30

演習1(コンパイル)

- 1. 演習用プログラムを取得してください
- (例) \$ cp /sc/cmc/apl/kousyu/nyumon/sample.f ~/
- 2. sample.f をSX用にコンパイルしてください
- (例) \$ sxf90 -o sx.out sample.f
- 3. sample.f をHCC,VCC用にコンパイルしてください
- (例) \$ ifort -o pcc.out sample.f
- ※文字入力時は [Tab]キーでの補完機能を活用してください

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

計算機の利用方法

会話型(インタラクティブ利用)

コマンド等を通してコンピュータに直接命令し、 リアルタイムで処理を実行

操作として手軽

一括処理型(バッチ利用)

コンピュータにまとめて処理を命令し実行

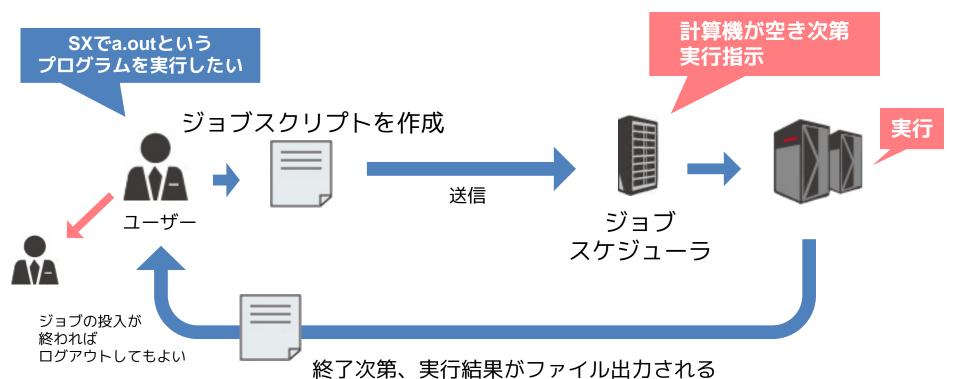
処理の命令が終われば、ログアウトしてもOK

会話型

原則として利用不可

旧SXでは会話型が利用可能だった

→SX-ACEでは利用不可


ただし会話型風に一括処理利用する機能はあり

フロントエンド端末での計算実行も禁止

基本的に「一括処理型」で利用

一括処理型

処理を「ジョブスクリプト」に記述 スクリプトに基づき計算機が処理を実行

ジョブスクリプト

ジョブスクリプトの構成

リソースや環境設定:#PBSから始まるNQSオプション

計算機に実行させる処理の記述:シェルスクリプト

ジョブスクリプトの例

```
#!/bin/csh リソース、環境設定の指定

#PBS -q ACE
#PBS -l elapstim_req=1:00:00, memsz_job=60GB

cd $PBS_0_WORKDIR
./a. out > result. txt 計算機に実行させる処理の記述
```

リソース、環境設定の指定

NQSIIオプション(以下)でリソースや環境の設定を行う

オプション	説明
#PBS -q	ジョブクラスを指定し、計算に使用する計算機やリソースを指定する
#PBS -I	使用する資源値
	memsz_job : 1ノードあたりのメモリ量
	elapstim_req : ジョブの経過時間
	cpunum_job : 1ノード当たりのCPU数
#PBS -m	計算の処理状態に変化が起きたときメール通知を行う
	a : ジョブが異常終了したとき
	b : ジョブが開始したとき
	e : ジョブが終了したとき
#PBS -M	メールの通知先アドレスを指定する
#PBS -v	環境変数の指定(setenvではなくこちらを使うことを推奨する)
#PBS -T	MPI 実行時に指定
	mpisx : MPI/SX 利用時
	intmpi : IntelMPI 利用時
#PBS -b	使用するノード数

必須!

ジョブクラス一覧(SX-ACE)

使用する計算機、リソースはジョブクラスで指定 NQSIIオプション「#PBS -q」の後に続けて記述

ジョブクラス	利用可能 経過時間	利用可能 最大Core数	利用可能メモリ	同時利用可能 ノード数
ACE	24時間	1024Core (4Core×256ノード)	1.5TB (60GB×256ノード)	256ノード
DBG	20分	32Core (4Core×8ノード)	480GB (60GB×8ノード)	8ノード

ジョブクラス一覧(HCC)

ジョブクラス	利用可能 経過時間	利用可能 CPU数	利用可能 メモリ	同時利用 可能ノード数
H-single	最大300時間 程度	2CPU (2CPU×1ノード)	4GB (4GB×1ノード)	1ノード
H-small	最大300時間 程度	32CPU (2CPU×16ノード)	64GB (4GB×16ノード)	2~16ノード
H-large	最大300時間 程度	128CPU (2CPU×64ノード)	256GB (4GB×64ノード)	17~64ノード
H-mem+	最大300時間 程度	64CPU (2CPU×32ノード)	384GB (12GB×32ノード)	1~32ノード

ジョブクラス一覧(VCC)

ジョブクラス	利用可能 経過時間	利用可能最大Core 数	利用可能 メモリ	同時利用 可能ノード数
VCC	120時間	640Core (20Core×32ノード)	1920GB (60GB×32ノード)	32ノード
VCC	336時間	40Core (20Core×2ノード)	120GB (60GB×2ノード)	2ノード
V1C+	120時間	28Core (28Core×1ノード)	60GB (60GB×1ノード)	1ノード (増設ノードで 実行)
V1C-hybrid	120時間	20Core (20Core×1ノード)	60GB (60GB×1ノード)	1ノード (通常or増設 ノードで実行)
GVC (GPU利用)	120時間	180Core (20Core×9ノード)	540GB (60GB×9ノード)	9ノード

計算機に実行させる処理の記述

ファイルやディレクトリの実行・操作を記述 記述方法はシェルスクリプト

よく使用するNQSII 用の環境変数

\$PBS_O_WORKDIR : ジョブ投入時のディレクトリが設定される

標準出力/標準エラー出力の容量制限

- ⇒ SX-ACE: 100MB、VCC:100MB、HCC:10MB
- ⇒ これ以上出力したい場合はリダイレクション(>)を利用

処理の記述の最終行に改行を入れること! ⇒ 未入力の場合、その行のコマンドが実行されない

ジョブスクリプト解説

ジョブクラスの指定

#!/bin/csh

#PBS -q ACE

CPU数、経過時間、メモリサイズの指定 コンマ後にスペースを入れないよう注意!

#PBS –I elapstim_req=1:00:00,memsz_job=60GB

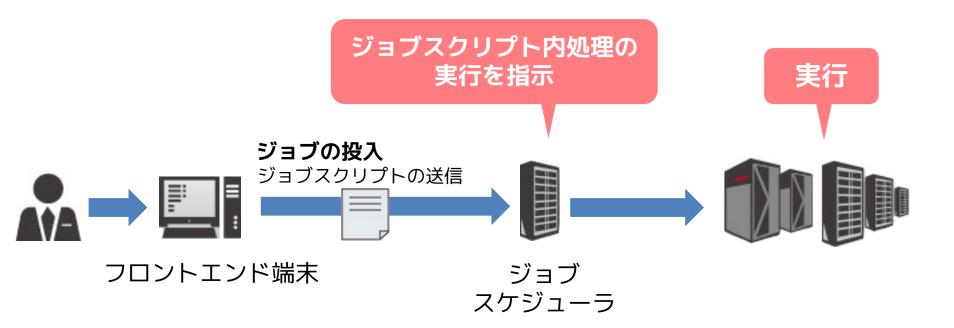
cd \$PBS_O_WORKDIR ジョブ投入時のディレクトリへ移動

./a.out > result.txt

a.outを実行し、結果をresult.txtに出力する (リダイレクション)

演習2(ジョブスクリプト)

- 1. 演習用スクリプトを取得してください (例)\$ cp /sc/cmc/apl/kousyu/nyumon/sample.nqs ~/
- 2. sample.nqsを元にSX-ACE用のジョブス クリプトを作成してください
- (例) \$ cp sample.nqs sx.nqs
 - \$ emacs sx.nqs -nw


ジョブクラスはDBGを使用してください

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

実行までの流れ

ジョブスクリプトは**ジョブスケジューラ**が受け付ける ジョブスケジューラが各計算機にジョブの実行を指示

スケジューラとは

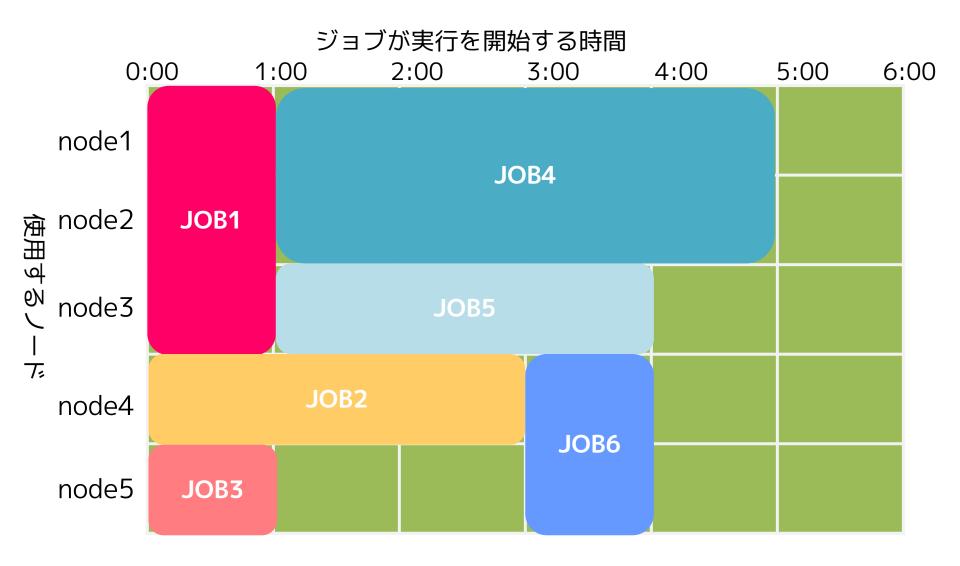
あらかじめ管理者によって設定された資源割当ポリシーに 従い、ジョブを計算資源に割り当てる

主な役割

クラスタを構成する計算機(ノード)の静的情報※を把握※ディスク容量、メモリ容量、CPU性能、etc ノード毎の資源使用率を定期的に監視、管理 ユーザより実行したいジョブ要求を受信 ジョブを実行するのに適切なノードを選定 ジョブ実行に伴う入出力データのファイル転送

スケジューラとは

当センターではバックフィル型を採用


特徴

ジョブの実行開始時間のマップを作成する

マップに載れば、実行開始時間と経過時間が保障される

実行中は指定したリソースを占有して割当てる

スケジューラのイメージ

ジョブの投入方法

フロントエンド端末からジョブを投入

\$ qsub [ジョブスクリプトファイル]

(参考)特殊な投入方法

リクエスト連携:順番通りにジョブを実行したい場合に利用

- \$ qsub [JobScript1] [JobScript2] · · ·
- ※ 順番無く複数のジョブを同時に投入する場合は 上記のようにしないよう注意

投入済みジョブの確認方法

ジョブの状態を確認することが可能

コマンド

\$ qstat

実行結果

RequestID	ReqName	UserName	Queue	STT	Memory	CPU	Elapse	
12345.cmc	nqs-test	a61234	ACE	RUN	8.72G	830.66	208	

ジョブの状態

待ち状態では「QUE」 実行が始まる と「RUN」となる。

実行時間

CPU: 実際にジョブが消費した時間

複数CPU指定の場合は、全CPUを累積表示

Elapse: ジョブが実行されてからの経過時間

投入済みジョブの確認方法

ジョブの予約状況の確認することが可能

コマンド

\$ sstat

実行結果

RequestID	ReqName	UserName	Queue	Pri	STT	PlannedStartTime
12345.cmc	nqs-test	a61234	ACE	-1.5684/ -1.5684	ASG	2015-06-16 00:01:23

状態監視

実行時刻が決まると「ASG」表示になる。

混雑具合や優先度により、「実行時間の決定」までの待ち時間が異なるが、一旦実行時間が決定されるとその時刻にジョブ実行が始まる。

実行開始時刻

システムメンテナンスやトラブル時は 再スケジュールされることをご了承くだ さい。

投入済みジョブの操作方法

```
ジョブのキャンセル
コマンド
$ qdel [RequestID]
```

実行結果

\$ qdel 12345.cmc

Request 12345.cmc was deleted.

実行結果の確認方法

実行結果や実行エラーは指定しない限り「標準出力」となる

標準出力は**ジョブスクリプト名.oリクエストID** 標準エラー出力は**ジョブスクリプト名.eリクエストID** というファイル名で自動出力される

catやlessコマンドでファイルの内容を出力し確認

\$ cat nqs.o12345

※リダイレクション(./a.out > result.txt)を使った場合は、そちらも確認

意図通りの結果が表示されていれば計算は成功

演習3(ジョブスクリプトの投入)

- 作成したジョブスクリプトを使用してジョブを投入 \$ qsub sx.nqs
- 2. 投入したジョブの状態を確認
 - \$ sstat
 - \$ qstat
- 3. 結果ファイルの確認
 - \$ cat sx.nqs.o12345
 - \$ cat sx.nqs.e12345

早く終わった方はVCCやHCCにも ジョブを投入してみましょう

より高度な利用に向けて

利用の参考になるWebページ

サイバーメディアセンター 大規模計算機システム Webページ http://www.hpc.cmc.osaka-u.ac.jp/system/manual/

利用方法

http://www.hpc.cmc.osaka-u.ac.jp/system/manual/

FAQ

http://www.hpc.cmc.osaka-u.ac.jp/faq/

お問い合わせ

http://www.hpc.cmc.osaka-u.ac.jp/support/contact/auto_form/

研究成果

http://www.hpc.cmc.osaka-u.ac.jp/researchlist/

より高度な利用に向けて

本日以降に実施予定の講習会

講習会名	日時	場所		
SX-ACE高速化技法の基礎	6月19日(月) 13:30 - 17:30	サイバーメディアセンター 吹田本館 2階中会議室		
並列コンピュータ高速化技法の基礎 (※VCC,HCC向け)	6月20日(火) 13:30 - 16:30	サイバーメディアセンター 吹田本館 2階中会議室		
SX-ACE並列プログラミング入門(MPI)	6月26日(月) 10:00 - 16:30	サイバーメディアセンター 吹田本館 2階中会議室		
SX-ACE並列プログラミング入門(HPF)	6月27日(火) 13:30 - 16:30	サイバーメディアセンター 吹田本館 2階中会議室		

毎年2回開催!

本日のプログラム

- I. システムのご紹介
- Ⅱ. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入

III.利用を希望する方へ

利用を希望する方へ

本センターの大規模計算機システムは どなたでも利用可能です!

大学院生

教員

研究者

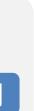
大阪大学

他大学

民間企業

利用負担金が必要になります

利用負担金


SX-ACE

共有利用

SX-ACE

占有利用

VCC

占有利用

ディスク 容量追加 オプション (1TB単位)

VCC

共有利用

HCC&ディスク500GBは SX-ACE、VCCの利用者に 無償で提供しています

計算機の提供方法

共有利用

「ノード時間」単位で ノードを利用

利用者全員で一定数の ノードを共有

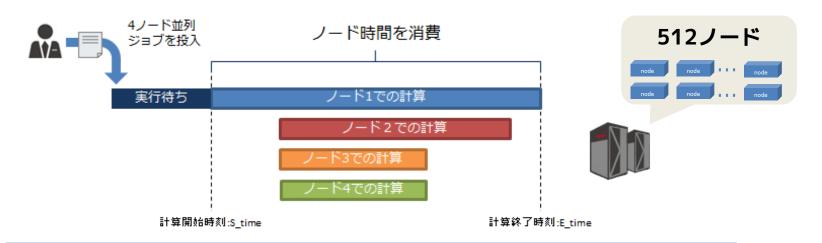
大規模なノード間並列を 試せる 「待ち時間」が発生する

占有利用

「年度/月」単位で ノードを利用

他の利用者のグループと ノードを共有しない

大規模なノード間並列は試 し難い 「待ち時間」が発生しない


「ノード時間」とは

```
ノード時間 =
計算に使用するノード数 × 計算時間(単位:時間)
```

(例)

```
1ノードで3時間の計算 → 3ノード時間消費
30ノードで5時間の計算 → 150ノード時間消費
100ノードで1時間の計算 → 100ノード時間消費
1ノードで100時間の計算 → 100ノード時間消費
```

「ノード時間」とは

ノード時間は4ノード×(計算終了時間 - 計算開始時間)です

ノード内で使用するコアを限定しても、ノード時間は変わりません

利用可能なアプリケーション

AVS/Express * IDL * VisIt

Gaussian09 *
GROMACS
LAMMPS
OpenFOAM
Relion
(VCCで提供)

MSC Software

- Marc / Mentat *
- Dytran *
- Patran *
- Adams *
- Nastran *

(フロントエンド端末で提供)

*のついたアプリケーションは 学内向けにメディア貸出サービスを実施しています

まずは試用制度をお試しください

3カ月間下記資源をご提供

SX-ACE

共有利用 500ノード時間

VCC

共有利用 500ノード時間

ディスク500GB付き!

全てのアプリケーションも利用可能です

利用申請方法

大規模計算機システムの利用申請は 随時受け付け中です!

申請は年度単位(4月から翌年3月まで)です 申請はWEBフォームから受け付けています

詳細は下記のページをご覧ください!

一般利用(学術利用) http://osku.jp/u094 試用制度による利用 http://osku.jp/e029

大規模計算機システムに関するご質問は

大阪大学 情報推進部 情報基盤課 研究系システム班 system@cmc.osaka-u.ac.jp

までお気軽にご連絡ください!