厳密な Z₃対称性を持つ量子色力学による格子計算

開田 丈寛 九州大学 大学院理学府 物理学専攻

1. はじめに

身の回りの物質は原子で構成され、これはさらに クォークとグルーオンから成る。これらに働く相互 作用は「強い力」と呼ばれ、「量子色力学(QCD)」 で記述される。クォーク・グルーオンの系は、温度 (T) やクォーク化学ポテンシャル(μ)を変化させ ることで様々な状態へと変化し、その様相は QCD 相図で描かれる。低温低密度ではクォークはハドロ ンに閉じ込められ、高温状態や高密度状態になると、 クォークは閉じ込めから解放され、自由粒子として 振る舞えるようになる。しかし、QCD 相図において 特に高密度領域は未確定であり、様々な手法で研究 されている。

QCD 相図を解明する一つの手段として、「格子 QCD 計算」がある。これは QCD の第一原理計算で あり、QCD 相図を研究するための強力な手法であ る。しかし、特に高密度領域(µ/T>1)では「符号問 題」という数値計算上の問題が生じてしまう。この 問題に対して様々な対処法が提案・検証されてきた が、未だ完全な解決には至っていない。

我々は、QCDのZ₃対称性(ゲージ変換の中心対称性)を厳密に取り込んだ「Z₃-QCD」[1]に注目した。これはゼロ温度において元のQCDと一致することが知られており、また符号問題が弱まると予想されている。この予想については、格子QCDの有効模型として3状態Potts模型[2]や effective

Polyakov-line 模型[3]を用いて数値計算が行われ、厳 密な Z₃対称性を模型に取り入れることで符号問題 が生じる領域が狭まることがわかった。しかし、符 号問題が一番深刻な領域を比較すると、問題の深刻 度合いは改善されていなかった。そこで、符号問題 の対処法の1つである「再重み法」の改良を行い、 その結果符号問題の深刻さを劇的に改善することに 成功した。 そこで本研究では、改良された再重み法に関する 再検証を行った。また、有限クォーク化学ポテンシ ャル領域における Z₃-QCD の格子計算の準備とし て、クォーク化学ポテンシャルがゼロでの Z₃-QCD の格子計算プログラムを構築し、これの計算チェッ クも行った。

2. 格子 QCD と符号問題

格子 QCD による数値計算では、以下の大分配関数を用いた統計計算が行われる。

 $Z_{QCD} = \int DU \det[M(\mu)] \exp[-S_G]$

ここで、Uはグルーオン場、 S_G はグルーオンの作 用、 $det[M(\mu)]$ はクォークの作用、 μ はクォーク化 学ポテンシャルをそれぞれ表している。グルーオ ン場Uは格子 QCD では格子点の間で定義されて おり、格子点の数×方向(x, y, z, t 方向)の数だけ の積分をすることで分配関数 Z_{QCD} を評価するこ とができる。しかし、積分する変数が多すぎるた めこれは現実的に不可能である。そこで、被積分 関数

$F = \det[M(\mu)] \cdot \exp[-S_G]$

を確率分布関数とみなし、その確率に従ってグル ーオン場の配位を生成する「重点サンプリング 法」が用いられるようになった。この手法により、 精度の高い格子 QCD 計算結果を得ることができ る。

重点サンプリング法を用いた格子 QCD 計算は、 主に零クォーク化学ポテンシャル領域で数々の 成功を収めている。しかし、有限クォーク化学ポ テンシャル領域ではクォークの作用 det[*M*(μ)]が

$(\det[M(\mu)])^* = \det[M(-\mu^*)]$

の関係を満たすため、特に実数クォーク化学ポテ ンシャル領域では大分配関数の被積分関数が複 素数となってしまい、確率分布関数としてみなす ことができなくなってしまう。これにより、実数 クォーク化学ポテンシャル領域では重点サンプ リング法を用いた格子 QCD 計算が行えなくなっ てしまう。これが「符号問題」である。この問題 に対して、様々な対処法が考案されてきたが、未 だ完全な解決には至っていない。

3. Z₃-QCD、再重み法

3. 1 Z₃-QCD

QCDは**SU**(3)の非可換ゲージ理論であり、Z₃群 は**SU**(3)の部分群である。**QCD**では、Z₃対称性は ゲージ変換Vに以下の境界条件

 $V(x_1, x_2, x_3, x_4 = \beta)$

$$= \exp[i(2\pi/3)] V(x_1, x_2, x_3, x_4 = 0)$$

を課すことで、クォークの境界条件がexp[*i*(2π/ 3)]だけ変更してしまうことで破れてしまう。この 問題に対し、クォークの境界条件を

 $q(x_1, x_2, x_3, x_4 = \beta)$

 $= -\exp[i\theta_f] q(x_1, x_2, x_3, x_4 = 0)$

 $\theta_f = (2\pi/3)f, f = 0, 1, 2$

とすることで Z_3 変換に対して不変にすることが できる。ここで、添字fはクォークの種類に対応 させ、クォークの質量は全て等しいとする。この 境界条件は、上記の Z_3 変換により元の場合と同様 の変更を受けるが、添字fを改めてクォークの種 類に対応するように書き直すことで、変換に対し て不変になるようにする。クォーク場にこの境界 条件を課したものを「 Z_3 -QCD」[1]と呼ぶ。これ は零温度で元の QCD と一致することが知られて おり、また符号問題が緩和されると予想されてい る。

Z₃-QCD は先に有効模型で研究され、また零ク オーク化学ポテンシャル領域での格子計算[4]も 実行されている。本研究では、実数クォーク化学 ポテンシャル領域での Z₃-QCD による格子計算の 準備として、中村氏のグループが開発したプログ ラム[5]を独自に改良し、これの計算チェックを行 った。

3.2 再重み法

符号問題の対処法の1つとして、再重み法が挙 げられる。これは確率分布関数が複素数となる系 に対して、確率分布関数を|F|としてゲージ場の配 位を生成し、

> $< 0 > = < 0 \exp[i\theta] >_1 / < \exp[i\theta] >_1$ $< 0 >_1 = \frac{1}{Z_1} \int DU \ 0 \ |F|$ $Z_1 = \int DU \ |F|, \quad F = |F| \exp[i\theta]$

として、物理量の期待値を計算する手法である。 これは数学的には厳密な書き換えではあるが、再 重み因子< $exp[i\theta]$ >'が 0 に近い値を取る時、期 待値の誤差が肥大化してしまい、信頼できる結果 が得られない。よって、再重み因子は再重み法に おける符号問題の深刻さの指標として適してい る。

本研究では、この手法を以下の式に従って改良 を行った。

< 0 > $= < 0 \exp[i\theta + \alpha\theta^{2}] >_{2} / < \exp[i\theta + \alpha\theta^{2}] >_{2}$ $< 0 >_{2} = \frac{1}{Z_{2}} \int DU \ 0 \ |F|$ $Z_{2} = \int DU \ |F| \exp[-\alpha\theta^{2}]$

ここでは、系の作用の虚部 θ の寄与 $exp[-\alpha\theta^2]$ を取 り入れた。この寄与は、作用の虚部をなるべく小 さく抑えるために導入した。本研究では、この改 良された再重み法を、格子 QCD の有効模型とし て挙げられる effective Polyakov-line (EPL)模型[6] を用いて、主に再重み因子のパラメータα依存性 と体積依存性について調べた。また、Z₃-QCD の 考えをもとに EPL 模型を Z₃ 対称化して同様の検 証を行った。

4. 数値計算結果

4.1 Z₃-QCD の格子計算

今回の格子計算では、グルーオン作用として Clover gauge action を用い、クォーク作用として Wilson fermion action を用いた。また、格子の大き さは、空間方向を 8、時間方向を 4 とした。Wilson fermion では偶数種類のクォークしか扱えないた め、今回は Z_3 対称性を取り入れるにあたり、クォ ークの種類を6個とした。グルーオン作用のパラ メータとクォーク作用のパラメータの関係につ いては、文献[7]のものを採用した。ここでは、計 算する量として QCD の閉じ込め相転移の秩序変 数として用いられる Polyakov loop を計算した。

図1と2は、それぞれ低温領域と高温領域にお ける Polyakov loop の複素平面上での分布である。 低温領域(図1)では、Polyakov loop は複素平面の 原点に集中し、高温領域(図2)では、Polyakov loop の絶対値が有限かつ位相が0,2 π /3,4 π /3付近に 分布していることがわかる。これは我々が期待し た振る舞いであり、今回独自改良した数値計算プ ログラムは正常に動作していることが確かめら れた。

図1 低温領域における Polyakov loop の分布図

図 2 高温領域における Polyakov loop の分布図

4.2 改良再重み法の検証

次に、EPL 模型を用いて、独自に改良した再重 み法を用いた数値計算を行い、符号問題の深刻さ についての検証を行った。

今回の数値計算では、 α 依存性の検証では空間 方向の大きさを8とし、 α を1.0から3.5の範囲で 変化させた。また、体積依存性の検証では空間方 向の大きさを6、8、12、16とし、パラメータを $\alpha = 3.0$ で固定した。系のパラメータとしては、ク オークの質量で規格化した化学ポテンシャル μ/M を0.0から2.0まで変化させた。この計算では、 確率分布関数 F_2 を計算する際に一度空間全体で の作用を計算する必要がある。そこで、SX-ACE 上では MPI の機能を用いてパラメータ μ/M をス レッド毎に分配して計算を行った。

図3は、再重み因子 W の α 依存性を表したもの である。改良前の再重み法では、EPL 模型での再 重み因子は $0.5 < \mu/M < 1.5$ で 0 に近い値を取り、 符号問題が深刻化していた[3]。しかし、図 3 から わかるように、改良再重み法では再重み因子が 1 ないしはそれ以上の値を取るようになった。

 $\alpha = 1.0$ では、今回考慮した領域で再重み因子が 1 に近い値を取るが、 $\mu/M=0.9$, 1.1 付近では0 に近 い値を取っており、符号問題が完全に解消された とはいえない。しかし、次第に α の値を大きくす ることで、再重み因子は符号問題が深刻化する領 域で1 より大きな値を取るようになり、今回用い た EPL 模型ではαを 2.5 以上で設定すると因子が 0 に近い値を取らなくなった。以上のことから、適 切なパラメータαを与えることで、改良再重み法 により符号問題が解消されることが示された。た だし、実際にこの手法を、実クォーク化学ポテン シャル領域で格子 QCD 計算に適用する際は、改 めてαによる再重み因子の振る舞いを調べ、適切 な値を決定してやる必要がある。

図 4 EPL 模型における改良再重み法の体積依存 性。ここでパラメータはα = 3.5で固定した。

次に、図4はα = 3.5で固定した際の、改良再重 み法における再重み因子の体積依存性を表した ものである。体積が大きくなるに従って、因子が 1より大きくなる領域が広くなっていることがわ かる。また、0.7<μ/M<1.3の領域における因子の 値は、空間方向の大きさによらずある一定の値に 集中していることがみてとれる。このことから、 改良再重み法における再重み因子は、比較的空間 方向の大きさに依存せず同じ振る舞いをみせる ことがわかった。

5. まとめと展望

本研究では、(1)零クォーク化学ポテンシャルに おける Z₃-QCD の格子計算プログラムの数値計算 チェックと、(2)独自に改良した再重み法のパラメ ータ依存性と体積依存性を、格子 QCD の有効模 型を用いて調べた。

(1)では、Z₃-QCD の格子計算で、QCD の Z₃対称性の秩序変数である Polyakov loop を計算し、こ

れが低温領域では複素平面上の原点に点が分布 し、高温領域ではZ3群の位相に対応する領域に分 布した。これは期待したとおりの振る舞いであ り、今回用いたプログラムは正常に動作したこと を確認した。今後は、これを有限クォーク化学ポ テンシャル領域へと計算領域を拡大し、符号問題 の影響等について検証を行う。

(2)では、新たに導入したパラメータについて は、適切な値を決定してやることで、符号問題が 深刻だった領域で問題が解消できることを示し た。また、体積依存性については大きな変化は見 られなかった。今後は、この改良再重み法を実際 に有限クォーク化学ポテンシャル領域での格子 QCD 計算に実装し、符号問題の深刻さの振る舞い を調べる。これにより、格子 QCD 計算でも符号 問題を軽減することができれば、有限クォーク化 学ポテンシャル領域で物理量の期待値を精度良 く計算することが可能となる。

参考文献

- [1] H. Kouno et al., Phys. Rev. D93, 056009 (2016).
- [2] T. Hirakida et al., Phys. Rev. D94, 014011 (2016).
- [3] T. Hirakida et al., Phys. Rev. D96, 074021 (2017).
- [4] T. Iritani et al., JHEP11, 159 (2015).
- [5] S. Choe et al., Lattice QCD Tool Kit in Fortran90, 素粒子論研究 108 巻1 号(2003 年 10 月号) 1-43.
- [6] J. Greensite et al., Phys. Rev. D90, 114507 (2014).
- [7] J. Takahashi et al., Phys. Rev. D 91, 014501 (2015).