大学計算センターの歩み

History of University Computer Centers in Japan

高度情報科学技術研究機構 小柳義夫

I前史

1. パンチカード計算機(日本での設置)

内閣国勢院は1918年逓信省に「製表機械」の政策を委託したが、関東

大震災(1923年)により調整中の9台が破壊、アメリカから輸入。

Powers: UNIVACの源流

Hollerith: IBMの源流

第二次世界大戦前には、1000台以上 のパンチカード統計機が官民で使用 されていた。

神戸商業大学は神戸大学の前身で ある。<u>写真</u>は神戸大学経営機械化 展示室の一部。

1923年	Powers	内閣統計局、鉄道省、横 浜税関等
1925年	Powers	日本生命
1925年	Hollerith	日本陶器(名古屋)
1934年	Burroughs	日本生命
1934年	Hollerith (初の80欄)	帝国生命
1937年	Hollerith	住友生命
1938年	Hollerith	第一生命
1938年	Hollerith	川崎飛行機
1941年	IBM PCS	神 <mark>戸商業大</mark> 経営計算研究 室
1944年	IBM PCS	<mark>神戸商業大</mark> 経営機械化研 究室

I前史

1. パンチカード計算機(戦後)

IBM 602は初めて割り算を含む四則 演算が可能。これで科学技術計算が 試みられた。

1954年3月、日本科学技術連盟に統計機械活用研究会。成果の一例:

JISの乱数表

20次の連立一次方程式(倍精度)

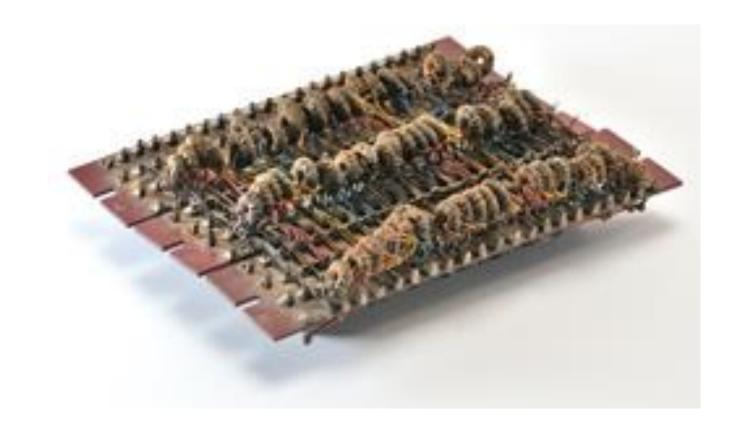
2. リレー式計算機

統計数理研究所:TSK I、TSK II

1956年: **有隣電機精機富士電 算機計算所** FACOM 128A 日本大学にもFACOM 128B

3. 真空管計算機

東大TAC 1952→1959年稼働 1953年、大阪大学試作


4. パラメトロン計算機

- 1954年5月:後藤英一がパラメトロンの原理を発見
- 1957年:PC-1/4 東京大学
- 1958年3月26日:PC-1 東京大学(学内共同利用) 写真はPC-1
- 日本電気測器、電電公社、日立製作所 日本電気、富士通信機など各社が製造
- 1963年3月30日:統計数理研究所TSK III (HIPAC 103)設置
- ・北大、教育大、東大核研、東大物性研、 東京理科大、東北大、立教大、広島大など にも設置

PC-1パラメトロンボード

出典: https://www.s.u-tokyo.ac.jp/ja/story/newsletter/treasure/05.html

1959年8月31日~9月7日 日本物理学会主催 「電子計算機講習会」

PC-1の講習会というより、 (今でいう) 計算科学の キックオフミーティング

錚々たる面々

第1日(8月31日)		
9:00-10:20	電子計算機概説	東大理学部 高橋秀俊
10:40-12:00		
13:00-14:40	パラメトロン計算機PC-1の演算命令	東大理学部 後藤英一
14:50-15:20	電子計算機の使用経験	東大理学部 島内武彦
15:30-16:00	幾何光学等への応用	日本電気KK 岡崎文次
16:10-17:00	結晶解析への応用	東大理学部 竹内慶夫
第2日(9月1日)		
9:00-10:20	電子計算機のための数値解析 I(線形計算)	東大工学部 森口繁一
10:40-12:00	電子計算機のための数値解析 II(数値積分と微分方程 式)	東大工学部 雨宮綾夫、有 山正孝
13:00-14:40	プログラムの作り方(流れ図とその実例)	東大理学部 石橋善弘
15:00-15:50	気象学への応用	東大理学部 都田菊郎
16:00-16:50	流体力学への応用	東大理学部 今井功
第3日(9月2日)		
9:00-10:50	プログラムの作り方(サブルーチンの使い方)	東大理学部 相馬嵩
11:00-12:00	プログラムの作り方(R0 R1によるテープの作り方)	東大理学部中川圭介
13:00-13:30	大学における電子計算機 I	東大理学部 森野米三
13:30-14:00	大学における電子計算機 II	東北大通研 大森充郎
		東北大工学部 桂重俊
14:10-15:00	モンテカルロ法	東大核研 藤本陽一
		東大理学部 後藤英一
15:10-16:00	量子力学への応用	東大理学部 小谷正雄
16:10-17:00	ORおよび制御工学における応用	鉄道技研 穂坂衡
第4日(9月3日)		
9:00-10:50	プログラムのエラーを見つける方法について	東大理学部 和田英一
11:10-12:00	これからの電子計算機とプログラミング	東大理学部 高橋秀俊
13:00-16:00		
	パネリスト 磯部孝(東大工)、穂坂衡(鉄研)、高橋秀俊(東大理)、森口繁一(東大工)、	
	小谷正雄(東大理)、和田弘(電試)、喜安善市(電電公社通研)、茅野健(電電公社)	
第5日(9月4日)~第8日(9月7日) 実習		

4. 大学の計算機

1961年7月『情報処理』「計数型電子計算機納入状況」(大学のみ)

設置場所	納入年月	機種
東北大学通研(学内に公開)	1958/3	P: SENAC-1 (NEAC-1102)
早稲田大学	1959/5	V: LGP-30 (Librascope社)
東京大学	1960/3	P: PC-2 (FACOM 202)
九州大学	1960/3	T: MELCOM 2200
東大原子核研	1960/3	P: MELCOM 3409
東京理科大学	1960/6	P: FACOM 201
京都大学	1960/8	T: KDC-1 (HITAC 102)
早稲田大学	1961/2	T: NEAC-2203
東京大学物性研究所	1961/3	P: FACOM 202
名古屋大学	1961/3	T: NEAC-2203

Vは真空管計算機(メモリは磁気ドラム)、Pはパラメトロン計算機、Tは(個別)トランジスタ計算機である。ICはまだない。

・この他、政府関係・公的セクターで30台以上、民間110台以上

5. JECC Rental

- コンピュータは非常に高価で、初期投資が大きい。レンタルが出来れば平滑化される。
- 1961年8月、メーカー7社と政府が 折半して出資し、国策会社JECC (日本電子計算機)を設立。レン タル業務は10月15日に開始。大学 の計算センターもJECCのおかげで コンピュータが導入できた。
- 競争阻害、非関税障壁との批判も

6. UNICON

- 1964年、海外の大型電子計算機の共同利用のためUNICON (University Contribution)という制度ができた
- 計算時間を学術用に無償提供
- 1964年4月に財団法人日本学術 振興会の中に計算機学術利用委 員会を設けて正式に発足
 - 1964年は、東大で機種選定中

日本IBM社	IBM 7090/1401	
日本レミントン・ユニバック社	UNIVAC III	
日本NCR社	NCR 315	

- 東大理学部1号館の地下に UNICONの分室を置き、各大学 からカードの形で郵送されてき たものをトランクに詰めて各社 まで運んだ。
- この配送システムが、大型計算 機センターの共同利用の手本と なった。
- 初年度の利用
 - IBM 全国から256件、10652分
 - UNIVAC 3大学から546分

(「情報処理|1965年7月号)

II 学内センターの始動

多くの大学で、部局の計算機に始まり、学内センターへと発展していった

1. 東京大学

- 1958年3月26日:理学部でPC-1 稼働(学内共同利用)。1964年 5月シャットダウン。(6年2か 月稼働)
- 1959年2月21日:工学部でTAC 稼働(学内共同利用)。1962年 7月にシャットダウン。(3年5 か月稼働)
- 1962年5月に計算センターが学 内組織として発足。OKITAC 5090×2を購入

2. 京都大学

- 1960年11月: KDC-I設置(京都大学ディジタル万能型電子計算機第1号)(共同開発)学内共同利用。(商品名: HITAC 102B)
- 1963年:工学部計算センター設立準備委員会発足
- 1965年:HITAC 5020をKDC-II として導入
- 1966年: 学内組織として計算センターが設立された

3. 大阪大学

- 1962年4月: 学内組織としての計算機センターが発足(NEAC-2206設置)。
- 1967年4月:バッチサービス開始
- 1967年9月: NEAC-2200 model 200と通信制御装置及び周辺機器を導入。
- 1968年1月:阪大MAC (TSS)システム サービスを開始。

4. 北海道大学

- 1962年3月:NEAC-2206設置(1号機)
- 1962年8月:北海道大学計算センターが 学内組織として発足

5. 九州大学

- 1962年5月:中央計数施設を設置
- 1963年: OKITAC 5090設置
- 1967年2月:大型計算機センター内示
- 2000年4月:情報基盤センターに統合

6. 名古屋大学

 1961年3月、綜合計算機室にNEAC-2203 (10進法計算機)を設置。

7. 東北大学

- 1958年3月:電気通信研究所が日本電気 と共同開発したパラメトロン計算機 SENAC-1(商品名NEAC-1102)を搬入。
- 1961年12月5日:計算センター設置
- 1962年: NEAC-2203G設置

国立7大学計算センター協議会発足

- 1962年7月9日、北大、東北大、東大、名大、京大、阪大、九東大、名大、京大、阪大、九大の国立7大学計算センター関係者が東大に会合した。
- ・東京大学高橋秀俊教授を議長 として議事に入り、この協議 会を常置させることに決定。
- ・今回は、文部省より立松学術 課長補佐を招いた。

- ・計算機の維持費、とくに保守 契約について文部省の考えを 聞き、また各大学が説明を 行った。
- この結果を要望書にまとめて 関係当局に陳情することにし た。
- 次回は1962年末 (情報処理1962年7月号)

III 大型計算機センターの胎動

学術会議の1963年の勧告を受けて、まず東京大学が大型計算機に向けて走り出した。

1. 日本学術会議

• 1963年5月13日:勧告「学術研究用大型高速計算機の設置と共同利用体制の確立について」

2. 東京大学の独走(?)

- 1963年:高速計算機委員会は、1964 年度概算要求に大型計算機の設置計画 (おそらく共同利用の制度設計未定)
- 1963年:文部省は、これを全国の共同利用を前提として、東京大学への大型計算機予算を大蔵省に要求した。

3. 東京大学での設置準備

- 総額518,347,000円の予算が内示。 (1966/1~1967/3債務負担行為)
- 1964年1月24日、高速計算機委員会は、 小谷正雄教授を委員長とする大型計算 機設置準備委員会を設置
- 学外委員4名を学術会議に推薦依頼
- 1964年1月、機種選定小委員会、運営 方式小委員会、建物小委員会を設置
- 4月、文部省大学学術局長から、予算成立の通知と共同利用について配慮を願う旨、申し入れ

4. 東大での機種選定

- ・ 機種選定小委員会での3有力候補
- a) HITAC 5020を中心とするシステム
- b) IBM 7094 IIを中心とするシステム
- c) CDC 3600を中心とするシステム
- 世界標準のアメリカ機をとの声!
- 1964年5月11日、HITAC 5020を中心 とするシステムを採用

主システム	主機	HITAC 5020	65536W
	入出力機	HITAC 5020	8192W
副システム		HITAC 5020	32768W

- 1965年4月、センター発足
 - 1966年1月、正式稼働

5. 共同利用体制

- ・全国を7つの地域に区分して、地 区協議会を置くことを東大総長か ら依頼
- ·連絡所体制(各大学)
- ・校費移管による課金

1982年ごろ、総務庁の行政監察において、利用料金を省令化すべきとの指摘があり、2年かけて跳ね返した。

IV 大型計算機センターへ

いよいよ全国共同利用の大型計算機センターが正式に発足する。

1. 1965年10月、学術会議第44回総会において科学計画第1次5カ年計画

第1地区——北日本	北海道:大型機、東北:大型機
第2地区――関東および中部地方の一部	大型機(既設)、超大型機
第3地区——中京、北陸、近畿および中 国、四国の一部	中京:大型機、京都:大型機、 大阪:大型機
第4地区——西日本、中国、四国の一部および九州	中国:大型機、九州:大型機
全国計	超大型機1、大型機7、ほかに既設1

IV 大型計算機センターへ

2. 東京大学大型計算機センター

1965年4月、第1回運営委員会

6月、プログラム指導員講習会

6月、副システム設置(バッチ 処理がやっと動く)

9月、主システム設置、稼働。 課金システム稼働

10月、一般利用者試用

12月、入出力機との磁気ドラム結合による同時運転

1966年1月、正式稼働

3. 東北大学

1967年11月:片平キャンパスに大型計算機センターの建物が竣工。

1969年1月からNEAC2200-500 の共同利用が始まる。

1969年6月に大型計算機センターが正式に設置された。

4. 京都大学

1969年4月:京都大学大型計算 機センターを全国共同利用施設 として設置。

5. 大阪大学

1969年4月:全国共同利用施設として大阪大学大型計算機センターを設置。

6. 九州大学

1967年12月:箱崎キャンパスで大型計算機センター建屋の建設が始まる。

1968年6月2日: 工事現場に米軍ファントム偵察機が墜落。

1969年1月5日:残骸が何者かに よって引き下ろされ、10月14日搬 出。

1969年3月:福岡市東薬院の九州電力研究所跡に仮設センター

3月7日からFACOM 230-60が稼働を開始、6月11日全国共同利用開始

1970年3月竣工、4月に移転、4月27日から業務再開

1970年5月8日: 開所式

7. 北海道大学

1970年4月:北海道大学大型計算機センターが設立され、富士通のFACOM 230-60を設置

8. 名古屋大学

1971年4月:大型計算機センター が設置され、FACOM 230-60が稼 働(7センターでは最後)

∨ アメリカの動き

アメリカの高性能コンピュータは、大学より国立研究所に偏在

- Lax Report (1982年12月)
 - 1. アカデミアにスパコンを
 - 2. 計算数学やアルゴリズム開発
 - 3. 新しいアーキテクチャ研究
 - 4. 先端計算のユーザ育成
- これを受けてNSFは1985~6年、5カ所の大学スーパーコンピュータセンターを設立
- Bardon-Curtis report (1983年7月)

- 日本に負けるぞ! 1985年NCAR (貿易摩擦の始まり) 1986年日米半導体協定
- National Computing Initiative (1987年2月)
- Blue Book(1991年2月)
- The High Performance Computing Act of 1991 (1991年12月9日)
 - HPCCとNII
- Hayes Panel (1995年9月)
 - PACIが翌年発足

VI ライブラリ・アプリソフト

- 日本政府(通産省):ハード やシステムソフトに投資、ア プリは各自開発せよ
- 第五世代やスパコン大プロ: 言語やツールまで
- アプリケーションの開発
 - JSPS未来開拓「計算科学」(1997)
 - ACT-JST「計算科学技術活用型」 (1998)
 - 「戦略基盤ソフトウェア開発」 (2002)
 - JST「シミュレーション技術の革新と 実用化基盤の構築」(2002)など

• ライブラリ開発

- 大型計算機センターでは当初から
- 私もPOW1やSALSを開発
- ・審査の上、一定の計算時間を付 与。副システムの利用。
- 作成されたプログラムは全ユーザに公開。ソースも原則公開。 利用統計が出た。
- ライブラリ小委員会
- センター間のライブラリ担当者 の会議もあった

- ライブラリの行き詰まり
 - 無償の計算時間のありがたみの 減少
 - ソフトの大型化と開発の手間の 増大
 - 環境の多様化(言語、TSS対応、 GUIなど)
 - ・その後の維持管理の困難
- ・国産アプリは可能か?
 - 利用されているアプリのほとんどは外国製
 - 国産アプリは努力が続けられているが、まだ一部である。
 - 全てが「日の丸アプリ」である 必要はないが、少しはほしい。

- 国産アプリソフト開発の利点
 - 自分たちの最先端の研究成果を 組み込むことができる
 - ・ソフトの普及、活用、移植、改 良などに開発者の協力を得やす い
 - コデザインでの利用が容易
 - デファクト化できれば、リー ダーシップ上有利
 - 技術安全保障

制約

• 機能、保守体制、ユーザコミュニティ、デファクト化など

WIネットワークと共通番号制

- 学術会議勧告(1965)
 - 地区内、地区間のデータ伝送網の 整備も勧告
- N-1ネットワーク
 - 1973年~75年度:科研費特定研究 「広域大量情報の高次処理」
 - 1974年からN-1の開発
 - 1976年7月に東大と京都大がN-1 で接続
 - 1976年~79年度:科研費特定研究 「情報システムの形成過程と学術 情報の組織化」

- N-1ネットワークの実証実験
- 1981年10月からN-1正式運用
- N-1の特徴
 - 異機種をつなぐ
 - 同一回線で複数の業務をサポート する
 - ARPANETと似ている
- 限界
 - ガラパゴスプロトコル?
 - OSIにこだわり過ぎか?
 - 電子メールなし(郵政省が禁止)
 - Webは生まれていない
 - 1999年末に2000年問題で終了

共通番号制

- 1986年4月:7大学大型計算機 センターの共通利用番号制実 施
- 主センターへの登録
 - 他のセンターへの利用が可能
 - 申請はオンライン、
 - 課金は主センターへ
 - 所属が変更しても、利用資格があれば、利用者番号を継承できる

登録番号 N31000A

- グリッド的利用の基盤となる はずであった
- 2004年からの国立大学法人化に伴い廃止

VIII 大学計算センターのビジネスモデル

- コンピュータ環境の激変
 - 1960年代:センターのメインフレームしかなかった
 - 当時、ミニコンなどは高価で非力だった
 - 学部や学科レベルにまで大小の 計算機
 - さらにPCスマホの時代へ
- センターのビジネスモデル
 - サービスセンター:計算資源等を、対価によりユーザに提供
 - サービスの切り売り
 - スパコンの初期でもこのモデル

- サービスモデルの問題点
 - スパコンでしかできない計算の 件数は減少する
 - ・ 少数の計算需要に多額の国家予算を使ってサービスすることは 許されるか!?
 - 国立大学の法人化 (2004) 「どうして競争相手に計算資源を提供する必要があるのか?」
- 「研究センター」へ

新しいモデル:研究センター

- 計算科学:大規模計算を主要 な研究手段とする学問体系
- 計算機は、道具でなく実験装置:天文台の大型望遠鏡やKEKの「加速器」に対応
- 計算センターは「研究所」
 - 研究所の使命は、研究活動を企 画し遂行する
 - 外の研究者とも共同
 - 重要なのは「企画力」「審査 力」

- ・研究所の研究成果は、利用した研究グループのものであると同時に、研究所自体の成果として情報発信する
 - サービスセンターでは、謝辞に 出てくるだけ
- もちろん、サービスセンター 的な利用も一定の割合で残す べきである(人材育成にもなる)

研究モデル

- ・私がこの意見を最初に述べた のは2001年名古屋大学大型計 算機センターニュース(新任 運営委員として)
- JHPCNは、この方向への第一 歩と考えられる。課題審査も この観点(JHPCNとして、何 を推進するのか)が重要
- 「京」を含むHPCIもこのモデル。
 - 「京」にサービスセンター的な 運営も加えろとの意見もある

IXまとめ

大学の計算センターは、今や 教育研究のサポートだけではな く、研究を推進するという機能 を持つようになった。高エネル ギー加速器研究機構が粒子を加 速する装置を軸とする研究機関 であるように、大学センターは 計算を加速する装置を軸とする 研究機関なのである。今後、ま すます戦略的な企画力が必要と される。

本講演を拡充して、「HPCの歩み50年」の特別編として、

www.hpcwire.jp [HPCwire Japan]

に7月末頃から連載します。 ご清聴ありがとうございました。