格子ゲージ理論によるダークマターの研究 -- ダークマターの正体の解明に向けて --

飯田 英明¹、山中 長閑²、若山 将征^{3,4,5}、中村 純^{6,3,7}

1 東京大学 物理学科

2 京都大学 基礎物理学研究所

³大阪大学 核物理研究センター(RCNP) 核物理理論研究部門

⁴ Department of Physics, Pukyong National University

 5 Center for Extreme Nuclear Matter (CENuM), Korea University

⁶ School of Biomedicine, Far Eastern Federal University

7理化学研究所 仁科加速器研究センター

1. はじめに

我々の宇宙を構成しているものは、通常の物質(水 素、酸素、炭素など)は 5%程度で、その 6 倍近く が未知の物質であるダークマター(暗黒物質)、残り の 68%はダークエネルギーと呼ばれるものであるこ とが近年の宇宙の観測から明らかになってきた(図 1) [1-4]

図 1 宇宙の組成

ダークマターの存在は天体物理学や宇宙論におけ る物理現象のいくつかの問題を矛盾なく説明する一 方で、現在の素粒子の標準理論には、ダークマター の候補となる粒子は含まれていない。さらに、ダー クマターは標準理論を構成する粒子と相互作用しな い(あるいは非常に弱くしか相互作用しない)。

ダークマターの存在を説明する理論はこれまでに

いくつか提唱されているが、本稿では、暗黒 Yang-Mills 理論(Dark Yang-Mills 理論。以下 DYM と略記)によるシナリオに基づく我々の研究につい て紹介する[5,6]。この計算は大規模数値計算によっ て初めて可能となる。

DYM 理論において最も軽い粒子は、標準模型の 量子色力学(QCD)におけるスカラーチャンネルのグ ルーボールに対応する粒子であり、ダークグルーボ ールと呼ばれる。ダークグルーボールの性質はダー クマターに関する観測事実と無矛盾である。また、 ダークマター同士の散乱断面積は観測によって制限 される。そのため、DYM 理論におけるダークグル ーボール間の相互作用を計算し、散乱断面積の観測 事実と比較することにより、DYM 理論における未 知のスケールパラメータΛに対して制限を与えるこ とが可能になる。

2. ダークマターのモデル

ダークマターの候補として、我々は DYM 理論に おける(ダーク)グルーボールを検討する。グルー ボールはグルーオンの束縛状態であり、非摂動的な 取り扱いが必須で、格子ゲージ理論による数値シミ ュレーションが強力な計算方法である。

ダークマター間の散乱は銀河のハローの構造など に強く影響する。そのため、ダークマターの観測か らの制限と比較するためには、グルーボール間の相 互作用を明らかにする必要がある。しかし、グルー ボールの質量については多くの研究があるが、その 相互作用は解析されていない。グルーボールをダー クマターと考えるためにはその研究が必須である。

本稿では、比較的最近開発された HAL QCD 法 [7,8]によってグルーボール間相互作用のポテンシャ ルを求める。HAL QCD 法は、元々は核子間相互作 用から核力ポテンシャルを求めるために開発された が、グルーボール間相互作用に対しても適用可能で ある。また、グルーボール相関関数のノイズは非常 に大きいため、このノイズを抑えるためにも、HAL QCD 法の利用は必要不可欠である。さらに、クラス ター分解法[9]やスメアリング法[10]、時空間におけ る対称性の性質を利用することにより、統計精度を 上げることに成功した。

3,計算手法と結果

格子ゲージ理論によってグルーボールの相互作用 を調べる第一歩として、SU(2)ゲージ理論における $J^{PC}=0^+$ グルーボールの相互作用を計算する。まず、 擬熱浴法を用いて、204 万個のゲージ配位を生成し た。空間方向の格子サイズ $N_s=16$ 、時間方向の格子 サイズ $N_t=24$ で計算を行なった。なお、本研究の計 算は CMC/RCNP の大規模計算機 NEC SX-ACE を用 いて行われた。

グルーボールの質量は m=6.40(48)Λと得られ、先 行研究の結果[11]と無矛盾であることを確かめた。

次に、HAL QCD 法[7,8]からグルーボール間相互作 用のポテンシャルを求めるために、グルーボールの 2 点間相関関数を計算する。しかしながら、J^{PC}=0⁺⁺ グルーボールは真空と同じ量子数を持つため、ノイ ズが非常に大きい。このノイズは真空の揺らぎが原 因であり、それを取り除く手法がクラスター分解法 である[9]。時空間距離がグルーボール演算子の位置 から離れるほど、その場所からの相関関数へ影響は 指数関数的に小さくなる。そこで、グルーボール演 算子の位置から十分に離れた場所は相関関数に寄与 しないとみなし、その場所からの寄与を取り除く。 これにより、真空の揺らぎによるノイズを抑えるこ とが可能となる。グルーボール2 点間相関関数の計 算において、クラスター分解法の足し上げを行う時 空間距離を格子間隔単位で4から12まで変化させた 結果を図2に示した。全ての時空間距離の足し上げ

図 2 クラスター分解法を用いたグルーボ ール 2 点間相関関数の結果

を行なった wall 法の結果と比べると、時空間距離が 8 までの足し上げで十分であり、それ以上の足し上 げを行うと、真空の揺らぎによりノイズ大きくなる ことが分かる。我々はクラスター分解法を用いるこ とで、統計誤差を約半分にまで抑えることに成功し た。

HAL QCD 法では格子ゲージ理論による数値シミ ュレーションから南部-Bethe-Salpeter(NBS)波動関数 を計算し、時間依存 Schrödinger-like 方程式

$$\left[\frac{1}{4m}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{1}{m}\nabla^2\right]R(t,\vec{r}) = V(\vec{r})R(t,\vec{r}) \qquad (1)$$

よりポテンシャル V を求める。ここで、非相対論性 からポテンシャルは局所的かつ中心力とした。

NBS 波動関数からグルーボール間ポテンシャル を求めた結果を図3に示す。近距離で引力となって いるが、これは同一格子点を含むためこの寄与は取 り除く。すると近距離では斥力となる。また、長距 離では非常にノイズが大きい。これは NBS 波動関数 が長距離でほぼゼロになるためである。

さらに、我々は得られたポテンシャルを湯川型ポ テンシャル

$$V_Y(r) = V_1 \frac{e^{-mr}}{r} \tag{2}$$

図 3 グルーボール間ポテンシャル

および、湯川型+ガウス型ポテンシャル

$$V_{YG}(r) = V_1 \frac{e^{-mr}}{r} + V_2 e^{-(mr)^2/2}$$
(3)

でフィットし、V_Yに対してはV₁=48(4)、V_{YG}に対し てはV₁=300(30)、V₂=-860(90)Λを得た。

このフィットの結果より、散乱の位相のズレと散 乱断面積を計算する。散乱の位相のズレδ(k)はS波 Schrödinger 方程式

$$\left[\frac{\partial^2}{\partial r^2} + k^2 - mV(r)\right]\phi(r) = 0$$
(4)

を解くことによって得られる。波動関数は漸近的に $\phi(\mathbf{r}) \propto \sin[\mathbf{kr} + \delta(\mathbf{k})] と書ける。低エネルギー極限での$ $散乱断面積は <math>\sigma = \lim_{\mathbf{k} \to 0} (4 \pi / \mathbf{k}^2) \sin^2[\delta(\mathbf{k})] となるこ$ とから、V_Y と V_{YG}に対して、散乱断面積はそれぞれ、 $<math>\sigma = (3.5 - 3.8) \Lambda^{-2}$ 、 $\sigma = (7.5 - 8.0) \Lambda^{-2}$ と求まる。異なるフ ィットによる結果の違いを系統誤差とすると、SU(2) DYM 理論のグルーボール間の散乱断面積は

 $\sigma = (3.5 - 8.0)\Lambda^{-2}$ (stat. + sys.) (5) と求まる。

最後に、ダークマーターに関する観測事実から DYM 理論の未知のパラメータΛに対する制限を与 える。ダークマターの散乱断面積に対する最も確実 な制限は、銀河ハローと銀河の衝突[12]から

$$\sigma/m < 0.47 \ cm^2/g \tag{6}$$

と与えられている。従って、SU(2) DYM 理論の制限 は

$$\Lambda > 60 \text{ MeV} \tag{7}$$

となる。また、ラージ N_c の議論を用いれば、スケー ルパラメータの下限値を $N_c \ge 3$ に対しても課すこと ができ、

$$\Lambda_{N_c} > 60 \left(\frac{2}{N_c}\right)^{\frac{4}{3}} MeV \tag{8}$$

となる。 ラージ N。による外挿をより正確なものにす るために、今後、SU(3)や SU(4)に対する DYM 理論 の計算が必要である。

4, おわりに

本稿では、HAL QCD 法を用いてグルーボール間 の散乱断面積を計算し、銀河の衝突の観測データか ら SU(2)の DYM 理論のスケールパラメータに制限 を与えた。精度良くグルーボール 2 点間相互作用を 計算するには、時間に依存する HAL QCD 法は必要 不可欠であり、さらにクラスター分解法はシグナル を改良するのに効果的であった。

グルーボール間ポテンシャルはいくつかの重要な 特徴を示す。近距離では、グルーボール間ポテンシ ャルは斥力となった。この性質の詳しい定式化と振 舞いについては今後引き続き検討していく。

本稿では、式(1)で局所的ポテンシャルを仮定し た。しかしながら、非局所性による変化の調査も必 要である。

さらに、我々は SU(2) DYM 理論に対してのみ散乱 断面積の制限を与えた。 $N_c \ge 3$ に対しては、ラージ N_c の議論から制限を与えたが、より精度の良い制限 を与えるために、今後、SU(3)や SU(4)に対する DYM 理論の計算を進めていく。

HAL QCD 法、クラスター分解法、スメアリング 法などの格子 QCD で開発された手法を活用するこ とで、ダークマターの動的振舞いの研究が可能にな りつつある。SX は複雑なプログラムも容易に実装で き、高速に実行できる。しかし、それでも数百万の 配位を生成する必要があり、必要な計算資源は膨大 になる。大阪大学 CMC 大規模計算機システム公募 型利用制度、学際大規模情報基盤共同利用・共同研 究拠点と大阪大学 RCNP からの支援が無ければ実現 できなかった。

謝辞

本研究の数値計算は、 大阪大学 CMC 大規模計算 機システム公募型利用制度(課題番号: EX17707)、学 際大規模情報基盤共同利用・共同研究拠点(課題番 号: jh180058-NAH)と大阪大学 RCNP からの支援の 下、NEC SX-ACE の多大な計算機資源を使用して行 われた。さらに CMC 主催の「2019 年度対面利用相 談」により、コード開発の有益な助言を頂いた。

また、若山は韓国科学技術情報通信部(MSIT) に よる韓国研究財団(NRF)の助成を受けている (No.2018R1A5A1025563)。

参考文献

- G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005). [hep-ph/0404175]
- (2) D. Munshi, P. Valageas, L. Van Waerbeke and A. Heavens, Phys. Rept. 462, 67 (2008). [astro-ph/0612667]
- (3) G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y.
 Mam- brini, M. Pierre, S. Profumo and F. S. Queiroz, Eur. Phys. J. C 78, no. 3, 203 (2018).
 [arXiv:1703.07364 [hep-ph]]
- (4) M. Battaglieri et al., arXiv:1707.04591 [hep-ph].
- (5) N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, arXiv: 1910.01440 [hep-ph].
- (6) N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, arXiv: 1910.07756 [hep-lat].
- (7) N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).
- (8) S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123, 89 (2010).
- (9) K. F. Liu, J. Liang, and Y. B. Yang, Phys. Rev. D97, no. 3, 034507 (2018) [arXiv:1705.06358 [hep-lat]].

- (10) M. Albanese et al. [APE Collaboration], Phys. Lett. B192, 163 (1987).
- (11) M. J. Teper, hep-th/9812187.
- (12) D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, Science 347, 1462 (2015).