
― 11 ―

Accelerating In-Transit Co-Processing for Scientific Simulations Using
Region-Based Data-Driven Adaptive Compression

Marcus Wallden

Graduate School of Information Science and Technology, Osaka University

Processing capabilities of supercomputers are improving

at a rapid pace. However, I/O bandwidth is advancing at a

much slower rate. This is one of the most pressing matters

facing large-scale scientific simulations. Simulations can

generate many tera- or petabytes of data, meaning that it

is difficult to save all important data to permanent storage

as a result of limited storage capacity or time-consuming

I/O operations [1-3]. In-transit co-processing can instead

be used to analyze and visualize data for each time step

while it is generated.

In-transit co-processing is typically performed on a

separate group of nodes, which we call transit nodes.

Utilizing a separate node group means that co-processing

can be performed asynchronously during the simulation

stage, resulting in a less strict time limitation compared to

other solutions. The data transfers required to perform

in-transit co-processing can be accelerated by

compressing the simulation data. However, using a lossy

compression method could lower the accuracy and detail

of regions of interest in the data. It could instead be

preferable to selectively compress regions based on their

contribution to the simulated phenomenon. Reducing

regions which are not of interest would result in less time-

consuming data transfers, without any significant loss in

data quality.

We have developed an approach, called ATCO, to

accelerate in-transit co-processing for large-scale

simulations which utilize multivariate and temporal data

sets in the form of structured rectilinear grids. In these

grids, lightweight computations are adaptively performed

in-situ to accelerate the simulation, data reduction, data

transfers and co-processing. The importance of blocks,

convex and contiguous data regions which make up the

simulation data, are determined by utilizing various

importance metrics and filters. Such information can then

be used to identify important regions, down-sample,

reduce, compress or simply remove parts of the data based

on user-defined constraints. By this approach, we strive to

reduce the data size and the in-transit data transfer time by

utilizing multiple reduction and compression methods

based on the entropy of the data. The loss of detail in

regions of interest can thus be kept at a minimum.

Determining and analyzing regions of interest in three-

dimensional (3D) data sets has been an important topic in

many different fields of research, and has as such been

explored in many related works [4-8]. However, such

research has generally been limited in scope or in its

ability to perform multiple analyses to determine block

importance. Our approach improves upon this related

work by being able to efficiently handle multiple

importance analyses and by adaptively utilizing multiple

different compression and reduction strategies.

Close to our work is a paper by Dorier et al. [4], in which

various importance metrics were used to dynamically

reduce unimportant data. Their approach specifically

targeted in-situ visualization and supported elementary

data reduction. In addition, they utilized load balancing

based on a random distribution to balance the load among

the available compute nodes. However, their approach

only supported the use of a single reduction method.

Our approach consists of three stages: the in-situ stage,

― 12 ―

where importance is calculated and which compression

method to use is determined for each block, the

distribution stage, where generated simulation data is

compressed, load balanced and transferred to transit nodes,

and the in-transit stage, where data is decompressed and

restructured on the transit nodes.

A key issue when calculating the importance of individual

blocks is data locality. The simulation region is typically

allocated in contiguous memory space. However, a block

makes up a 3D subset of the simulated region, which leads

to low cache hit rates, especially when using small block

sizes. Utilizing multiple importance metrics or advanced

data access patterns further complicate this issue. Our

solution is to dynamically allocate a separate buffer for a

block when it is analyzed. Relevant filters, which

calculate importance metrics and determine which

compression methods to use based on user-defined

conditions, can then be applied in sequence for each block,

leading to low memory overhead and high cache hit rates.

This approach also ensures that the generated simulation

data of each block only needs to be allocated and copied

once, minimizing the overhead introduced by this step.

Operating on data allocated on a per-block basis leads to

a much higher data locality, meaning that multiple

importance calculations can be performed at a lower

computational cost.

Which importance metrics and filters to use depends on

the used simulation. Similarly, which compression

methods to use for which importance values depends on

the needs of the researcher. We consider four compression

and reduction methods: run-length encoding (RLE), LZ77

value) and Skip (the block is not transferred to any transit

node).

The generated simulation data varies throughout the

simulation, meaning that the compressed data size is

constantly changing. It follows that the need for

compression and data reduction also changes throughout

the simulation. It could be preferable to adaptively change

filter parameters and the used compression methods based

on some criteria. The criteria could be based on the

memory usage, execution time or the remaining allocated

time on a compute cluster. Rudimentary use of an adaptive

condition has been explored in some related work [4].

However, only one condition was used, which limits its

application.

We support the use of multiple filters and importance

metrics, and a key issue is how to adaptively modify the

conditions without affecting the intended flow of analysis.

Our solution is to utilize an adaptive condition window, by

which filter conditions can vary. The value of the

condition window can slide one interval of 0.05 between

0.0 and 1.0 between each time step, based on input to the

program. Filter conditions can have a defined lower and

upper bound. Let cl and ch be the lower and upper bounds,

respectively, and w be the current value of the condition

window. The current value of the filter condition can then

be calculated using the equation

 (1)

This method ensures that the filter condition values

adaptively can be changes in a controlled manner, thus

retaining the intended flow of the analysis.

To evaluate the proposed approach we devised a double-

planar case of the Richtmyer-Meshkov Instability using

the simulation program CNS3D.

Initially, all fluids are at rest, other than the shocked

incoming air. The shock wave passes from left to right,

causing the membranes separating the two fluids to

rupture. The membranes are supported on a fine wire

mesh with a grid spacing of 0.4 cm. The initial boundary

conditions and initial setup are illustrated in Fig. 1.

Small initial perturbations increase greatly in size, leading

to high Reynolds number turbulent mixing of the two

gases. The simulation ran for 15,653 time steps on 32

― 13 ―

compute nodes at a resolution of 2401 × 601 × 1201, for a

total of 3,228 node hours. Out of all time steps, 80 were

analyzed and used for testing purposes. In total, four

transit nodes were used for co-processing. A visualization

of three time steps of the mass fraction are shown in Fig.

2.

For testing purposes we devised a filter pipeline,

consisting of three filters. Blocks which had a range of 0

were set to use Homogeneous compression. The

Homogeneous compression method is lossy. However,

since the range of the affected blocks was zero, all

information could be retained. Blocks which consisted

of more than 90% distinct values were set to use no

compression, since lossless compression methods would

not be able to compress such data as effectively. All other

blocks were set to use RLE compression. The average

execution times are displayed in Fig. 3. Using the lossless

RLE method reduced the data transfer time by 35.2% as

compared to using no compression. However, the

decompression process significantly increased the co-

processing time on the transit nodes. Compared to the

RLE method, ATCO sped up the decompression process

by a factor of 2.0. The speedup compared to using no

compression was measured at 1.05. As for the data

distribution stage, ATCO achieved a speedup of 1.14

compared to using the RLE method, and a factor of 1.77

compared to using no compression. Interestingly, ATCO

was able to achieve better performance in all aspects

(compressed data size, compression, transfer and

decompression times) compared to the other lossless

compression methods used for comparison. This is a result

of the fact that ATCO scales with the compression

methods which are used in its pipeline; in this case RLE

and Homogeneous. This behavior should extend to other

compression methods as well.

We devised and evaluated a novel approach to perform in-

transit co-processing in which the simulation data is

analyzed to determine the importance of all regions of data.

Such information is then used to simultaneously utilize

multiple compression and reduction methods to accelerate

the in-transit co-processing while minimizing loss of

detail in regions of interest. The approach was able to

calculate the importance of regions of data expediently,

even in cases where multiple importance metrics were in

use. Our approach was able to achieve better performance

in all aspects (compressed data size as well as

compression, data transfer and decompression times) in

all evaluated tests than the methods used for comparison.

Compared to a run length encoding compression, our

approach achieved speedups of 1.14 and 2 when

performing data transfers and data decompression,

respectively. The excellent scalability and performance

make the approach suitable to be used in tandem with

many large-scale simulations which utilize in-transit co-

processing to analyze the generated data. In future work

Fig. 2: Visualization of the mass fraction of the
Richtmyer-Meshkov Instability simulation at recorded
time steps 1, 40 and 80.

Fig. 1: Initial and boundary condition of the double-planar
problem.

― 14 ―

we plan to extend the approach to work better with in-situ

workflows.

[1]. Rivi M, Calori L, Muscianisi G, Sla -situ

Visualization: State-of-the-art and Some Use Cases. 2012.

[2]. Yu H, Wang C, Grout RW, Chen JH, Ma K. In Situ

Visualization for Large-Scale Combustion Simulations.

IEEE Computer Graphics and Applications 2010; 30(3):

45-57.

[3]. Bennett JC, Abbasi H, Bremer P, et al. Combining in-

situ and in-transit processing to enable extreme-scale

International Conference on High Performance

Computing, Networking, Storage and Analysis.; 2012: 1-

9.

[4]. Dorier M, Sisneros R, Gomez LB, et al. Adaptive

Performance-Constrained In Situ Visualization of

Atmospheric Simulations. In: 2016 IEEE International

Conference on Cluster Computing (CLUSTER). 2016:

269-278.

[5]. Wang C, Yu H, Ma K. Importance-Driven Time-

Varying Data Visualization. IEEE Transactions on

Visualization and Computer Graphics 2008; 14(6): 1547-

1554.

[6]. Nouanesengsy B, Woodring J, Patchett J, Myers K,

Ahrens J. ADR Visualization: A Generalized Framework

for Ranking Large-Scale Scientific Data Using Analysis-

Driven Refinement. In: 2014 IEEE 4th Symposium on

Large Data Analysis and Visualization (LDAV). 2014: 43-

50.

[7]. Berger MJ, Oliger J. Adaptive mesh refinement for

hyperbolic partial differential equations. Journal of

Computational Physics 1984; 53(3): 484-512.

[8]. Shimokawabe T, Onodera N. A High-Productivity

Framework for Adaptive Mesh Refinement on Multiple

GPUs. In: Computational Science ICCS 2019. 2019:

281-294.

[9]. Ziv J, Lempel A. A universal algorithm for sequential

data compression. IEEE Transactions on Information

Theory 1977; 23(3): 337-343.

Fig. 3: Average execution times of the three main stages.

