

CYBERMEDIA HPC JOURNAL

Cybermedia Center, Osaka University No. 12

September, 2022.

目 次

特	■ 集: 多様化す	るスパコンの開発環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••••• 1
	・SQUID で Julia ス 宮武 勇登	プログラミング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
大	規模計算機シス	ステム利用者研究報告 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	・SU(3) QCD にお 鈴木 恒雄	らける Dirac 流モノポールとカラーの閉じ込め ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 9
	・勾配流法とスパ・ 伊藤 悦子	ースモデリング法によるQCD粘性の決定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	・素粒子物理学実 岩崎 昌子	ミ験への機械学習の適用研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 17
	・アテンションネッ 小山 恭平	トワークによる T 細胞受容体と ペプチド結合の予測・その機能の解釈性に関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 大阪大学 大学院生命機能研究科	21
	•Ginzburg-Landaa 兼安 洋乃	u 理論に基づいた数値シミュレーションによる超伝導の磁場依存性の研究・・・ 兵庫県立大学 大学院理学研究科	25
	・高次テンソル繰り 大塚 高弘	り込み群を用いたモノマー・ダイマーモデルの統計力学的研究・・・・・・・・・・ 大阪大学 大学院理学研究科	····· 29
	・CT画像と深層学 森田 尭	空習を用いた骨格標本上の形態学的変異の可視化と発見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 33
	・自己組織化イオ	ン結晶におけるナノ相分離様態と分子輸送特性の分子動力学研究・・・・・・・	37

石井 良樹 兵庫県立大学 大学院情報科学研究科

センター報告 ····································
・2021 年度大規模計算機システム利用による研究成果・論文一覧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・第 27 回スーパーコンピューティングコンテスト(SuperCon2021)報告および
第 28 回スーパーコンピューティングコンテスト(SuperCon2022)告知 ・・・・・・ 55
・大規模計算機システム利用者講習会等の紹介 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・57
・2022 年度大規模計算機システム利用講習会 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 59
 ・2021 年度大規模計算機システム利用講習会アンケート集計結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・2022 年度「HPCI(High Performance Computing Infrastructure)利用」の活動状況 ・・・・・・ 68
・2022 年度「学際大規模情報基盤共同利用・共同研究拠点」の活動状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・2021 年度大規模計算機システム公募型利用制度(追加募集)の活動状況 ・・・・・・・・・・・ 70
・2022 年度大規模計算機システム公募型利用制度の活動状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・大規模計算機システム Q&A ・・・・・・ 72

利用規程等		75
-------	--	----

 ・規程関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
大阪大学サイバーメディアセンター大規模計算機システム利用規程 ・・・・・・・・・・・・・ 7	77
大阪大学サイバーメディアセンター大規模計算機システム利用負担額一覧 ・・・・・・・・・・ 7	79
大阪大学サイバーメディアセンター大規模計算機システム試用制度利用内規・・・・・・・・・ 8	81
	~~
・附表 ····································	82
大規模計算機システム ホスト一覧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
	~~

スーパーコンピュータSQUID、OCTOPUSのショノクラス一覧 ······	82
2021 年度大規模計算機システム稼働状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85

募 集			;7
-----	--	--	----

•	・大規模計算機シ	/ステムを利用	用して行った研究	£.	開発等の記事の募集について	•••••	89

・大規模計算機システム利用案内(サービス内容・サービス時間等) ・・・・・・・・・・・・・・・・ 90

宮武 勇登 大阪大学 サイバーメディアセンター

SQUID で Julia プログラミング

宮武 勇登 大阪大学 サイバーメディアセンター

1. はじめに

Julia (図 1) は、2009 年頃から開発が始まり 2012 年に公開された比較的新しい汎用プログラミング言 語である。近年、人工知能やデータサイエンス分野 で注目を集めており、データサイエンスの次世代言 語とも言われている。

図 1: Julia のロゴ

まず、Juliaの際立った特徴を幾つか挙げてみよう。

- Julia は Python, Matlab, R などと同様に動的型付けの言語である。プログラムの構造は、C言語や Fortran などよりも Python, Matlab, R などに近く、簡潔で高水準なコードを書くことができる。したがって、学習コストは比較的小さく、生産性は高い(配列のインデックスは1スタートであり、科学技術計算の基盤である線形代数との親和性も高い(1))。
- 一般に、動的型付けの言語は、生産性と実行効率の間にトレードオフがあることが多く、生産性が優れている反面、C等と同等の実行速度を期待することは難しい。しかし、Juliaは細かい調整をしなくとも、C等に匹敵する実行速度を期待できることが多い。ベンチマーク問題に対する様々な言語の実行速度の比較が(2)で公開されている。動的型付けの言語であるJuliaでは、基本的に型の情報を付与する必要はなく、実行時のコンパイルにおいて十分に最適化されたコードになることも多いが、型情報を付与することでさらなる高速化が達成されること

もある。

 Julia で実現することが直ちには難しいレベル のチューニングが施された他言語のプログラ ムも、比較的容易に利用することができる(例 えば C で書かれたライブラリを Julia から呼び 出せる)。

2012年に公開されてから、しばらくバージョンは 0台であったが、2018年にv1.0.0が公開されてから は、以前のプログラムが動かなくなるようなレベル の言語仕様の変更はほぼなく、利便性も向上してい る。Python等と比較すると、日本語の解説書(例え ば(3))は限られてはいるものの(とはいえ、ブログ などを通した情報発信は盛んに行われているし、基 本的に英語ではあるが公式webページから十分な情 報を入手できる)、以上のような特性から、Juliaの利 用者も年々増加しており、当然、スーパーコンピュ ータ上でJuliaを利用する要望も高まっている。

大阪大学サイバーメディアセンターで 2021 年 5 月より運用が開始されたスーパーコンピュータ SQUID では、Julia を利用することができる (Python や R も利用可能)。本稿執筆時点で、Julia に関する 情報は十分に公開されているとは言えないが、 SQUID 上で Julia を利用できるという事実を広く普 及するためにも、本稿では、日頃ラップトップ PC や ワークステーションで Julia を利用しているユーザ (特にスーパーコンピュータを使った並列計算の経 験があまり多くはないユーザ)を念頭に、SQUID 上 での Julia の利用についてその基本を概観する。

2. Julia の実行方法

一般論として、通常の Julia の利用方法は Python と似通っている。まず、気軽に利用できるのは対話 型環境 (REPL) であろう。また、Julia のプログラム (例えば sample.jl) があれば、コマンドラインに \$ julia sample.jl

と入力すればプログラムを直接実行できる。他にも、 Jupyter Notebook(とその次世代版である JupyterLab) も便利でよく利用されている。これは、ウェブブラ ウザ上で動作する対話型実行環境である。

SQUID 上でも、通常通りの利用方法が可能だが、 注意点も少なくない。

まず、SQUID には HPC フロントエンドと HPDA フロントエンドの 2 つのフロントエンドがある。 REPL を利用したりコマンドラインから直接プログ ラムを実行したりする場合は、前者の HPC フロント エンドを利用し、Jupyter Notebook を利用する場合は、 後者の HPDA フロントエンドを利用することとなっ ている(本稿執筆時点で JupyterLab はサポートされ ていない)。個人の PC などでの通常の利用では、 REPL を起動した上で

julia> using IJulia

julia> notebook()

として Jupyter Notebook を利用することも多いが、 SQUID 上ではそのような使い方は想定されていな い。言い換えれば、HPC フロントエンドで REPL を 起動し、そこから IJulia パッケージを利用して Jupyter Notebook を起動することはできず、万が一こ のような操作を行ってしまうと何らかの不具合が生 じうるため注意が必要である。

2.1 HPC フロントエンド

利用方法はいたってシンプルであり、HPC フロン トエンドにログイン後、コマンドラインに

\$ module load BaseJulia/2021

と入力すれば、直ちに利用できる。実際、コマンド ラインに

\$ julia

と入力すれば、次のような REPL が起動する。

[[@squidhpc3 ~]\$ module load BaseJulia/2021 Loading BaseJulia/2021 Loading requirement: julia/1.6.1 [[@squidhpc3 ~]\$ julia

Documentation: https://docs.julialang.org Type "?" for help, "]?" for Pkg help. Version 1.6.1 (2021-04-23) Official https://julialang.org/ release

また、REPL ではなくコマンドラインから Julia フ

ァイルを実行するには、

\$ julia sample.jl

のように入力すればよい。

ただし、原理的にはこのように利用できるものの、 フロントエンドノードは多数のユーザで共有してい ることから、簡易的な動作確認のみを想定しており、 そうではないプログラムの実行を行ってはならない。

したがって、実際にプログラムを実行するために は、ジョブスクリプトにて計算ノードへジョブを投 入し、バッチ利用でプログラムを実行する必要があ る。以下はジョブスクリプトの一例である。

#!/bin/bash

#PBS -q SQUID #PBS --group=【グループ名】

#PBS -l elapstim_req=1:00:00

module load BaseCPU/2021

module load BaseJulia/2021

cd \$PBS O WORKDIR

julia sample.jl

#PBS から始まる行は、利用する計算機のリソース や環境の指定となっている。使用する CPU コア数の 要求値等を指定することもできる。このような計算 機のリソースや環境については Julia 特有のことは なく、マニュアルを参考に記述すればよい。Julia 特 有のことは、モジュール BaseJulia/2021 を読み込む ことと、最終行が julia の実行コマンドになることの 二点である。

なお、Julia ではパッケージを利用した計算を行う ことがほとんどであり、基本的には事前にフロント エンドノードの REPL を使って追加を行うか、ある いは、プログラムの中にパッケージを追加する指示 を含めておく必要がある。

2.2 HPDA フロントエンド

Jupyter Notebook を利用するには、HPDA フロント エンドにログインする必要がある。ログイン後、Julia カーネルが利用可能な jupyter コンテナを取得し (コ ンテナの取得は一度でよい)、コンテナを起動すれば Jupyter Notebook を利用できる。Python, R, Julia のそ れぞれについてカーネル環境が予め構築されたコン テナが用意されているため、Python や R を利用する 際には別のコンテナを利用する必要がある。また、 複数のコンテナを同時に起動できないことにも注意 が必要である(別ノードで同種のコンテナを重複起 動したい場合には、sifファイルのパスを変更するこ とで可能となる)。コンテナの取得・起動・停止のコ マンドは以下の通りである。

【コンテナの取得】

\$ singularity pull jupyter-

julia.sif oras://cntm:5000/master_image/jupyter-

julia:1.0

【コンテナの起動】

\$ run_jupyter_container.sh -k julia

【コンテナの停止】

\$ stop_jupyter_container.sh -k julia

Jupyter Notebook を起動する際には、パスワード認 証があり、続いてコンテナ起動時にターミナルに表 示される jupyter トークンを入力する。jupyter トーク ンによる認証も成功すると、以下のような Jupyter Notebook の初期画面が表示される。

💭 Jupyter	終了 ログアウト
ファイル 実行中 クラスタ	
アクションを実行する為のアイテムを選択して下さい。	アップロード 新規 🗸 🛛
0 • • /	名前 ◆ 最終変更時刻 ファイルサイズ
The notebook list is empty.	

コンテナ起動時に jupyter_notebook というディレ クトリが作成され、Jupyter Notebook からは jupyter_notebook 内に追加あるいは作成したディレ クトリやファイルを利用できる。一旦 Jupyter Notebook を起動すれば、その後の利用方法はローカ ルな環境で利用する場合と変わらない。

このように、SQUID 上でも Jupyter Notebook を利 用できるのは大変便利ではあるが、フロントエンド でしか利用することができず、やはり動作確認程度

(例えば、図2のような簡単な図の描画の確認等) の利用しか想定されていない。

図 2: Jupyter Notebook の作業の一例

3. Julia の並列計算

Julia では、実装の容易な simd 計算等に加えて、 4 種類の並列計算がサポートされている。

- ・非同期のタスク
 厳密には並列計算ではないが、複数のスレッドで
 タスクをスケジュールできる。
- ・マルチスレッド メモリを共有しながら、複数のスレッドまたは CPU コアで同時にタスクをスケジュールできる。
 これは、PC または単一の大規模マルチコアサーバ ーで並列処理を行う最も簡単な方法である。
- ・分散コンピューティング
 別々のメモリ空間で複数の Julia プロセスを実行
 できる。
- ・GPU コンピューティング Julia GPU コンパイラは、GPU 上で Julia コードを ネイティブに実行する機能を提供する。

並列計算の基礎的事項については公式 web ページ (4)にまとめられている。

4. 1ノード内の並列計算の一例

1 ノードを使用した場合の並列計算の簡単な例を 紹介する。以下はコイン投げをして、表の出た回数 をカウントする2つの関数の比較である。

using Distributed

Distributed.addprocs() @everywhere using BenchmarkTools @everywhere using ProgressMeter

```
function count_heads()

c::Int = 0

for i = 1:200000000

c += Int(rand(Bool))

end

return c
```

end

```
@everywhere function count_heads_dist()
```

```
nheads = @distributed (+) for i = 1:200000000
Int(rand(Bool))
end
```

```
return nheads
```

end

```
@benchmark count_heads()
@benchmark count_heads_dist()
```

まず、Distributed.addprocs()によりワーカプロセス が追加されるが、通常はコア数分追加される。 SQUIDの場合、1ノードあたり38コアのプロセッサ が2つ搭載されているため、76個のワーカプロセスが 追加される。2つの関数のうち、前者が1コアのみを 用いた通常の計算に対応し、後者が複数のコアを利 用した計算に対応している。実際にBenchmarkTools パッケージを使って計算時間を測定し、計算時間の 平均を表示すると

count_heads()

→ 573.124 s

ount_heads_dist()

→ 8.699 s

となり、おおよそ66倍の高速化が達成されているこ とが分かる。また、ジョブスクリプトにおいて、julia -p 38 sample.jl のようにプロセス数を指定すること もできる (その場合、プログラム中の Distributed.addprocs()の一行は削除しておく)。この とき1プロセッサ (38コア)までの指定であれば、お およそ指定した数から期待する高速化が達成される。

5. おわりに

本稿では、近年注目が高まっている Julia 言語につ いて、特に SQUID 上での利用方法について紹介し た。おそらく、スーパーコンピュータ上で Julia を本 格的に利用しているユーザは他の言語と比較して少 数であると思われることから、本稿では、比較的プ ログラミングが容易である1ノード内の並列計算の 例を紹介した(もちろん、3 節で述べた内容を含む より高度な計算も可能である)。このような並列計算 であれば、複数のコアを有するコンピュータであれ ば、ラップトップ PC からスーパーコンピュータま で基本的に同一のプログラムで実行可能である。し たがって、手元のコンピュータを使ってテストを行 えば、だいたいのイメージを掴むことが可能である。 本稿が、Julia ユーザが今後スーパーコンピュータ

を利用して大規模計算を行うことの一つのきっかけ となれば幸甚である。

参考文献

- (1) E. Darve, M. Wootters, Numerical Linear Algebra with Julia, SIAM, (2021).
- (2) Julia Micro-Benchmarks, https://julialang.org/benchmarks/
- (3) 進藤裕之、佐藤健太、1 から始める Julia プロ グラミング、コロナ社、(2020).
- (4) https://docs.julialang.org/en/v1/manual/parallelcomputing

大規模計算機システム利用者 研究報告

※「研究報告」では、利用者様が大阪大学サイバーメディアセンターの大規模計算機システムを、どのように利用してい るのか報告いただいています。ここでは、大規模計算機システム公募型利用制度採択者からの研究報告を掲載しま す。

・SU(3) QCD にお	らける Dirac 流モノポールとカラーの閉じ込め ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
鈴木 恒雄	大阪大学核物理研究センター
・勾配流法とスパ	ースモデリング法によるQCD粘性の決定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
伊藤 悦子	理化学研究所 数理創造プログラム
·素粒子物理学実	こ験への機械学習の適用研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
岩崎 昌子	大阪公立大学 大学院理学研究科
・アテンションネッ	トワークによる T 細胞受容体と
	ペプチド結合の予測・その機能の解釈性に関する研究・・・・・・・・・・・・・・・・・・・・・・ 21
小山 恭平	大阪大学 大学院生命機能研究科
•Ginzburg-Landa	u理論に基づいた数値シミュレーションによる超伝導の磁場依存性の研究・・・・・・・・25
兼安 洋乃	兵庫県立大学 大学院理学研究科
・高次テンソル繰り	り込み群を用いたモノマー・ダイマーモデルの統計力学的研究 ・・・・・・・・・・・ 29
大塚 高弘	大阪大学 大学院理学研究科
・CT画像と深層学	習を用いた骨格標本上の形態学的変異の可視化と発見 ・・・・・・・・・・・・・・・・ 33
森田 尭	大阪大学 産業科学研究所
・自己組織化イオ	ン結晶におけるナノ相分離様態と分子輸送特性の分子動力学研究・・・・・・・・・・・・・37
石井 良樹	兵庫県立大学 大学院情報科学研究科

SU(3) QCD における Dirac 流モノポールとカラーの閉じ込め

鈴木 恒雄 大阪大学 核物理研究センター

1. はじめに

半世紀もの間、未解決となっている、素粒子の強 い相互作用の理論である量子色力学 SU3QCD での カラーの閉じ込め問題を、超低温物質での超電導現 象と電気一磁気を入れ替えたような、可換な磁気的 モノポールの真空凝縮による双対マイスナー効果の 考えで解明する。QCD では、ゲージ場が特異的であ ると、ビアンキ恒等式の破れ(VMABI)が起こり、そ の破れが、可換な保存則をみたす磁気的なモノポー ル流とみなせることを最近著者が発見した(1)。人為 的なゲージ固定や QCD を拡張しなくても、QCD で の磁気的なモノポールが定義でき、連続極限を持っ ていること、連続極限でのモノポール有効作用をモ デルである格子 SU2QCD でのモンテ・カルロ計算機 実験で、ブロックスピン変換という方法を用いて示 した(2,3)。

2021 年度の大阪大学サイバーメディアセンター の、『大規模計算機システム公募型利用者制度』 として行った現実の SU3QCD を格子空間にのせ た格子 QCD での大規模なモンテ・カルロ計算結果 を2点についてまとめて報告する。大半の時間は、 人為的なゲージ固定などのゲージ場の真空配位 を滑らかにする操作なしで、VNABI による可換な モノポールが真空に凝縮して、カラー電荷をもつク ォークを閉じ込めているかを調べる計算にあてた。 後で記すように、予想を裏付ける結果が一部得られ たが、あまりにも事前予想より時間がかかることが わかり、連続極限での実現を示すための、様々な結 合定数でスケーリング側を満たすかどうか、格子サ イズを無限にする極限が取れるかどうかという点で は、満足できる結果は得られなかった。そこで、21 年度残りの時間は、真空配位を滑らかにするゲージ 固定を入れた、より大きな格子上での計算を行い、 これらのことを確かめてきている。

2. 完全な Abelian dominance と monopole dominance、 双対マイスナー効果

通常の第2種の超電導物質の場合、強い外部磁場 が浸透した場合、磁束が超電導電流の効果で線形に 絞られることが知られている。QCD でも、静的な重 いクォーク対を真空中に置いた場合、クォーク対間 に線形のポテンシャルが出ることが知られている。 これが、可換なモノポール凝縮による超磁導磁流に よって縛られているという描像が、双対マイスナー 効果による閉じ込めである。これが起こっていると すると、非可換なポテンシャルにおける線形力にお ける弦定数と呼ばれる観測量が、可換なポテンシャ ルの弦定数や、それへのモノポール流の寄与の部分 の弦定数と一致すること、つまり完全な Abelian dominance, 完全な monopole dominance ということが 起こることが期待される。ゲージ固定なしの計算で、 SU2QCD で実際に期待通りのことが生じることが、 筆者たちによって 2009 年にすでに報告されている (4)。このことをまず現実の SU3QCD で確かめるこ とが、第一の目的であった。

2.1 完全な Abelian dominance

まず Abelian dominance を調べる計算は、12⁴ —16⁴ の小さい格子で始めた。この計算は、格子空間を部 分空間に分けて、各部分空間内ごとに平均操作をす ることで、非常に誤差を低減することができる Multilevel 法を用いて、きれいな結果が得られた。表 1 に用いた格子サイズと真空配位数、内部平均操作 数を載せる。

Beta	格子サ	格子間	配位数	内部平
	イズ	隔(fm)		均数
5.6	124	0.2235	6	500 万
5.6	164	0.2235	6	1000 万
5.7	12 ⁴	0.17016	6	500 万
5.8	124	0.136422	6	500 万

誤差を小さくする内部平均と呼ばれる部分格子空 間内での平均操作で、500万から1000万という膨大 な計算をしていることがわかる。最後に統計誤差を とる真空配位数は少なくとも、非常に小さな誤差で 求まることがわかる。最終結果は、12⁴で結合定数 beta=5.8の場合の例では、弦定数 s_F/s_A=0.98(10)とな り、誤差の範囲で完全な Abelian Dominance が得られ た。他のケースも同様であった。

2.2 完全な monopole dominance

続いて、monopole dominance の計算であるが、こ れは非局所相互作用が入るため、Multilevel 法が使え ない。SU2QCD の場合で、小さい格子サイズでも数 万個の真空配位が必要であることがわかっていたの で、SU3 では 10 万個のオーダーで真空配位が必要 であることを予想し、SU2 の場合と同様に、データ が取りやすい有限温度系の 24³x4 の小さい格子で、 beta=5.6 という点でまず計算した。ところが、SU2 で の計算から予想した 10 倍程度の真空配位数では、全 く信号が誤差に隠れてしまい、結局ほぼ 100 万個の 真空配位と、それを補完するためのランダムゲージ 変換(RGT)した真空配位や、カラーの違いうものを 8 個のうち 5 種類まで混ぜて、合計約 90 万 x2000 個 の真空配位数で平均操作を行った。

beta	格子	格子	配位	RGT	カラ
		間隔	数		ー数
5.6	24 ³ x4	0.2235	91 万	400	5

それでようやくきれいなデータが取れた。図1が それである。弦定数は $s_F=0.178(10)$, $s_A=0.16(3)$, $s_m=0.17(2)$ と誤差の範囲で完全な Abelian および monopole dominance が得られた。

2.3 可換双対マイスナー効果の直接測定

クォーク対の周りの可換な電場やモノポール磁流 などを測定することで、可換双対マイスナー効果を 直接測定することができる。やはりゲージ固定しな い計算で、100万個の真空配位を用いて計算した。 まず電場の各成分ごとの相関を測定した。

図2 電場の各成分 クォーク対の方向はz

図2からわかるように電場はz成分だけをもって いる。今度はモノポール流の各成分を測定した。

図3 モノポールも各成分

クォーク対の方向に、垂直に回転するモノポール のみが効いていることがわかる。つまりソレノイド 型のモノポールによって、電場が絞られていること がわかる。このことは以下の直接測定からもわかる。

図4に電場がクーロン型のみであれば、電場の

rotation はゼロになるはずであるが、ゼロでなくその 値がソレノイド型のモノポール流で再現しているこ とを示す計算結果を示す。

電場の振舞から電場の絞られ方を示す浸透長とい う長さが測定され、モノポール磁流の密度との相関 から相関長という長さが測定できる。この長さの比 は、通常の超電導現象でもよく知られており、 Ginzburg-Landau パラメータと呼ばれ、真空がどうい うタイプのモノポール凝縮相にあるのかという指数 となっている。SU2QCDでは、タイプ2の真空に近 いタイプ1 とタイプ2 の境界付近であったが、 SU3QCDでの直接測定はこれまでなかった。今回ゲ ージ固定などを持ち込まずに、初めて直接測定でそ のタイプを決めることができた。

d	Ginzburg-Landau 係数
3	0.87(5)
4	0.93(7)
5	0.83(9)
6	0.9(2)

この表で示している d は、クォーク対間の格子間 隔単位での距離である。この結果から、距離依存性 は少なく、いずれも SU2QCD と違い、弱いタイプ1 の真空であることが分かった。

以上のゲージ固定内の計算結果は、いずれも世界 初の結果で、大変興味深いものであるが、連続極限 でも同様のことが起こっていることを示すには、 SU2QCDで行ったように、いろいろな結合定数 beta で、しかも格子サイズを無限大にしても変化しない ことを示すことが必要である。だが、あまりにも計 算時間がかかるため、2021年度では不可能であった。 これらの結果は、2021年夏と秋に行われた国際会議 で発表(5-7)され、現在論文(8)として投稿中である。

3. 滑らかな真空配位での連続極限の研究

2021 年度後半から、ゲージ固定なしでの SU3QCD 計算は、現時点では、これ以上進めることが難しい と判断し、格子上で出てくる連続極限を持たないモ ノポールを出来るだけ減らすような真空配位を用意 して計算することにした。そのためには、本来必要 がないゲージ固定をせざるを得ない。そこで方針と しては、SU2QCD で行ったように、これまでの研究 で汚いモノポールを大きく減らすことが知られてい る、最大可換ゲージ(MA)や Maximal Center Gauge(MCG)などいくつかのゲージ固定を行った真 空配位をとって、我々の描像が SU3QCD でも連続極 限を持っているかの研究にとりかかった。まずはゲ ージ固定が容易にできる MA ゲージのケースで計算 を始めた。これらの計算は、いずれもまだ研究進展 中で、途中経過である。

3.1 完全な Abelian dominance と monopole dominanceの連続極限

まず、完全な Abelian dominance と monopole dominance が見えているか、さらに結果が連続極限 の存在を示すスケーリング則を満たすか、また格子 サイズ効果が抑えられているかを調べた。まずは、 32⁴ と 48⁴ も格子サイズで、結合定数は Wilson 作用 で 4 点、真空配位数は 320-384 個で調べる。現在は 32⁴ が取れている。完全な Abelian dominance を MA ゲージで調べる研究は、すでに菅沼氏たちによって 肯定的な結果が発表されている(9)。完全な monopole dominance については、彼らは 1 点でのみ行ってい るが(10)、スケーリングを調べるために表に示すよ うな異なる結合定数 4 点でそれぞれ調べた。

Beta	5.8	6.0	6.2	6.4
$\mathbf{S}_{A\!/} \; \mathbf{S}_{F}$	1.03(1)	1.123(2)	1.13(3)	1.40(1)
$\mathbf{S}_{M\!/} \; \mathbf{S}_{F}$	0.87(1)	0.827(7)	1.100(7)	1.01(3)
$\mathbf{S}_{P\!/} \mathbf{S}_F$	0.0062			

上段は、Abelian/Full, 中段は Monopole/Full, 下段 は Photon/Full の一例のみ載せた。まだ予備的なデー タではあるが、完全な Abelian dominance に加えて、 beta が大きいところで、完全な monopole dominance も見えている。48⁴の格子サイズのデータも取ってき ている。

3.2 Monopole 密度の連続極限

次に、SU2QCD でも行った monopole 密度が連続 極限を持っているかどうかの研究を行った。ここで SU2QCD でも行ったように、ブロックスピン変換を 行う。格子間隔 a(beta)を 2 倍、3 倍、4 倍、6 倍、8 倍、12 倍にした格子空間を考慮する。もとの格子上 でのモノポールを $k_m(s)$ と書くと、n 回ブロックされ た格子上でのモノポールを次のように定義する。

$$k_{\mu}^{(n)}(s_n) = \sum_{i,j,l=0}^{n-1} k_{\mu}(ns_n + (n-1)\hat{\mu} + i\hat{\nu} + j\hat{\rho} + l\hat{\sigma})$$

ここで snは、ブロックされた格子上での格子点で ある。このブロックされたモノポールを使って、そ の密度を測定する。密度は、

$$ho = rac{\sum_{\mu, s_n} \sqrt{\sum_a (k_\mu^{(n)a}(s_n))^2}}{4\sqrt{3} V_n b^3}$$

と定義されるこの密度は、本来結合定数 beta と n の 2 変数に依存する関数であるが、b=na(beta)という積 で表すと、実は1 変数 b のみによっていることがき れいに観測された。これはまさに期待されたスケー リング則が満たされていることを示す。今回は n=12 までしかブロックしなかったが、もっと大きな格子 をとって n を無限大までいくとすると、a(beta)=0つ まり連続極限を見ることになる。つまり b という 1 変数だけの関数になるということは、連続極限を表 していることである。この SU3 で初めて得られたデ ータを図 5 に示す。SU2QCD と同様の結果が得られ た。現在は、MA ゲージという特別なゲージの場合 だけであるが、連続ではゲージの選択によらないは ずである。SU2QCD のケースのように、他の滑らか なゲージ条件での計算をするべく研究中である。

4. SU3 不変な双対マイスナー効果描像

計算機実験ではないが、われわれの描像が、これ までの Abelian monopole 凝縮に基づく双対マイスナ 一効果のアイデアとどこが違っているかの理論的な 研究も行った。一番問題なのは、本当に欲しいこと は、SU3 で非可換カラーを持った状態はすべて閉じ 込められ、SU3 の singlets のみが外に出てくるとい うことで、このことは可換な双対効果で証明できる 可換電荷をもった状態のみ閉じ込めるという描像と は異なる。我々の場合は、これまでのアイデアと異 なり、一切のゲージ固定なしに SU3 を保ったまま可 換モノポール凝縮を議論しているので、これが実現 していることを明確に示せる。これらの点を、これ までのほかの立場と比較して考察し、現在論文とし て投稿中である。

参考文献

- (1) T. Suzuki, hep-lat: arXiv:1402.1294 (2014)
- T.Suzuki, K.Ishiguro and V.Bornyakov, Phys. Rev. D97, 034501 (2018); D97, 099905(E) (2018)
- (3) T.Suzuki, Phys. Rev D97, 034509 (2018)
- (4) T.Suzuki, et al., Phys. Rev. D80, 054504 (2009)
- (5) T.Suzuki, A.Hiraguchi and K.Ishiguro, Lattice 2021 July 27, 2021
- (6) T.Suzuki, A.Hiraguchi and K.Ishiguro, vConf21, August 3, 2021
- T.Suzuki, XXXIII International (ONLINE)
 Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests, November 8-12, 2021
- (8) K.Ishiguro, A. Hiraguchi and T.Suzuki, to be submitted to PRD.
- (9) N. Sakumichi and H. Suganuma, Phys. Rev. D 90, 111501 (2014).
- (10) T. Suzuki, heplat arXiv:2204.11514

勾配流法とスパースモデリング法による QCD 粘性の決定

伊藤 悦子 理化学研究所 数理創造プログラム/慶應義塾大学 自然科学研究センター/ 大阪大学 核物理研究センター

1. はじめに

物質の基本構成要素である「クォーク」とその間 の力を媒介する粒子である「グルオン」は、量子色 力学(QCD)で記述される。これらクォークやグルオ ンは、低温で原子核程度の大きさの中に「閉じ込め」 られており、単体で取り出すことができない一方、 高温では非閉じ込めの性質を持つ「クォークグルオ ンプラズマ(QGP)相」へ相転移することがアメリカ ブルックヘブン国立研究所の RHIC 実験によって確 認された。さらに、その相転移付近で QCD は非常に 小さい「粘性-エントロピー比(ŋ/s)」を持つ完全流体 で記述されることがわかった。理論的には閉じ込め 相から QGP 相への相転移は格子 QCD によって予言 され、RHIC 実験の結果と定性的には無矛盾である ことがわかった一方、格子 QCD による第一原理計 算で粘性を計算するのが難しく、未だ定量的な理解 が得られていないのが現状である。

QCD 粘性を格子 QCD で計算する一つの方法は、 まず、エネルギー運動量テンソル(EMT)の 2 点相関 関数(C(τ))を計算する。その後、

 $C(\tau) = \frac{1}{\tau^5} \int d\vec{x} \langle T_{12}^R(0,\vec{0}) T_{12}^R(\tau,\vec{x}) \rangle = \int_{-\infty}^{+\infty} d\omega K(\tau,\omega) \rho(\omega).$ (1) の式を使って、相関関数のデータ(C(τ))からスペクト ル関数($\rho(\omega)$)を推定する。ここで、右辺の K(τ,ω)は積 分カーネル

$K(\tau,\omega) = \frac{\cosh\left(\omega(\frac{1}{2T}-\tau)\right)}{\sinh(\frac{\omega}{2T})}$

で格子計算のデータに依存しない。最後に得られた スペクトル関数から η=πdp/dω (ω=0)としてずり粘 性が得られる。つまり、スペクトル関数の特に振動 数がゼロ付近での精密な結果が必要となる。

これらの手順において、以下の3つの大きな困難 があることが知られている。

困難(1) 格子上で EMT をどのように定義し、式(1) の真ん中の式を第一原理的に計算するか 困難(2) EMT の相関関数のシグナル-ノイズ比をどのように改善するか

困難(3) 有限個の相関関数のデータからスペクト ル関数を推定するという逆問題をどのように解くか

これらの3つの困難の中でも、QCD 粘性の計算で は、EMT が QCD 真空と同じ量子数を保つため困難 (2)が深刻であり、これまでの研究である程度の精度 の結果を得るためには、quenched QCD の場合でも数 十万から数百万個の配位データが必要であった。統 計制度が悪いと当然のことながら、その後の困難(3) もさらに難しくなり、η/s の値やその温度依存性は未 だよくわかっていない状況である。

本研究では、**困難(1)**と(2)に対しては勾配流法 (gradient flow method)を、**困難(3)**に対してはスパース モデリング法を用いることで問題を改善し、 quenched QCD の η/s の値を得ることが目的である。 この 2 つの方法を組み合わせることで、従来の方法 では一般に 5-6 年かかると言われる QCD 粘性の計 算を 2-3 年で行い、これまで以上の精度で決定でき ると期待される。

2. 勾配流法

勾配流法は 2010 年に M.Luescher により提案され (文献[1])、様々な応用がされている。そのうちの一 つが、文献[2]により鈴木氏が提案した EMT の定義 を与える事である。それは

 $T^{R}_{\mu\nu}(x) = \lim_{t\to 0} \left\{ \frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_{E}(t)} [E(t,x) - \langle E(t,x) \rangle_{0}] \right\},$ (2) で与えられる。ここで、t が flow time という仮想的 な時間のパラメータで、右辺の U と E は格子上で定 義できるゲージ不変かつ質量次元が 4 の演算子であ る。 α_{U} と α_{E} の具体的な値は、鈴木氏の論文によ り解析的に計算されており、これによって式(2)は、 左辺の EMT と格子上の演算子の関係を与える。つまり格子上の演算子を数値的に計算することで、EMT の値を得ることができる。

その後、私を含む共同研究(文献[3])で初めて実際の計算が行われた。この時は、有限温度領域で EMT の一点関数から熱力学量を求め、それが従来の 積分法の結果と一致することを示し、勾配流法によ る EMT から物理量を取り出すことが可能だと実際 に確かめられた。また、この時、勾配流法はスメア リングの性質も持つため、シグナル-ノイズ比が大幅 に改善することもわかった。

3. スパースモデリング法

スパースモデリングは、近年 MRI や最近のブラッ クホールシャドウの画像解析など様々な分野で応用 されている解析法である。2017 年に物性理論の分野 で相関関数からスペクトル関数を推定する方法が、提 案された(文献[4,5])。このスパースモデリング法は、 最適化問題を解く時に、L1(L2)正則化という解析を安 定させる項を加えることで、データのノイズに強い結 果が得られる。この条件付き最適化問題を解くための 手法は LASSO と呼ばれ、補助ベクトルを導入するこ とで解く手法が、2010 年ごろに提案された。

格子 QCD への応用は、我々による文献[6]で初め て行われた。特にスパースモデリング法は、マクロ な自由度に対応する ω が、小さい領域で非常に安定 であることが特徴であり、我々は QCD 粘性を求め るのに適していると考えた。

4. シミュレーションセットアップ

本研究では、T=0.88Tc, 1.10Tc, 1.32Tc, 1.65Tc の 4 点 を取り、Wilson ゲージ作用を用いてそれぞれ Nt=8,10,12,16 の格子サイズで連続極限を取ることを 目指している。勾配流法とスパースモデリング法を使 うことで、計算量の大幅な縮減ができるようになった ものの、それでも全体で 3 年程度はかかる予定であ る。2021 年度は、全体の 1/3 程度の計算を行なった。

具体的な計算手順は大きく3つに分けられる。(1) モンテカルロ法によるゲージ配位生成(2)勾配流法 による相関関数の測定(3)スパースモデリング法に よるスペクトル関数の推定である。このうち、(1)と (2)の計算を octopus と squid で行った。

5. シミュレーション結果

まず、計算手順(2)の勾配流法を用いた成果を見て みる。

図 1: flow time の有無による相関関数の統計誤差の 比較(文献 [7] より)

図1は、同じ統計数で勾配流法を使わなかった時 (左図)と使った時(右図)の比較である。統計数 は2000である。配位相関関数は理論的には正の値を 取るはずだが、勾配流法を使わない場合はデータ点 が大きな統計誤差を持ち、いくつかのデータ点では 中心値が負になっているため図に表示されていな い。一方で、勾配流法を用いた右図ではすべてのデ ータ点が正しく正の値をとり、統計誤差も大幅に改 善している。

しかし、この勾配流法を用いることは、計算手順 (3)であるスペクトル関数の推定問題をより困難に することに我々は気づいた。

図 2:相関関数の flow time 依存性(文献 [6] より)

その理由は、図 2 に示すように勾配流法で長い flow time のデータを用いると、 τ の小さい短距離相 関が統計誤差を小さくするだけでなく、誤差を超え て中心値が変わってしまうことにある。これは勾配 流法が、flow time t の時に $\tau \sim (8t)^{1/2}$ の領域のデ ータを平均化するスメアリングをすることから説明 できる。今、相関を見たい 2 つの演算子が flow time を長くしすぎると互いに重なってしまう。このため 正しい相関を測ることができなくなる(オーバース メアリング問題)。この問題は EMT の一点関数を測 定した文献[3]の時にわかり、この領域の τ のデータ を解析から外すことが妥当である。

一方で、この相関関数のいくつかのデータ点を解 析から外すことは、困難(3)の「有限個の相関関数の データからスペクトル関数を推定するという逆問題 をどのように解くか」という問題をより困難にする。 つまり、式(1)で C(t)のデータから p(ω)を得るのに、 方程式のインプットである C(t)のデータ点が高々10 点程度しかないのに、アウトプットとなる p(ω)は理 想的には無限自由度持っているため、解が一意的に 決まらない事を意味する。

そこで最適化問題を解く際に、L1 正則化を課すこ とでこの不定性を減らすことにした。つまりコスト 関数として

$$F(\vec{\rho}') \equiv \frac{1}{2} \|\vec{C}' - S\vec{\rho}'\|_2^2 + \lambda \|\vec{\rho}'\|_1$$

を最小にするようなρを探す。(C やρにプライムが 付いているのは、適切な特異値分解した基底に変換 したことを示す。)ここで、右辺第2項がL1 正則化 項と呼ばれるもので、ρ ベクトルの成分の絶対値の 和で表される。また、S は積分カーネル K の特異値 行列である。この式から小さい特異値に対応するモ ードは、最適化問題を解く時にほぼ寄与しないこと がわかり、大きな特異値をもつモードのみの小さな 行列を取り扱えばよくなる。我々の研究ではさらに 物理的要請から、スペクトル関数の正定値性を条件 に加え、さらに解の安定性を強化した。

その結果、得られたスペクトル関数が図3である。

図 3:スパースモデリング法により得られた スペクトル関数(文献 [6] より)

ここで各パネルは異なる flow time の結果を表す。 勾配流法は一種の平均化、つまりブロックスピン変 換であり、系の自由度を減らしていくが、得られた スペクトル関数のωに関する積分値が、flow time が 大きくなると小さくなることが見てとれる。また、 その中でも高振動数(大きなω)に対応するデータ がよりサプレスされており、直感的な理解と一致す る。

最後に、得られたスペクトル関数から相関関数を 再構成して、インプットとして用いた勾配流法で測 定した EMT の相関関数の値と比較した(図 4)。

図 4:インプットの相関関数(黒)とスパースモデリ ングで得られたスペクトル関数から再構成した相 関関数(赤)。グレーの領域のデータはオーバース メアリング問題のため解析から取り除いた。(文献 [6]より)

結果、2 つの相関関数は統計誤差の範囲でよく一 致しており、スパースモデリング法によるスペクト ル関数の推定がうまくいっていることを示してい る。

6. まとめ

現在まで世界で計算されている η/s の主な結果の まとめを図5に示した。この中で、マゼンタ以外の データはまだ連続極限が取られていない。

図 5. quenched QCD の η /s の現状。(文献(8)より)

従来は勾配流法を用いない相関関数のデータを使 っていたため、大体 5-6 年計算機を使い続けてやっ と1パラメータの値が見積もれる、といった具合で あった。またスペクトル関数の推定においても、関 数形の仮定を用いたフィットやモック関数を導入す る最大エントロピー法が主流であったが、スパース モデリング法はこれらに比べてスペクトル関数に対 する仮定が少なく、また結果がノイズに強いという 示唆が得られている。連続極限を取りきった最終結 果を得るにはまだまだ計算の継続が必要となるが、 着々と進めることで QCD 粘性の有効な計算方法の 確立を目指したい。

最後に、本研究を遂行するにあたって、日頃から システムの運営を支えてくださっている方々に深く 感謝致します。

参考文献

文献[1] M. Lueuscher, JHEP 1008, 071 (2010) 文献[2]H.Suzuki, PTEP2015(2015)079201 文献[3]M.Asakawa,T.Hatsuda,E.Itou,M.Kitazawa, H.Suzuki,Phys.Rev.D90,011501,(2014) 文献[4] H. Shinaoka, J. Otsuki, M. Ohzeki, K. Yoshimi,Phys. Rev.B 96 (2017) 035147 文献[5] J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi,Phys. Rev. E 95 (2017) 061302 文献[6]E.Itou and Y.Nagai, JHEP07(2020)007 文献[7]E.Itou and S.Aoki, PoS INPC2016 (2017) 342

文献[8] E.Itou and Y.Nagai, PoS(LATTICE2021)214

素粒子物理学実験への機械学習の適用研究

岩崎 昌子1

大阪公立大学 大学院理学研究科/大阪大学 核物理研究センター

1. はじめに

本研究の目的は、大型加速器を用いた素粒子物理 学実験に機械学習を適用し、実験における様々なデ ータ処理性能を高めることである。機械学習は、車 の自動走行や医療画像の自動診断などで注目されて いる AI の基盤技術である。大型加速器実験の大量 データ処理へ適用することで、従来のデータ処理手 法を上回る、より高性能なツールとして期待できる。 ここで、大型加速器を用いた素粒子物理学実験では、 実験の巨大化や高度化に伴い、ビッグデータの収集・ 処理と解析技術が重要な研究基盤である。また、実 験遂行費用が高額であるため、高精度で実験装置を 制御し、実験の効率化を図ることが必須である。

大型加速器を用いた素粒子物理学実験では、

- 1)加速器によりビーム衝突実験を行い、実験で生 成された大量の粒子を測定器で測定する、
- 2) 測定された膨大量の実験データを蓄積する、
- 3) 蓄積された測定データを、粒子のエネルギー情報、位置情報へ変換するための較正処理・再構成処理を行う、
- 4)較正・再構成された実験データから、物理デー タ解析により極微な信号事象を抽出を行い、抽 出された信号事象を用いて物理パラメータの 測定を行う。

素粒子実験では、これまでにも機械学習の適応研 究が行われていたが、主に4)における開発、つま り、データ解析において効率よく信号事象を抽出す るための開発が行われてきた。しかし、近年の機械 学習手法の飛躍的な進展により、様々な最先端機械 学習技術の適用が可能になった。

本研究では、従来の素粒子実験ではあまり例がみ

られなかった1)、2)、3)における機械学習適応 を目指す。具体的には、以下の開発を行う。

- 機械学習を用いた加速器制御技術の開発
- スパースセンシングを導入したデータ処理技術の開発

上記の研究開発は、どちらも最先端の機械学習手 法をベースとした研究開発である。加速器実験によ る膨大量データに対する大量計算が必要である。

2. 機械学習を用いた加速器制御の開発

高エネルギー加速器研究機構(KEK)で稼働中の、 電子・陽電子入射器、Linac 加速器[1]の入射効率向上 を目標として、機械学習を用いた運転調整システム の開発(加速管の RF 位相調整や、ビーム位置補正 のためのステアリング電磁石の調整)を行った。

Linac 加速器の運転調整には以下の問題がある。

- 運転調整に関連するパラメータの数が多く(~ O(1000))、相関が複雑であるため、パラメータ 調整が困難である。そのため、パラメータ調整 の最適化の速さや精度が、加速器運転員の経 験・技能によって異なる。
- 加速器構成機器の温度変化や振動、潮汐力による影響等、環境変化に応じて常時運転調整を行う必要がある。

以上の問題点を解決するために、複数パラメータ 間の相関関係の記述に強みを持つ機械学習の適用が 有効であると考えられる。

加速器調整時間の高速化や調整性能の向上、安定 化を行うために、我々は、以下で述べられるような ディープニューラルネットワーク(DNN)を用いた 次元削減(特徴抽出)による運転状況可視化手法の

¹ プロジェクトメンバー: 久野 彰浩、加藤 睦代 (大阪市立大学)、末原 大幹 (九州大学)、佐藤 政則、 佐武いつか、山田 悟 (KEK)、中島 悠太、武村 紀子、長原 一 (大阪大学 IDS)、中野 貴志 (大阪大学 RCNP)

開発と、環境駆動型の機械学習(強化学習)の実装 を行うための準備研究を行った。これらの開発は 2018 年から 2021 年に蓄積された、Linac 加速器運転 の実データを用いて行った。

2.1 次元削減による運転状況可視化手法の開発

加速器データを可視化するために、変分オートエ ンコーダー(Auto-Encoding Variational Bayes, VAE) [2] を用いた次元削減を行うことで、1232パラメータの 加速器環境データを、2次元の出力データに次元削 減を行った。図1に、出力結果を示す[3]。2次元の 潜在変数 Z(0), Z(1)で表される加速器環境データの ふるまいが、短期的には連続的に分布しているが、 長期的には非連続であり、時期によって異なる分布 であることが明らかになった。したがって、加速器 運転調整を行うためには、周囲の環境変化に応じた 運転調整手法の開発が重要であることが示された。

図 1: VAE からの出力 (2 次元潜在変数)。2018 年から 2021 年の Linac 運転データを使用した。色の濃淡は、入射効率 の大きさを表す。

2.2 強化学習による加速器制御の準備研究

周囲の環境変化に応じた運転調整を行うためには、 強化学習(環境適応型機械学習)の適用が有効であ ると考えられる。強化学習は、周囲の環境変化に応 じて、最大の報酬が得られるように行動を決定する 機械学習である。加速器制御の場合、入射効率やビ ーム輝度が、報酬の指標と考えられる。 強化学習を導入するための準備研究として i) DNN を用いた加速器の運転状況と入射効率の相関 関係を記述する手法の開発、ii) 機械学習を用いた加 速器運転シミュレータの開発を行った。

図 2: DNN による入射効率予測結果。2021 年 6 月につい て予測を行った。使用学習データは、①2018 年 11 月-2021 年 5 月、②2021 年 5 月、③2018 年 11 月-2021 年 4 月に取 得された加速器データである。

図 2 は、DNN による入射効率の予測結果を示す [3]。2021 年 6 月の入射効率の予測を行った。DNN の学習に使用したデータは ①2018年11月から2021 年 5 月、②2021 年 5 月、③2018 年 11 月から2021 年 4 月に取得された加速器データである。2021 年 6 月 の入射効率を予測するためには、2021 年 5 月のデー タ、つまり直近の実データによる学習が必要である ことが示された。したがって、強化学習を行うため には、周囲の環境変化にあわせた学習用データを用 意して、予測モデルを随時更新する必要がある。

また、加速器制御に強化学習を導入するために、 加速器運転シミュレータの開発を行った。実機を用 いたパラメータ最適化作業は危険を伴うため、シミ ュレータを用いたパラメータ決定 (pre-training) が 必要である。そのため我々は、敵対的生成ネットワ ーク(Generative Adversarial Networks。以下、GAN)を 用いた加速器運転シミュレータの開発を行った。 GAN は与えられたデータを模倣して、疑似データを 生成する機械学習である。

我々は、加速器実データを GAN に入力して、疑 似データ生成を試みた。結果を図3 に示す[3]。図3 は、実データおよび GAN が生成した疑似データに よる、入射効率とステアリング磁石パラメータの相 関を示したものである。疑似データは、実データの 一部区間しか、再現できなかった(モード崩壊、Mode collapse)。
 今後は、モード崩壊の抑制方法の開発が重要である。

図3:実データ、およびGAN が生成した疑似データによる、入射効率とステアリング磁石パラメータの相関を示したもの。疑似データは、実データの一部区間しか、再現できていない。

3. スパースセンシングを導入したデータ処理技術 の開発

大型加速器を用いた素粒子・原子核実験では、測 定感度を高めるために実験で収集する事象数を増や すことと、データの再構成、物理解析の精度及び効 率を良くすることの二点が重要である。事象数を増 やすためにデータ取得頻度を高める必要があり、測 定器測定精度を高めるためには、センサー数を増加 させる必要がある。それに伴ってデータサイズが 年々増加し、膨大量のデータ処理の高精度化及び高 効率化が課題となった。そこで、機械学習を用いた スパースセンシングによるデータ処理技術を導入す ることにより、加速器から高頻度で供給される衝突 実験データを、測定器のデータ収集システム能力の 限界まで収集する方法を開発する。

スパースセンシングは、信号のスパース性(時間 や空間についての近傍連続性)に注目することで、 時間や空間についてダウンサンプリングされた少数 データから、元信号を復元する技術である(スパー ス復元)。加速器実験へ適用するには、図4に示すよ うに、データをダウンサンプリングし、機械学習で 再現する手法が考えられる。本研究では具体的なア プリケーションとして、ILC SiD 電磁カロリメータ [4]におけるエネルギー較正へ、スパースセンシング を適用させる。

図4:加速器実験データのスパース復元手法の概念図。ラ ンダムサンプリングで得られたデータから復元を行う。

スパースセンシングの導入により、データ解析の ために重要で本質的な情報を十分に保ったままデー タサイズをリアルタイムに圧縮し、膨大量のデータ 処理の高精度化及び高効率化を目指す。

3.1 MNIST データを用いた準備研究

SiD 電磁カロリメータ較正への適用のための準備 研究として、手書き文字データ(MNIST データセッ ト[5])を用いた評価を行った。ここでは、データの 削減方法として、ランダムサンプリング、および機 械学習(VAE)による次元削減を行った。

図 5:機械学習による次元削減を用いた文字分類 (MNIST を用いた準備研究)。

図5に結果を示す。データを1/10 (ランダムサン プリング)、あるいは1/50(機械学習による次元削減) に圧縮しても、90%の識別性能を維持できることが 示された。

3.2 ILC SiD 電磁カロリメータのエネルギー較正への適用

ILC SiD 電磁カロリメータのシミュレーションデ ータを用いて、本開発を行った。電磁カロリメータ は、入射された粒子のうち、電子、または光子のエ ネルギーを測定する測定器である。測定器からの出 カデータを較正して、入射粒子のエネルギー値を得 る。一般的に、入射粒子のエネルギーの値は、測定 器の出力データの値と比例、つまり線形性を仮定し てエネルギー較正を行うが、我々は、先行研究を行 い、深層学習(回帰問題)によるエネルギー較正手 法を開発し、エネルギー測定精度の向上を示した[6]。

このアプリケーションにおいて、データ削減を行 い、深層学習を用いた回帰および、スパース復元を 行うことで、データ削減の定量的な評価を行った。 結果を表1に示す。

電子のエネルギー	2GeV	5GeV
データ削減なし	20.2%	20.5%
10%削減(ランダムサンプリング)	19.2%	20.1%

表 1 : SiD 電磁カロリメータで検出された電子のエネルギ 一測定精度 (Pre liminary)。

入射エネルギーが 2GeV または 5GeV の電子に対 して、データ削減なしと、10%のランダム削減を行 ったものを比較したところ、ほぼ同等のエネルギー 測定精度が得られた[7]。ただし、データの統計量 および、評価のための計算量が少ない結果であるた め、今後計算を進め、より定量的な評価を行う。

4. おわりに

素粒子物理学実験への機械学習の適用研究として、 機械学習を用いた加速器制御および、スパースセン シングを導入したデータ処理技術の開発を行った。

機械学習を用いた加速器制御開発では、強化学習 の重要性が示された。強化学習のための、GAN を用 いた加速器シミュレータ開発では、モード崩壊の抑 制が重要であることが明らかになった。

スパースセンシングを導入したデータ処理技術の 開発では、MNIST データを用いた予備実験を行い、 定量的な評価を得た。また、ILC SiD 電磁カロリメー タへの適用研究をスタートさせた。

今後さらに、素粒子物理学実験への機械学習の適 用実証研究を進め、データ処理技術の向上を目指す。

謝辞

本研究は、大阪大学核物理研究センター(RCNP)研 究プロジェクト、大阪大学データビリティフロンテ ィア機構学際プロジェクトから、多大なご協力を頂 きました。本研究の一部は、文部科学省「ダイバー シティ研究環境実現イニシアティブ(牽引型)」連携 型共同研究助成を受けて、実施されました。また、 大阪大学サイバーメディアセンターの公募型利用制 度による支援を受けました。

参考文献

- KEK electron-positron injector (LINAC), https://www.kek.jp/en/Research/ACCL/LINAC/
- (2) D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes", arXiv:1312.6114 [stat.ML], (2013).
- (3) A. Hisano, M. Iwasaki, et. al., "R&D of the KEK Linac Acc. Tuning Using ML", Proc. ICALEPCS 2021, doi:10.18429/JACoW-ICALEPCS2021-WEPV010, (2021).
- (4) T. Behnke, et. al., "The Int. Linear Collider Technical Design Report – Vol. 4: Detectors", arXiv:1306.6329 [physics.ins-det], (2013).
- (5) Y. LeCunL, C. Cortes, and C.J.C. Burges, "The MNIST database of handwritten digits", http://yann.lecun.com/exdb/mnist/.
- (6) M. Iwasaki, Y. Naka, et. al., "R&D of the Energy Calibration for the SiD EM Calorimeter based on Machine Learning", The 3rd edition of the Cal. for High Energy Frontier conf. (CHEF 2019), (2019).
- (7) C. Kato, M. Iwasaki, et.al., 77th Annual Meeting of The Physical Society of Japan, (2022).

アテンションネットワークによる「細胞受容体とペプチド結合の予測・

その機能の解釈性に関する研究

小山 恭平

大阪大学 大学院生命機能研究科 計算生物学研究室

1. はじめに

蛋白質は、遺伝子をもとに体内で生成された1次 元のアミノ酸残基の配列が3次元に折りたたまれた 立体構造であり、多様な種類の蛋白質が生体内で機 能している。蛋白質の機能とは、蛋白質間の相互作 用や、低分子との相互作用によって発揮される細胞 内での各種の役割のことである。1次元のアミノ酸 配列が蛋白質の構造や機能を規定している。

そこで本研究では、機械学習手法、特にアテンショ ンレイヤーを用いたニューラルネットワーク (NN) の解釈性に関する手法を取り入れることで、蛋白質 の1次構造からのリガンド結合予測の結果を解釈 し、特定の機能に寄与している部分構造を発見する ことを目的とする。蛋白質のリガンド結合が予測で きることで、生体機能の理解や疾患メカニズムの理 解が進み、薬剤の開発などの応用が期待される。

2. T細胞受容体とペプチドの結合予測

2.1 T細胞受容体とペプチド

T-Cell Receptor (TCR) は抗原受容体であり、多 くは α (TCR α) と β (TCR β) によって構成されてい る蛋白質である。TCR は抗体 (BCR) と同様に Complementarity determining region (CDR) 領域にお ける配列の多様性が知られている。TCR の CDR は 主要組織適合性遺伝子複合 (Major Histocompatibility Complex) 上のペプチドと結合し反応することで、 生体内での免疫反応が進む。TCR のリガンドであ る。これらに対する免疫反応は、すなわち疾患の治 療に繋がる。

2.2 結合予測タスク

本研究では、TCR の CDR とペプチド間の結合予 測を扱う。TCR とペプチドの結合予測は、最終的 に結合の有無である確率を出力する二値の分類問題 である。予測モデルのアウトプットとして「結合す る」と「結合しない」をラベルとして予測する。イ ンプットとしては、CDR 配列とペプチドの2つの配 列を入力値として取る。

図 1: Protein Data Bank (PDB) に登録されたペプチ ドと TCR が結合した複合体の例 (PDB ID:1BNA(1))

2.3 課題とチャレンジ・新規性

1次元のアミノ酸配列は、シークエンシング技術 の進歩により取得は容易になってきているが、3次 元構造はアミノ酸配列に比べて取得にコストと時間 がかかる。アミノ酸配列は文字列で表現されるた め、近年の機械学習分野における自然言語処理の進 展が、バイオインフォマティクス分野、1次元のア ミノ酸配列への情報処理に大きく貢献している。

一方、T-Cell は抗体と同様に免疫細胞であり、 その CDR は外部の物質に反応しなければならない。 そのため、CDR・TCR の配列パターンは膨大で、最 大で 10 の 61 乗になるとも言われており、どのペプ チド配列がどの CDR に結合するのかを予測するこ とは難しい。また、予測が難しいタスクであるが故 に、ニューラルネットワークモデルの解釈可能性は 必要不可欠である。

しかし、機械学習における予測結果は一般的に解 釈が難しい。また、蛋白質の機能に寄与しているア ミノ酸残基情報はコンボリューショナル・ニューラ ルネットワーク (CNN) によって抽出されてきたが、 CNN は短い距離の情報に注目してしまうため、共 起的な複数部分構造を加味した予測や、遠く離れた 残基間におけるインタラクションが機能予測に反映 されず、解釈の困難さと予測精度の向上にも限界が ある。1 次構造からの蛋白質・蛋白質間の相互作用 に関する予測についても、同様の理由で、予測結果 の解釈は自明ではなかった。

そこで本研究では、TCR とペプチドの結合予測 に、アテンションレイヤーを用いたモデルを応用し、 アテンションレイヤーを可視化することで、予測モ デルを通して結合原理の理解と解釈を試みる。

2.4 関連研究

トランスフォーマーモデル(2)が提案されてか ら、アテンションレイヤーは自然言語処理を代表的 なタスクとして多くのモデルに応用されてきた。蛋 白質への自然言語処理モデルの応用は、蛋白質の 構造予測や機能予測、及び相互作用予測などが存 在している(3)(4)。アテンションレイヤーは近年の 自然言語処理において最も強力な NN のひとつであ り、文字列や文章内全体の情報に基づいて NN の重 みを変更することで、意味のある情報を文字列か ら抽出することができる。TCR 結合予測の 既存研 究は、Springer.et.al による ERGO-II(5) などがある。

ERGO-IIもTCRとPeptideの結合を予測しているが、 モデルの解釈性には踏み込んではいないと言える。

3. 手法概要

3.1 Attention Layer モデル

アテンションレイヤーに変更を加えた、クロスア テンションレイヤーは、特に2つのアミノ酸配列を 入力値として取り、一方の配列全体の情報に基づい て他方の配列全体の情報から意味のある情報を抽出 することを可能にしており、相互作用予測用のNN である。特に、結合予測に用いられたクロスアテン ションレイヤーに解釈性を加えることで、配列を跨 いだ相互作用の理由を統計的に解釈することが可能 になった。

クロスの場合のアテンションレイヤーは、下記 式で規定される。 Q, K 及び V は、各配列データ を行列化したものである。配列長 L、隠れ層次元 E として、 $L \ge E + 7 \le 4$ で各配列を行列で表現する。 Q=K=Vの場合に、 $L_1=L_2$ となり、セルフアテンショ ンレイヤーとなる。d はスケーリングファクター である。 クロスにする場合は、K=Vであり、Qは 異なるデータを入力する。この時、Softmax 関数が、 行列 Q が入力されたときの V への重みを定義し、 和が 1 になるように重みを配分している。この Softmax $\frac{QK^T}{d}$ がアテンションであり、可視化に用 いた。

$$Attention(Q, K, V) = Softmax\left(\frac{QK^{T}}{d}\right) V,$$

w ere Q L E K L E V L E

3.2 言語・配列としての CDR ・ペプチド

データの表現に関して、CDR 配列とペプチドは、 20 種類のアミノ酸配列で表現される。アテンショ ンレイヤーは、CDR とペプチドのパターンを学習 し、結合を予測できる。本研究では、予測モデルへ の入力値として、配列のみを利用し、遺伝子座の情 報や MHC の情報といった副次的な情報は利用しな い。

3.3 ニューラルネットワークモデルの詳細

本研究で用いた予測モデルの概要を図 2 に示す。 ペプチドと TCR α・β の配列をそれぞれ別々にエン ベディングレイヤーとトランスフォーマーで 処理 していき、クロスアテンションレイヤーにて相互に トランスフォーマーモデルに入力し、最終的に 出 力層にて平均をとり、連結し、マルチレイヤーパー セプトロン (MLP) レイヤーにて 1 つの予測値を結 合確立として アウトプットする。ロス関数はクロ スエントロピーを用いた。

図2:本研究で用いたモデルの概要図

図2における相互作用のクロスアテンションレイ ヤーを可視化することで、配列を跨いだ相互作用 の理由を解釈することが可能になる。クロスアテン ションレイヤーはトランスフォーマーモデルを改 変したものであり、ペプチドをインプットにして TCR の各残基に対して比重を割り振る形で、TCR の重要な部位を学習する。

4. 実験

配列データのトレーニングのスコアをベンチマー クの既存研究と比較することで手法の妥当性を確認 した。その上でアテンションレイヤーから得られる 重要部位を立体構造に対応させ、構造情報とアテン ションの関係性を見出した。

4.1 配列データと結合データ

前章で述べた通り、データセットは TCR とペプチ ドのペアに対してバイナリのラベルが付与されている ものを既存研究から引用し、ベンチマークデータセッ トとして既存研究のモデルと比較した。さらには、汎 用性の高いアテンションレイヤーの獲得を目指し、デー タセットをオープンデータレポジトリの VDJDB から 取得し、データを拡張したモデルでトレーニングした。 McPAS, VDJdb_without10x データセット (5)(6)(7) は既存 研究で用いられているデータで、ベンチマークデータ セットである。一方で、VDJdb_with10x データをアテ ンションレイヤートレーニング用として用いた。

バイナリ分類問題であり、モデルのトレーニング のためには、ネガティブラベルのデータが必要であ るが、TCR とペプチドの反応データはポジティブ ラベルのデータが多いため、本研究では、既存研究 に倣ってランダムな TCR とペプチドのペアの組み 合わせを生成し、ネガティブラベルを付与すること で、正負の比率を調節した。

全データを統合すると、インタラクションのデー タ数は 199222 件あり、ユニークな TCRα と TCRβ のデータ数はそれぞれ 17954 件と 19162 件であっ た。また、ペプチドのユニークな個数は 478 件であっ た。ネガティブとポジティブのラベル数はそれぞれ 166096 件と 33126 件であった。

4.2 蛋白質の立体 (三次元) 構造データ

蛋白質の立体構造データは、Protein Data Bank (PDB, https://www.wwpdb.org)から取得した。TCR とペプチド に関与するデータは 49 件あり、そのうち、TCR-ペプ チドペアの重複を除くと 38 件が残った。これら 38 件 についてアテンションレイヤーの可視化を行った。

5. 結果

5.1 結果

ベンチマークデータセットに対する既存研究モデ ルと本研究のモデルの比較を表1に示す。本研究の スコアは、配列のみからの結合予測では両方のベン チマークデータについて既存研究を上回った。しか し、既存研究のベストスコアの設定である配列 V,J

遺伝子 MHC 種類を用いた場合の McPAS データの スコアには及ばなかった。

モデル名	データセッ ト名	データ種類	ROCAUC スコア		
本研究 モデル	McPAS	配列のみ	0.933		
本研究 モデル	VDJdb_ without10x	配列のみ	0.925		
ERGO-II, LSTM	McPAS	配列のみ	0.855		
ERGO-II, LSTM	VDJdb_ without10x	配列のみ	0.800		
ERGO-II, LSTM	McPAS	配列+ V,J 遺伝子 MHC 種類	0.939		
ERGO-II, LSTM	VDJdb_ without10x	配列+ V,J 遺伝子 MHC 種類	0.849		
表1・ベンチマークデータヤットに対する スコア					

5.2 アテンション解釈

立体構造での距離行列と、各ヘッドにおけるアテン ションレイヤーの可視化例を図3、4に示す。アテン ションレイヤーの値が大きい TCR 残基において、立 体構造内で相互作用があることが確認できた。

図3:立体構造での距離行列。横軸にCDR 配列、縦軸にペプチド配列として距離を可視化した。

図4:各ヘッドにおけるアテンションレイヤーの可 視化。特に上段2つのヘッドについて、アテンショ ンレイヤーの値が大きいTCR残基において立体構造 内で結合があることが確認できた。上の例では、ペ プチド配列が入力されたときに、各TCR配列が重み を割り振られている。よって、x軸方向に和をとる と1になる。

6. 考察・まとめ

本研究では、アテンションレイヤーで、蛋白質の 1次構造からの結合機能の予測を解釈した。実験結 果から、残基のアテンションが大きいことが立体構 造内の相互作用を通して蛋白質機能において重要な 役割を果たすことに対応していることが示唆された。

アテンションは配列情報のみから手に入れられた ものであるため、タンパクの立体構造を入手せずと も、TCR と CDR の結合にかかわる残基を判別でき る可能性がある。

参考文献

- (1) CRYSTAL STRUCTURE OF COMPLEX BETWEEN D10 TCR AND PMHC I-AK/CA, (1999)
- (2) Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- (3) Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589.
- (4) Jurtz, Vanessa Isabell, et al. "An introduction to deep learning on biological sequence data: examples and solutions." Bioinformatics 33.22 (2017): 3685-3690.
- (5) Springer, I., Tickotsky, N. and Louzoun, Y., 2021. Contribution of t cell receptor alpha and beta cdr3, mhc typing, v and j genes to peptide binding prediction. Frontiers in immunology, 12.
- (6) Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N (2017). McPAS-TCR: A manually-curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33:2924-2929
- (7) Bagaev, Dmitry V., et al. "VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium." Nucleic Acids Research 48.D1 (2020): D1057-D1062.

Ginzburg-Landau 理論に基づいた数値シミュレーションによる

超伝導の磁場依存性の研究

兼安 洋乃、大塚 剛生、春名 信吾 兵庫県立大学 大学院理学研究科

1. 磁場中の chiral 安定性と常磁性 chiral 電流

超伝導では2電子が対を組んでおり、電子対のス ピンと軌道の状態が超伝導の特性を決めている。ス ピン状態は、平行と反平行のスピン一重項と三重項が あり、軌道の状態との組み合わせも様々である。その 中でも、電子対の軌道角運動量がゼロでなく、内部 磁化を持つ状態を chiral 状態といい、chiral な d 波や p 波の状態などがある。(図 1) chiral 状態の内部磁化 が外部磁場と常磁性結合すると、chiral 安定化やそ れに伴う chiral 電流を生じることが理論から示され ている。(図 2)[1,2] この様な磁場誘起 chiral 現象は、 特に超伝導が不均一である場合に顕著となる。その ため、磁場誘起 chiral 現象の特徴を理論的に調べて、 実験事実と比較した考察を行うことは、chiral 超伝 導を探る手掛かりとなる。[3]

本研究では不均一系の磁場誘起 chiral 現象について、Ginzburg-Landau 理論に基づいた研究を行った。[3] 2 成分の超伝導秩序変数で表された chiral 状態の Ginzburg-Landau 方程式を大阪大学サイバーメディアセンターの SQUID を用いて数値的に解き、磁場中の秩序変数成分と超伝導電流の解析を行った。[4]

2. chiral 状態の秩序変数と不均一超伝導

磁場誘起 chiral 現象の候補となる不均一な超伝導 状態として、自発磁化が µSR 測定などから報告さ れている超伝導体 Sr₂RuO₄の共晶系が挙げられる。

[5,6] 共晶で、析出した金属 Ru と母物質 Sr₂RuO₄ の接合モデルを考える。(図 3) [6] Sr₂RuO₄の結晶 構造は D_{4h} 対称性であり、群論で許される既約 E_g と E_u の chiral 状態を考える。この chiral 状態の超伝 導秩序変数は 2 成分で表現され、その成分を超伝導 / 金属 - 接合境界に垂直な成分 η_p と平行成分 η_i とす る。[4,6]

図 3:秩序変数における chiral 状態と chiral 転移

図3のRuO₂面上の接合モデルの左図は、その2成 分秩序変数のchiral 状態を示している。超伝導の不均 一性として、超伝導体端からの距離xにおいて、接 合面近くで臨界温度が高くなる不均一な超伝導臨界 温度を設定している。ゼロ磁場では、不均一超伝導 の生じ始める高い温度で、一成分 η_i のみが生じて non-chiral 状態(図3右側)となるが、温度が下が ると2成分目の η_p が生じて、2成分状態のchiral 状 態(図3左側)に転移する。[4,6]

このゼロ磁場での non-chiral 状態に、chiral 磁化 軸に平行な磁場を印加する場合を設定して、磁場に よる1成分状態から2成分状態への chiral 転移、及 び chiral 安定化を Ginzburg-Landau 方程式の数値計 算で調べた。又、この chiral 安定化に伴う常磁性 chiral 電流の振る舞いを解析した。[3,4]

3. Ginzburg-Landau 方程式の数値解析

3.1 磁場中の chiral 安定性と超伝導秩序変数

方程式の数値解として得た超伝導秩序変数成分と ベクトルポテンシャルから、chiral 転移、chiral 安定 化とそれに伴う常磁性 chiral 電流の磁場・温度依存 性を解析した。不均一系接合モデルとして、接合面 近くで高い超伝導臨界温度のパラメータは、ゼロ磁 場で超伝導のオンセット温度 *T*onset=3K で接合面近く に non-chiral 状態が生じ、低温になると T*=2.3K で chiral 転移して、Tc,bulk=1.5K で均一バルクの超伝 導転移温度と一致するように設定した。[3,4]

計算結果として、図4は超伝導秩序変数成分 (η_r , $i\eta_p$) の温度ごとの磁場依存性を示している。超伝 導のオンセット温度 T_{onset} =3K で接合面近くに1成 分 η_t のみの non-chiral 状態が生じ、温度が下がり $T^*=2.3$ K になると、2成分目の η_p が誘起して chiral 転移し、2成分状態 $\eta_t+i\eta_p$ の chiral 状態となる。こ の温度により chiral 転移が起こる $T^*=2.3$ K よりも 高い温度にある non-chiral 状態 (η_t のみの1成分状 態) に対して、chiral 磁化軸に平行な磁場 H_z をかけ ると、第2成分の η_p が誘起されて2成分状態 $\eta_t+i\eta_p$ の chiral 状態に転移する。[4]

図4:磁場による chiral 安定化の磁場・温度依存性

図 5 は、T=2.65 K> T^* の距離 x における超伝導 秩序変数成分 (η_i , $i\eta_p$)の磁場依存性を示している。 $T^*=2.3$ K 以上の T=2.65 K では non-chiral 状態 (η_i の みの 1 成分状態) となっている。この non-chiral 状 態に chiral 磁化軸に平行な磁場 H_z をかけると、第 2 成分の η_p が誘起されて、2 成分状態 $\eta_i+i\eta_p$ の chiral 状態に転移する。この秩序変数の磁場依存性は、磁 場による chiral 状態の安定化を示している。[4]

図 5: T=2.65 K >T* における磁場誘起 chiral 転移に 対応した秩序変数の第 2 成分 y,の誘起

3.2 chiral 状態安定化による chiral 電流の誘起

図 6 は、数値解の超伝導秩序変数とベクトルポテ ンシャルを用いて計算した、T=2.65 K の距離 x に おける常磁性 chiral 電流 $J_{par,c}$ とスクリーニング電流 J_{scr} の磁場依存性である。ゼロ磁場では non-chiral 状 態のために chiral 電流 $J_{par,c}$ は生じていないが、磁場 が印加されると chiral 状態に転移して常磁性 chiral 電流 $J_{par,c}$ が誘起される。この常磁性 chiral 電流の誘 起は、前述の図 5 における磁場による秩序変数第 2 成分 η_p の誘起の chiral 安定化と対応している。[4]

図 6:T=2.65 K >T* における chiral 安定化による常 磁性 chiral 電流の誘起

このように数値計算で示した磁場誘起 chiral 転移 の振る舞いは、トンネルコンダクタンスの磁場依存 性と定性的に整合しており、Sr₂RuO₄ 共晶の低温バ ルク状態において chiral 状態が期待出来る。[3,4]

4. 不均一系における chiral 状態の磁場中の解析

4.1 Ginzburg-Landau 方程式による磁場中の chiral 安定化と超伝導電流の解析

超伝導秩序変数とベクトルポテンシャルに対する 変分で導かれた Ginzburg-Landau 方程式を数値的に 解き、数値解の超伝導秩序の2成分とベクトルポテ ンシャルを得る。又、超伝導電流が得られる。

Ginzburg-Landau 方程式は秩序変数による変分から、

$$a\eta_{p} + \frac{3}{4}b\eta_{p}^{3} + \frac{1}{4}b\eta_{t}^{2}\eta_{p} - K_{1}\partial_{x}^{2}\eta_{p} + \gamma K_{3,4}\partial_{x}A_{y}\eta_{t} + \gamma A_{y}K_{3,4}\partial_{x}\eta_{t} + K_{2}(\gamma A_{y})^{2}\eta_{p} = 0 a\eta_{t} + \frac{3}{4}b\eta_{t}^{3} + \frac{1}{4}b\eta_{p}^{2}\eta_{t} - K_{2}\partial_{x}^{2}\eta_{t} - \gamma K_{3,4}\partial_{x}A_{y}\eta_{p} - \gamma A_{y}K_{3,4}\partial_{x}\eta_{p} + K_{1}(\gamma A_{y})^{2}\eta_{t} = 0$$

が得られる。[3,4,6]又、ベクトルポテンシャルによ る変分から超伝導電流の式、

 $j_{y}(x) = 8\pi [-\gamma^{2}A_{y}(K_{1}|\eta_{t}|^{2} + K_{2}|\eta_{p}|^{2})$

 $+\gamma K_{3,4}(\eta_t\partial_x\eta_p-\eta_p\partial_x\eta_t)]$

が得られる。秩序変数成分とベクトルポテンシャル はxのみに依存している。z軸方向の磁化 $B = \nabla \times A$ を導くベクトルポテンシャルは、A = (0, Ay(x), 0)と 設定した。又、 $a(T,x) = a'(T - T_c(x))/T_{c,bulk}(x)$ で、超伝導 臨界温度は境界面付近で高い $T_c(x) = T_c + T_0/\cosh(x/w)$ で設定される。係数比は $b = 4a'/15 \ge K_1/3 = K_2 = K_3 = K_4$ である。

超伝導電流はy軸に沿って流れ、1項目はスクリー ニング電流、2項目が常磁性 chiral 電流である。接 合面の境界条件は秩序変数成分について、

 $K_1 \partial_x \eta_p \Big|_{x=0} = g_p \eta_p(0) + \gamma A_y(0) K_3 \eta_t(0)$

 $K_2 \partial_x \eta_t |_{x=0} = -\gamma A_y(0) K_4 \eta_p(0)$

である。係数 g_p は接合面から金属側への超伝導の 侵入の幅 $1/\sqrt{g_p}$ に関係する。ベクトルポテンシャル についての境界条件は、超伝導体端の外部磁場との 連続性により設定される。[3,4,6]

この境界条件付き連立微分方程式の Ginzburg-Landau 方程式を、quasi-Newton 法に従って数値的 に解き、自己無撞着に超伝導秩序成分とベクトルポ テンシャルを数値解として得て、超伝導電流を計算 する。この数値計算のフローチャートを図7に示し ている。[4]

このような常磁性結合による磁場誘起 chiral 現象 の数値解析では、chiral 安定化と常磁性 chiral 電流 に加えて、距離上の chiral 磁化反転の現象も同時に 導かれる。(図 8) [3,4,8] 常磁性結合による自由エ ネルギー利得から導かれる chiral 安定化と常磁性 chiral 電流、chiral 磁化反転と、Ginzburg-Landau 方 程式の数値解である秩序変数、ベクトルポテンシャルとの関係を図8に示している。[4]

図 7 : Ginzburg-Landau 方程式の quasi-Newton 法に よる計算フローチャート

4.2 Ginzburg-Landau 方程式の計算高速化

内部磁化と外部磁場の常磁性結合により、外部磁 場の印加で chiral 安定化する様子を調べるには、外 部磁場を小幅で変化させた解析が必要となる。この 様な解析を、Ginzburg-Landau 方程式で超伝導秩序 変数とベクトルポテンシャルを自己無撞着に求める 数値計算(図7)において行うと計算時間が長くな り、計算の高速化を行う必要がある。そのため、秩 序変数とベクトルポテンシャルの超伝導体端からの 距離上のデータの計算について、大阪大学サイバー メディアセンターの SQUID; SX-Aurora TSUBASA でベクトル化 [9,10] を用いた高速化を行った。[4,11]

5. おわりに

数値計算で示した磁場誘起 chiral 転移の振る舞い は Sr_2RuO_4 共晶に限らず、一軸圧下 Sr_2RuO_4 や圧力 下 UTe₂ についても、不均一な状態が考えられる場 合には磁場誘起 chiral 現象の可能性がある。[12,13]

今後は chiral 状態に限らず、時間反転対称性の破 れた幾つかの状態についても、Ginzburg-Landau 方 程式による磁場中シミュレーションを発展させるこ とが考えられる。[4]

この研究報告は今年度の公募利用の成果である 論文[4]の一部をまとめたものである。また、春 名の卒業論文[14]に関係する。SQUID; SX-Aurora TSUBASAでの計算高速化について、大阪大学サイ バーメディアセンターの伊達進氏と大阪大学工学部 博士課程前期の吉田薪史氏に協力して頂き、chiral 状態の現象論について ETH Zurich の M. Sigrist 氏に 議論して頂きました。感謝致します。

参考文献

- A. Furusaki, M. Matsumoto, and M. Sigrist, Phys. Rev. B 64, 054514 (2001).
- (2) M. Matsumoto, C. Belardinelli, M. Sigrist, J. Phys. Soc. Jpn. 72, 1623 (2003).
- (3) H. Kaneyasu, Y. Enokida, T. Nomura, Y. Hasegawa, T. Sakai, and M. Sigrist, Phys. Rev. B 100, 214501, (2019).
- (4) H. Kaneyasu, K. Otuka, S. Haruna, S. Yoshida, and

S. Date, Sustained Simulation Performance 2021; Proceedings of the Joint Workshop on Sustained Simulation Performance, 31th and 32nd,15 pages, in print.

- (5) Y. Maeno, T. Ando, Y. Mori, E. Ohmichi, S. Ikeda, S. NishiZaki, S. Nakatsuji, Phys. Rev. Lett. 81, 3765 (1998)
- (6) M. Sigrist, and H. Monien, J. Phys. Soc. Jpn. 70, 2409, (2001).
- (7) M. Kawamura, H. Yaguchi, N. Kikugawa, Y. Maeno, H. Takayanagi, J. Phys. Soc. Jpn. 74, 531 (2005).
- (8) H. Kaneyasu, Y. Enokida, T. Nomura, Y. Hasegawa, T. Sakai, M. Sigrist, JPS Conf. Proc. 30, 011039, (2020).
- (9) R. Egawa, K. Komatsu, S. Momose, Y. Isobe,A. Musa, H. Takizawa, and H. Kobayashi, J. Supercomput. 73(9), 3948, (2017).
- (10) K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama, M. Sato, and H. Kobayashi, in SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 685–696, (2018).
- (11) S. Yoshida, A. Endo, H. Kaneyasu, and S. Date, Supercomput. Front. and Innov. 8(2), 43-58, (2021).
- (12) V. Grinenko, et al., Nature Phys. 17, 748 (2021).
- (13) S. Ran, et al., Science 365, 684 (2019).
- (14) 春名信吾、"局所的に高い Tc を持つ chiral 超伝 導の磁場中における軌道磁化反転の機構"、卒 業論文(兵庫県立大学理学部)、2022 年3月。

高次テンソル繰り込み群を用いた

モノマー・ダイマーモデルの統計力学的研究

大塚 高弘、阿久津 泰弘 大阪大学 大学院理学研究科

1. はじめに

統計力学は、多数の粒子や要素が引き起こす集団 的な振る舞いを追求する学問である。例えば、水が 温度変化によって水蒸気(気体)や氷(固体)に状 態変化する相転移現象などもこの範疇である。統計 力学では、分配関数と呼ばれる基本的な量を決定す ることによって、様々な熱力学的性質を求めること が可能である。そのため、対象とするモデルの分配 関数の計算は一つの重要な課題であるが、解析的に 計算できる場合は限られており、数値的なアプロー チを活用する必要がある。

統計力学分野において、3次元古典系や2次元量 子系などの高次元系における分配関数の数値計算は 古くからの課題であった。2次元系においては、密 度行列繰り込み群[1,2]が一つの確立された手法で はあるが、高次元への適用は困難である。そのため、 様々な高次元系へ適用可能な手法開発の試みが行わ れてきた。その一つとして挙げられるのが、変分法 を基本とした手法である projected entrogled pair state (PEPS) [3, 4]である。PEPS の高次元系への適用が進 む一方で、実空間繰り込みによるスケール変換に基 づくテンソル繰り込み群解析 (Tensor Renormalization Group: TRG) [5]が開発された。TRG の中でも近年開発された高次テンソル繰り込み群 (Higher Order TRG: HOTRG) [6]は、高次元系への適 用が可能な枠組みであり、新たな高次元解析の基盤 としての期待が高まっている。しかし、現状 HOTRG の数値的な実用例は少数であるとともに、素朴にア ルゴリズムを適用すると、コンピュータのメモリー 消費量が莫大となるという課題を抱えており、完全 な実用化には移行できていない状況にある。

本研究では、メモリ大量消費問題を回避すべく、

HOTRG の並列化プログラムの構築を行った。また、 3 次元古典系の一例であるモノマー・ダイマー模型 に適用を行い、エントロピーの測定や臨界現象の議 論を行った。

2. 数値計算手法: 高次テンソル繰り込み群

ここでは、高次テンソル繰り込み群(HOTRG)の基本的なアルゴリズムのレビューと本研究で開発をおこなった並列化アルゴリズムの説明を行う。

2.1 高次テンソル繰り込み群のアルゴリズム

HOTRG の基本的なアルゴリズムを磁性体の基本 的なモデルである2次元イジングモデルを例に説明 する。イジングモデルのハミルトニアンは、

$$\beta H = -K \sum_{\langle i,j \rangle} \sigma_i \sigma_{i+1}$$

であり、分配関数は以下のように与えられる。

$$Z = \sum_{\{\sigma\}} e^{-\beta E}$$

ただし、*K*は結合定数、*< i,j* >は再近接に関する和、 {*σ*}はスピンに関する和を表す。この分配関数を例に 以下に手順を示す。

(1) 分配関数を局所テンソル表示する

分配関数を格子点上に定義されるテンソルの積に 分解する(図1参照)。

$$Z = \sum_{\{\sigma\}} e^{-\beta H} = \sum_{\{\sigma\}} \prod_{i} T_{x_i x'_i y_i y'_i}$$
$$T_{x_i x'_i y_i y'_i} = \sum_{\alpha} W_{\alpha, x_i} W_{\alpha, x'_i} W_{\alpha, y_i} W_{\alpha, y'_i}$$
$$W = \begin{pmatrix} \sqrt{\cosh \beta} & \sqrt{\sinh \beta} \\ \sqrt{\cosh \beta} & -\sqrt{\sinh \beta} \end{pmatrix}$$

図1. 分配関数の局所テンソル表示

(2-a) 縦方向の隣接するテンソルの縮約(テンソル和) をとる(図2参照)

図 2. 隣接する局所テンソルの縮約

(2-b) 縦方向の縮約後の成分数を削減する

記憶成分数の発散を回避するため、高次特異値分 解により成分削減を行う(図3)。高次特異値分解に ついては本節にて後述する。

図3. 高次特異値分解による成分数削減

(3) 横方向に対しても同様に(2)のプロセスを行う(4) (2)~(3)を収束するまで繰り返す

以上が HOTRG の大まかなプロセスである。3次 元への拡張は、縮約の方向を増やすだけである。

(2-b)で用いた高次特異値分解について説明する。 通常の特異値分解では与えられた行列に対し、異な る2つのユニタリ行列を用いて対角化を行う。従来 のテンソル繰り込み群では[7]、特異値を大きい順に 並べて、分配関数に対する寄与度が大きいものを保 持することで近似を行う。HOTRG は特異値分解の 一般化である高次特異値分解を基礎とする。高次特 異値分解は、一般のテンソルに対して以下のように 定義される。

$$M_{lrud} = \sum_{efgh} S_{efgh} U_{le}^L U_{rf}^R U_{ug}^U U_{dh}^D$$

Sefgh はコアテンソルと呼ばれ、順序構造や直行 性を持つことから、特異値の一般化に対応する。こ のコアテンソルのノルムによって基底の寄与度が決 定される。このように、行列に対してではなくテン ソルに対して直接定義されるため、高次元への拡張 が可能となる。

2.2 並列化アルゴリズム

HOTRG は、アルゴリズム自体の高次元化は比較 的容易であるが、実用上消費メモリが莫大であると いう課題がある。本研究では、繰り込み操作におけ るテンソル成分の一部に対して並列化を行うことで、 使用メモリの削減を行った。

3 次元におけるテンソルの縮約操作では、メモリ 保持が必要な成分数は最大でD¹⁰まで到達する(図4 参照)。ただし、Dはテンソルの1つの方向の成分数 を示す。

図 4. 3 次元でのテンソルの縮約における保持成 分。赤丸で示した成分の保持が必要。

そこで、縮約操作、特異値分解による成分数削減 において関与しない成分を計算機の別のコアに振り 分け並列化を行った(図5参照)。

図 5. 並列化の概念図(z方向の縮約の例)

この工夫により、使用メモリをD²分減少させることができた。

3. モノマー・ダイマーモデルの概要

モノマー・ダイマーモデルは、格子上にモノマー とダイマーを重なることなく敷き詰めるモデルであ る(図6参照)。

図 6. モノマー・ダイマーモデル(2次元の例)

モノマーが存在しない場合のモデルを特にダイマ ーモデルと呼ぶ。これらのモデルは非常に単純であ るが、様々な興味深い性質を持つ。例えば、ダイマ ーモデルはイジングモデルと一対一の関係を持つこ とや[8]、物理量に特異性が現れる臨界的な性質を示 すことが知られている[9]。

モノマー・ダイマーモデルの分配関数は、モノマ ー密度を制御するパラメータであるモノマー重みz を用いて以下のように与えられる。

$$\Xi_N(z) = \sum_{s=0}^N w_N(s) z^s$$

 $w_N(s)$ はN個の格子点に(N-s)/2個のダイマーとs個のモノマーを配置する場合の数を表す。この分配 関数の値は、2 次元ダイマーモデルにおいてのみ解 析解が知られており、一般的にモノマーが存在する 場合や3 次元系においては解析解が知られていない。

そこで、本研究では3次元ダイマーモデルの分配 関数(エントロピー)の測定および、モノマー・ダ イマーモデルの臨界現象の解析を目標とした。

4.3次元モノマー・ダイマーモデルの解析結果 4.1ダイマーモデルのエントロピー測定

2.2 節で導入した並列化アルゴリズムを 3 次元ダ イマーモデルに適用することで、エントロピー測定 を行った(図7参照)[11]。

図 7. 3 次元ダイマーモデルにおける 1 格子あたり の分配関数の値[11]。横軸は高次特異値分解におけ る基底留保数。赤線は漸近展開法による近似計算値 [12]、青線は数値計算による計算値[13]。

我々の HOTRG による計算値は、高次特異値分解 における基底留保数 D_{bond} に対して単調増加かつ一 定値に収束していく振る舞いが見えている。そのた め、分配関数、および、エントロピー($\log E_N$)/Nの高 精度解析ができていると考えられる。エントロピー 値は $D_{bond} = 20$ のもので 0.44715 である。

4.2 モノマー・ダイマーモデルの臨界現象の解析

本研究で対象としている3次元立方格子上のダイ マーモデルは臨界性を示す[14]。そこで、モノマー密 度が有限な場合を考え、モノマー重みに対するエン トロピーの振る舞いを解析した。臨界点近傍では特 異性を反映して、物理量の冪乗からのずれ(臨界指 数)が現れるため、その測定を目標とした。測定結 果は図8に示す通りである。

図8.3次元モノマー・ダイマーモデルにおけるエ ントロピーのモノマー重み依存性。

エントロピーの振る舞いは臨界性を反映して線形
からのずれを示していることがわかる。しかし今回 の解析では、臨界指数を正確に決定するためには精 度が不十分であった。今後、特異値の分布解析等に よるモノマー・ダイマー系での精度向上の可能性の 検討や、HOTRG における留保基底数を増やした計 算などを行う必要がある。

5. おわりに

本研究では、高次元系に適用可能な数値計算手法 である高次テンソル繰り込み群の最適化、および、 3次元モノマー・ダイマーモデルへの実用を行った。 並列化アルゴリズムの導入により、課題であった消 費メモリの低減を行うことができて、より実用化に 向けた進歩を遂げた。実際に、3次元ダイマーモデ ルのエントロピーの高精度測定にも成功した。一方 で、モノマー・ダイマーモデルの臨界現象の議論に は未だ精度が不十分という結果であった。そのため、 精度向上に向けた方策を今後練る必要がある。

参考文献

- Steven R. White, Phys. Rev. Lett. 69, 2863 (1992);
 Steven R. White, Phys. Rev. B 48, 10345 (1993).
- (2) T. Nishino, J. Phys. Soc. Jpn. 64, 3598 (1995).
- Y. Hieida, K. Okunishi and Y. Akutsu, New. J. Phys.
 1, 7 (1999); T. Nishino, Y. Hieida, K. Okunishi, Y. Akutsu and A. Gendiar, Prog. Theor. Phys. 105, 409 (2001); A. Gendiar, N. Maeshima and T. Nishino, Prog. Theor. Phys. 110, 691 (2003).
- (4) A. Gendiar, N. Maeshima and T. Nishino, Prog. Theor. Phys. 110, 691 (2003).
- (5) M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007).
- (6) Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang Phys. Rev. B 86, 045139 (2012).
- M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007).
- (8) P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963); M. E. Fisher, J. Math. Phys. 7, 1776 (1966); C. Fan and F. Y. Wu, Phys. Rev. B2, 723 (1970).
- (9) P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963);

M.E.Fisher and J.Stephenson, Phys. Rev. **132**, 1411 (1963).

- (10) P. W. Kasteleyn, Physica 27, 1209 (1961); H. N. V.
 Temperley and M. E. Fisher, Philos. Mag. 6, 1061 (1961); M. E. Fisher, Phys. Rev. 124, 1664 (1961).
- (11) T. Otsuka and Y. Akutsu, J. Phys. Soc. Jpn. 91, 055003 (2022).
- (12) J. F. Nagle, Phys. Rev. 152, 190 (1966).
- (13) L. Vanderstraeten, B. Vanhecke and F. Verstraete, Phys. Rev. E 98, 042145 (2018).
- (14) D. A. Huse, W. Krauth, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. 91, 167004 (2003).

CT 画像と深層学習を用いた骨格標本上の形態学的変異の可視化と発見

森田 尭 大阪大学 産業科学研究所

1. はじめに

骨格標本は、形態学・進化生物学・考古学におけ る重要なデータであり、性・生物種・生活環境等に 起因する骨格上の変異を発見することは大きな学術 的意義を持つ。既存の骨格標本分析手法では、専門 家が骨格標本上で同定した特徴的領域やランドマー ク点に基づく大きさ、角度、間隔等の測量によって 変異を検出してきた[1](図1左部)。しかしながら、 人間の目視に依存した分析は、常に客観性・再現性 の担保の問題がつきまとい、新たな形態学的発見を もたらす独創的な視点との両立は容易ではない。以 上の背景から、客観性と独創性を兼ね備えた分析を 可能にする手段として、人工知能・機械学習技術を 応用することが有意義であると考えられる。

上記の背景の下、本研究は深層学習とその可視化 技術を応用した形態学研究を探求した。骨格標本の 分析を行う人工ニューラルネットワークを構築し、 その「着目点」を可視化することで、形態学的変異 を発見する (図1右部)。 ニューラルネットワークの 訓練には、専門家が既に持つ知見(変異を含む箇所 の位置情報等)を用いず、ニューラルネットワーク 自身が独自の根拠に基づいて標本を分析するように 設計する。よって、ニューラルネットワークは、人 間とは全く異なる観点から分析を行う可能性があり それは人間の目では検出できない形態学的変異の新 発見の可能性を意味する。「機械学習による形態学的 新発見」という究極目標の達成に向け、既に形態学 的変異に関する知見が蓄積されているマカクザルの 雌雄分類課題を用いて、提案手法の性能評価を行う ことが、本研究における至近目的である。

2. 画像分類と可視化技術の応用

本節では、深層学習を用いた画像分類技術と、分類根 拠可視化技術を応用した骨格標本分析を紹介する[3]。

図1 既存の形態学研究と本研究

2.1 手法

Computed Tomography (CT)データとして記録され た3次元骨格標本を、16視点(垂直2方向×水平8 方向)からの投射画像から雌雄に分類する畳み込みニ ューラルネットワーク(CNN)を構築した[4] (図2)。

CNN の実装には、18 層 ResNet [5]を採用した。各 視点からの投射画像をそれぞれ畳み込み層で処理し、 得られた出力を全結合層で統合することで、雌雄分 類確率を計算する。

分類器の学習後、着目箇所可視化技術を応用し、 骨格標本分類に用いられた部位の可視化を行った。 可視化技術には、Score-CAMを採用した[6]。

2.2 データ

データには、日本モンキーセンター及び京都大学 霊長類研究所所蔵のマカクザル下顎標本 286 検体を 使用した。全ての骨格標本の CT は、京都大学 Digital Morphology Museum から一般アクセス可能である[7]。

モデルの訓練には、ニホンザル(*Macaca fuscata*)の データ全 178 検体のうち、139 検体(メス 83、オス 56)を用いた。残りのニホンザルデータ(メス 20、 オス 19、全 39 検体)並びに他のマカクザル(14 種、 メス 53、オス 55、全 108 検体)は、分類精度のテス ト、及び CNN の着目領域の可視化に使用した。すな

図2 多視点画像分類を応用した骨格標本の雌雄分類

わち、単一生物種(ニホンザル)の学習が、未学習 の同一種並びに異種の標本分析に汎化可能かどうか を調査した。

骨格標本の CT は、1mm 立方のボクセルデータに 補間したのち、マーチングキューブ法[8]でポリゴン データに変換した。得られたポリゴンデータを基に、 16 視点からの二次元投射画像(224×224 ピクセル) を取得し、CNN の入力とした。なお、データ不足に よる過学習防止のため、投射時に水平方向±5 度以 内の視点のばらつきを一様分布から発生させ、デー タ拡張を行った(図 2)。訓練後の分類精度検証時に も、同様の手法を用いて各検体 1000 種類のランダム 視点からの投射画像に基づく評価を行った。

2.3 結果

訓練の結果、提案モデルは 81.74%の正答率で初見 のマカクザル骨格標本の雌雄を判別するに至った。

訓練後の骨格標本分類器の着目点を Score-CAM で可視化した結果、

- 犬歯に摩耗・欠損がない場合は、犬歯に着目
- 犬歯に摩耗・欠損がある場合は、筋突起・下顎枝
 に着目
- した雌雄分類を行っていることが判明した(図 2)。 この弁別基準は、人間の形態学者も用いているも のであり、提案手法の妥当性が示された。

2.4 提案手法の限界

Score-CAM による分類根拠の可視化(及び関連する CNN 用可視化手法)は、空間解像度が小さいとい

図 3 Score-CAM を用いた訓練済み骨格標本 分類モデルの分類根拠の可視化。(左)犬歯に 摩耗・欠損のないオスのニホンザル(Macaca fuscata)。左前下方向(前部正面から45度、水 平から-30度)からの投射。犬歯を含む前歯部 にモデルが着目している。(右)両側の犬歯が 欠落しているオスのパガイマカク(Macaca pagensis)。右上部方向(前部正面から90度、 水平から-30度)からの投射。筋突起を含む下 顎枝上部にモデルが着目している。

う問題を有する。Score-CAM は CNN 出力を元に着 目領域を可視化するが、CNN は空間解像度を圧縮し ながら、分類のための情報を画像内から収集するた め、Score-CAM も圧縮された空間解像度の下で着目 領域を算出することになる。例えば ResNet[5]の場合、 224×224 ピクセルの入力画像は 7×7 ピクセルの特 徴量に圧縮される。(図 2 では、7×7 ピクセルの可 視化結果を 224×224 ピクセルにアップサンプルし、 入力画像に重ねている。)このような低解像度の分析 は、今後より微細な形態学的特徴を捉える必要が出 てきた際に対応しきれない。

図4 画像翻訳技術を応用した骨格標本分析

3. 画像翻訳技術の応用

第2節で紹介した画像分類技術による骨格標本分 析は、一定の有効性を示したものの、空間解像度の 問題が露呈した。この問題を解決するため、画像翻 訳技術[9]を応用した形態分析を試みた。

3.1 手法

画像翻訳技術を応用し、オスの標本(投射画像) を「メスらしく」、メスの標本(投射画像)を「オス らしく」変換することを試みた(図4)。変換前後の 差分を取ることにより、雌雄の形態的差異を可視化 する。この手法では、原理上、入力画像の解像度で 形態学的特徴領域を可視化することができるため、 前節で指摘した(CNN による)画像分類ベースの分 析の問題点を克服できる。

画像翻訳の実装には、CycleGAN [9]を採用した。 当該手法では、入力画像の形質を変換後、変換画像 を入力として再度入力画像に引き戻す操作を行う (図 4)。モデルは、

1) 変換後の目標カテゴリへの分類確率の最大化

2) 無変換画像と区別不可能なほどリアルな変換

- 3) 引き戻し画像を無変換入力画像と一致
- という3つの目標を同時に満たすよう訓練される。

1)と2)については、画像変換器とは別の画像分類 器を同時訓練することで実現する。1)は変換器と分 類器を協調的に訓練し、2)は敵対的に訓練する。3)は 形質変換に関係しない標本の「個性」を変換前後で 保存するための学習目標である。

図 5 CycleGAN によるオスからメスへの形質変 換結果。犬歯の欠損がないニホンザルの標本を使 用。変換後に顕著な犬歯の短縮等が見られず、恒 等写像的な変換に陥っている。

3.2 データ

前節と同様に、マカクザル下顎標本を使用し、ポ リゴンデータへの変換までの前処理を行った。

前節の画像分類では、各標本毎に16 視点からの投 射画像を使用したが、画像翻訳ではランダムに選択 される単一視点投射画像のみを用いた。これは GPU メモリ上の制約であり、2 つの人工ニューラルネッ トワークを同時に訓練する画像翻訳では、多視点を 同時処理することが困難であったためである。

3.3 結果

期待した形質変換が得られず、恒等写像的な変換

に陥った(図5)。学習率を始めとしたハイパーパ ラメータの探索も行ったが、顕著な改善はなかっ た。

4. 結論と今後の展望

第2節において、機械学習を活用した骨格標本分 析の可能性を示すことができた一方、微小な形態学 的特徴を捉えるためには、より一層の技術開発が求 められる。第3節では画像翻訳技術を応用して高解 像度分析を目指したが、期待した結果を得ることは できなかった。

画像翻訳技術の応用失敗は、単一視点をランダム に選択したことが主な原因であると考えられる。ラ ンダムに選択された視点から変換目標となる形態学 的特徴が映る頻度が低い場合、恒等写像的変換が局 所的最適解になるという仮説である。この仮説に基 づき、今後は微分可能レンダリング技術を応用した 最適視点学習を検証予定である。これまではポリゴ ンデータから投射画像への変換を手動ないしはラン ダムで行ってきたが、この変換を深層学習に組み込 むことで、目標とする形態学的特徴を捉える画角を 自動学習できるようになることが見込まれる。この 視点学習技術を、本稿で探求した画像分類・画像翻 訳技術と組み合わせることで、最終的には機械学習 による新たな形態学的発見を目指す。

謝辞

本稿執筆にあたってご協力いただいた西村剛先生、 伊藤毅先生、香田啓貴先生、若森参博士に感謝いた します。本研究は、JSTACT-X (JPMJAX21AN)、JSPS 科研費 (JP21K17805)、三菱財団自然科学研究助成 (若手、202111014)の支援も受けました。

参考文献

- F. Bookstein, Morphometric Tools for Landmark Data: Geometry and Biology, (1997).
- [2] M. Zelditch, et al., Geometric Morphometrics for Biologists: A Primer, (2012).
- [3] T. Morita, et al., AJBA, **178** (1), 44-53, (2022).
- [4] H. Su, et al., Proc. ICCV, 945-953, (2015).

- [5] K. He, et al., Proc. CVPR, 770-778, (2016).
- [6] H. Wang, et al., Proc. CVPR, 111-119, (2020).
- [7] 京都大学 Digital Morphology Museum, http://dmm.pri.kyoto-u.ac.jp/dmm/WebGallery/
- [8] W. Lorensen & H. Cline, Proc. SIGGRAPH, 163-169, (1987).
- [9] J-Y. Zhu, et al., Proc. ICCV, 2242-2251, (2017).
- [10] H. Kato, et al., Proc. CVPR, 3907-3916, (2018).

自己組織化イオン結晶におけるナノ相分離様態と

分子輸送特性の分子動力学研究

石井 良樹

兵庫県立大学 大学院情報科学研究科

1. はじめに

イオン液晶分子は、イオン液体に類似した親水基 にさらに大きな疎水性官能基が置換された分子種で あり、疎水基の分子構造によっては、ジャイロイド やカラムナーなどの自己組織化構造を形成すること が知られている(1)。このような液晶材料は、親水基 が集合して親水性のナノチャネルを形成でき、この ナノチャネルは水やイオンを選択的に輸送すること が、東京大学・加藤隆史教授らの実験から明らかに されてきた(1-3)。そのためこのような自己組織化液 晶は、水処理膜設計への応用が大きな注目を集めて いるが、ナノチャネルや水、イオンの挙動を説明す る分子レベルの動態に関する知見がまだ欠落してお り、その要因としてイオン性化合物における分子モ デリングの複雑さと、超分子集合体における計算コ ストの高さが挙げられる。

そこで著者らは近年、大阪大学サイバーメディア センターのスーパーコンピュータ「OCTOPUS」を活 用することで、イオン液体系で確立した凝縮系の DFT計算による自己無撞着モデリング(4-6)をイオン 液晶系へと適用した。この方法論では、凝縮系で生 じる電子密度移動・誘電分極などの多体効果を考慮 しながら、高精度な分子力場を構築できる。これに より、機能性イオン液晶の全原子モデルの開発と、 大規模分子動力学(MD)シミュレーションによるジ ャイロイド・カラムナー型自己組織化様態の再現に 成功した。またその MD 計算から、自己組織化イオ ン液晶のナノチャネルが輸送する水分子のふるまい を考察しつつ、高温相におけるナノ構造化様態の解 析を進めてきた(7-8)。本稿では、OCTOPUS を用い て得られたこの自己組織化イオン液晶に関する計算 機研究の成果について報告する。

2. 計算条件

本研究で対象とした自己組織化イオン液晶の分子 モデルを図1に示す。このような分子種は、実験で の検討は数多く実施されてきたものの(1-3)、イオン 液体に比べるとより複雑な疎水基を有しており、そ の疎水基から親水基までを全原子レベルで扱う分子 モデルの報告例ないことから、本研究ではこれまで 課題代表者がイオン液体系の先行研究で確立してき た凝縮系での分子モデリング法である自己無撞着モ デリング(4)を応用することで、イオン液晶の分子モ デリングから行った。

自己無撞着モデリングは、MD 計算と DFT 計算を 繰り返して電荷分布を決定することで、凝縮系の多 体効果を平均的に取り込むモデリング手法である。

本研究では、この DFT 計算を周期境界条件下で 32 イオンペア (4608 原子)の規模で実施した。電子状 態計算には、DZVP 基底による Gaussian plane wave 法 を適用し、カットオフエネルギーは 400 Ry とした。 各原子の電荷は、Blöchl 法を用いて評価した。本研究 の DFT 計算は、CP2K 6.1-branch を用いて実行した。

図 1: イオン液晶化合物 1,2。室温でジャイロイド構造やカラムナー構造を形成する(2,3)。

MD計算パートで基準とする分子力場は、OPLSや GAFFを基にして van der Waals パラメータは固定と し、自己無撞着モデリングを経て原子電荷のパラメ ータを決定した。

自己無撞着モデリングで得られたイオン液晶の分 子力場を用いて、大規模系の MD 計算を実行した。 特に本課題では、450 イオンペア(64,800 原子)系 の規模で MD 計算を行った。この 450 イオンペアの MD 計算は、双連続構造の観測を試みるものであり、 カラムナー構造の解析には、周期境界の都合から、 より大きい 1152 イオンペアの規模で MD 計算を行 った。ここで MD 計算による双連続構造の実現に向 けて、500 K の高温から 300 K まで 250 ns かけて冷 却することで、自発的なナノチャネル構造の形成の 可否について検証した。この冷却プロセスに対する 依存性を精査するため、さらに高温の700Kからの 冷却や、より長時間となる 500 ns かけての冷却プロ セスの追証も行った。さらに、図1に示すイオン液晶 分子の他に、イミダゾリウムやピリジニウムをカチオ ンとする自己組織化イオン液晶を用いた双連続構造 の MD シミュレーションも実施した。一方で、カラ ムナー構造のシミュレーションには、初期構造として 作成した1本のサブナノチャネルをスーパーセルと して周期境界条件のもとで複製し、その構造を 50 ns かけて 300 K で平衡化し、その後 50 ns かけて物性 をサンプリングした。上記の双連続構造とカラムナ

ー構造のシミュレーションは、初期構造によらない 結論を導くために、初期構造が異なる5状態を用い てシミュレーションを展開した。本研究の MD 計算 は Gromacs 2016.5 を用いて実行した。

3. 結果と考察

図2に、DFT 計算と MD 計算の反復による自己無 撞着モデリングで得られた、室温イオン液体と自己 組織化イオン液晶における分子電荷の収束性を示す。

初期状態では、カチオンとアニオンは±1 の完全 電化をもつものの、DFT 計算と Blöchl 電荷解析法で 得られた分子電荷は、1 回目のモデリングで非常に 小さい電荷を示した。その分子電荷は、2回反復す るとやや増加して絶対値が1に近づき、3回目以降 の反復処理で良い収束性を示した。これは反復プロ セスによって、イオン同士の間における電子密度の やりとりが平衡化したものと解釈される(4-8)。図 2(a)は、4種のイオン液体における分子電荷を示して おり、FSAを共通アニオンとする組成でも、 [C₂C₁im]+と[C₃C₁pyrr]+で異なる電荷が得られたこ とから、組成ごとの電子密度の違いを反映できてい るものと期待される。またこの傾向は、図 2(b)の自 己組織化イオン液晶系でも同様で、BF4 を共通アニ オンとする組成でも、異なる分子電荷への収束性が 確認できた。

次にこれらの電荷分布の傾向から、凝縮相におけ る多体効果の影響を定量的に調べるため、凝縮系と

図 2: (A)室温イオン液体と(B)自己組織化イオン液晶の自己無撞着モデリングで得られた分子電荷の収束 性の反復回数依存性。1回目の DFT 計算で完全電荷よりも大きく減少した分子電荷を示すが、2回目以降 の DFT 計算でどちらの系でも収束性を示す。

図 3: 自己無撞着モデリングによる非分極力場を用いた大規模 MD シミュレーションで得られた自己組織化 イオン液晶の(A)双連続構造と(B)カラムナー構造のスナップショット。イオン性の官能基が凝集して形成す るナノチャネルを連続空間として、疎水基は棒と球のモデルでそれぞれ描画している。

孤立分子系の電荷分布から、分子間電荷移動と分子 内分極の影響をそれぞれ調べた。紙面の都合から詳 細は割愛するが(詳細は文献(7)を参考)、DFT 計算 で得られた組成ごとの原子電荷分布は、アニオンや カチオンの分子間電荷移動の影響が大きくなるにつ れて、分子内分極の影響の増加を考慮できており、 各組成における電子状態を原子電荷分布として、定 量的に考慮できていることが期待される。これらの 傾向もイオン液体とイオン液晶分子の両方で共通し て確認することができた。ここでイオン液晶分子に ついては、DFT 計算で得られた双極子モーメントと 原子電荷分布を平均化した非分極力場で得られた双 極子モーメントを比較したところ、非常に良く一致 することがわかった(8)。この一致度の傾向は、無機

図4: 非分極力場による MD シミュレーションで得ら れた自己組織化イオン液晶に対する水分子の溶媒和自 由エネルギー。イオン液晶からの寄与と水分子からの 寄与、またその和の全溶媒和自由エネルギーを示して いる。

溶融塩の分極力場と同程度であることから(9)、自己 組織化イオン液晶の非分極力場による MD 計算は、 実験値をよく再現することが期待される。

そこで本研究では、さらにその非分極力場を用い て自己組織化イオン液晶の大規模 MD 計算を展開し た。図3にその MD 計算で得られたナノ相分離構造 のスナップショットを示す。図 3A.B が示すように、 自己組織化イオン液晶が形成する双連続構造とカラ ムナー構造がそれぞれ再現でき、疎水基の自己集合 に隠れてはいるが、イオン性官能基の自己集合によ る3次元および1次元のナノチャネル構造の形成が 確認できた。この自己組織化イオン液晶の MD 計算 に水分子を含めて十分に緩和させると、水分子はイ オン性ナノチャネルのなかに自発的に止まり、水分 子の濃度が増加すると、水分子同士の水素結合ネッ トワークを形成し、水分子の拡散係数が増加する傾 向にあることがわかった。ここで自己組織化イオン 液晶に対する水分子の溶媒和自由エネルギーを解析 した結果を図4に示す。水分子の溶媒和自由エネル ギーは、水分子の割合が増えるにつれて負の方向に 増加しており、純水中の安定性へと漸近することが わかる。ここでこの溶媒和自由エネルギーを、イオ ン液晶からの寄与と他の水分子からの寄与に分割し たところ、他の水分子が対象とする水分子を"囲う" ことによって水分子が安定化していることが明らか になった。したがって自己組織化イオン液晶中のナ

ノチャネルでは、水分子が水和剣を形成することで 安定化し、また拡散性も向上する傾向であることが 本研究のシミュレーション研究から明らかになった。

4. おわりに

本研究によって、自己組織化イオン液晶の分子モ デルの整備に成功し、そのモデルを用いることで複 雑なナノ相分離構造を示すイオン液晶分子の大規模 MD シミュレーションを展開することができた。こ れにより、イオン液晶中のナノチャネルがもつ分子 輸送特性の解明が進められており、今後はさらに複 雑な機能性ナノ材料のモデリングを進めるとともに、 包括的な水やイオンのダイナミクスの学理構築を目 指す。

2020 年度 OCTOPUS 公募利用では、自己組織化 イオン液晶のモデリングのあとの大規模 MD 計算を 実行した。本研究に関して、以下の学会から招待講 演をうけ、また[4]の学会では溶液化学研究会の 2021 年 度 奨励賞を受賞した。また自己組織化イオン液晶の 分子シミュレーションに関する研究成果として論文 (7)を発表し、その続報の論文を(8)として進めている。

また本研究成果と関連するナノ相分離構造の解析 を応用した機能性光学ガラスの中距離秩序のシミュ レーション研究を論文(10)として、溶液中における 小分子の拡散メカニズムの計算機研究の成果を論文 (11)として発表した。

- [1] 石井良樹、松林伸幸、渡辺豪、加藤隆史、鷲津 仁志、「ナノチャネルを形成する自己組織化イ オン液晶の全原子分子シミュレーション」、第 69回高分子討論会、2020年9月16-18日。
- [2] 石井良樹、「ナノ構造材料の分子シミュレーションによる構造・物性解析」、第10回フォトニクスのための材料研究会、2021年1月29日。
- [3] 石井良樹、「輸送に関する分子動力学解析と界面 への応用」、第 10 回分子シミュレーションのト ライボロジーへの応用研究会、2021年3月9日。
- [4] 石井良樹、「溶液物性のモデリングと不均一分子集 合系への展開(受賞講演)」、第43回溶液化学シン ポジウム、オンライン、2021年10月28-30日。

- [5] 石井良樹、「機能性ナノ分子の材料探索に向け たスパコンによる分子モデリングと大規模 MD シミュレーションの事例紹介」、新化学技術推 進協会(JACI) 先端化学・材料技術部会新素材分 科会 講演会、オンライン,2021 年 11 月 2 日。
- [6] 石井良樹、「自己組織化イオン液晶の計算科学的解析に向けたスパコンによる分子モデリングと大規模 MD シミュレーション」、第 31 回日本 MRS 年次大会、オンライン、2021 年 12 月13-15 日。
- [7] 石井良樹、「不均一分子集合系のモデリングと 分子輸送機能の解明」、電気化学会第89回大会、 オンライン、2022年3月15-17日。

参考文献

- (1) T. Kato et al., Nat. Rev. Mater. 2, 17001 (2017).
- M. Henmi, K. Nakatsuji, T. Ichikawa, H. Tomioka, T. Sakamoto, M. Yoshio, T. Kato, *Adv. Mater.* 24, 2238 (2012).
- (3) T. Sakamoto, T. Ogawa, H. Nada, K. Nakatsuji,
 M. Mitani, B. Soberats, K. Kawata, M. Yoshio,
 H. Tomioka, T. Sasaki, M. Kimura, M. Henmi, T. Kato, *Adv. Sci.* 5, 1700405 (2018).
- (4) Y. Ishii, N. Matubayasi, J. Chem. Theory Comput. 16, 651 (2020).
- (5) L. Hakim, Y. Ishii, K. Matsumoto, R. Hagiwara, K. Ohara, Y. Umebayashi, N. Matubayasi, *J. Phys. Chem. B* 124, 7291 (2020).
- (6) L. Hakim, Y. Ishii, N. Matubayasi, J. Phys. Chem. B 125, 3374 (2021).
- (7) Y. Ishii, N. Matubayasi, G. Watanabe, T. Kato, H. Washizu, *Sci. Adv.* 7, eabf0669 (2021).
- (8) Y. Ishii, N. Matubayasi, H. Washizu, *submitted* (2022).
- (9) Y. Ishii, S. Kasai, M. Salanne, and N. Ohtori, *Mol. Phys.* 113, 2442 (2015).
- (10) K. Shinozaki, Y. Ishii, S. Sukenaga, K. Ohara, ACS Appl. Nano Mater. 5, 4281 (2022).
- (11) Y. Ishii, T. Murakami, N. Ohtori, J. Mol. Liq. 346, 118235 (2022).

センター報告

・2021年度大規模計算機システム利用による研究成果・論文一覧 ・・・・・・・・・・・・・・・ 43
・第 27 回スーパーコンピューティングコンテスト(SuperCon2021)報告および 第 28 回スーパーコンピューティングコンテスト(SuperCon2022)告知 ・・・・・・ 55
・大規模計算機システム利用者講習会等の紹介・・・・・・・・・・・・・・・・・・・・・・・・・57
・2022 年度大規模計算機システム利用講習会 ・・・・・・・・・・・・・・・・・・・・・・・・ 59
・2021年度大規模計算機システム利用講習会アンケート集計結果 ・・・・・・・・・・・・・・・ 60
・2022 年度「HPCI(High Performance Computing Infrastructure)利用」の活動状況 ・・・・・ 68
・2022年度「学際大規模情報基盤共同利用・共同研究拠点」の活動状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・2021 年度大規模計算機システム公募型利用制度(追加募集)の活動状況 ・・・・・・・・・・・ 70
・2022 年度大規模計算機システム公募型利用制度の活動状況 ・・・・・・・・・・・・・・・・・ 71
・大規模計算機システム Q&A ・・・・・ 72

2021年度大規模計算機システム利用による研究成果・論文一覧

この一覧は、本センター大規模計算機システムを利用して 2021 年 4 月から 2022 年 3 月までに得られた研究 成果について、利用者から報告されたものを掲載しています。

1. 学術雑誌掲載論文

- Samuel Jeong, Tatsuhiko Ohto, Tomohiko Nishiuchi, Yuki Nagata, Jun-ichi Fujita, and Yoshikazu Ito, "Development of catalysts for carbon dioxide reduction", ACS Catal, 11, 9962, 2021.
- [2] Kengo Takemoto, Yoshiki Ishii, Hitoshi Washizu, Kang Kim, and Nobuyuki Matubayasi, "Simulating the nematic-isotropic phase transition of liquid crystal model via generalized replica-exchange method", The Journal of Chemical Physics, Vol.156, No.014901, Jan. 2022.
- [3] Shota Goto, Kang Kim, and Nobuyuki Matubayasi, "Effects of chain length on Rouse modes and non-Gaussianity in linear and ring polymer melts", Journal of Chemical Physics, Vol.155, No.124901, Sep.2021.
- [4] Daiki Kato, Tomoya Murase, Jalindar Talode, Haruki Nagae, Hayato Tsurugi, Masahiko Seki, Kazushi Mashima, "Diarylcuprates for Selective Syntheses of Multi-Functionalized Ketones from Thioesters under Mild Conditions", chemistry a european journal, Volume28, Issue26, May 2022.
- [5] Naoto Harada, Shingo Hirano, Masahiro N Machida, Takashi Hosokawa, "Impact of magnetic braking on high-mass close binary formation", Monthly Notices of the Royal Astronomical Society, 508, 3730–3747, 2021.
- [6] Akio Ishii, "Spatial and temporal heterogeneity of Kohlrausch–Williams–Watts stress relaxations in metallic glasses", Comput. Mater. Sci., 198, 110673, 2021.
- [7] M. Imai, I. Tanabe, T. Sato and K. Fukui, "Local Structures and Dynamics of Interfacial Imidazolium-Based Ionic Liquid depending on the Electrode Potential using Electrochemical Attenuated Total Reflectance Ultraviolet Spectroscopy", Spectrochim. Acta, Part A, 273, 121040, 2022.
- [8] Sayaka Kira, Takayuki Miyamae, Kohei Yoshida, Yuki Kanzaki, Kenji Sugisaki, Daisuke Shiomi,

Kazunobu Sato, Takeji Takui, Shuichi Suzuki, Masatoshi Kozaki, Keiji Okada "Aurophilic Interactions in Multi-radical Species: Electronic-Spin and Redox Properties of Bis- and Tris-[(Nitronyl Nitroxide)-Gold(I)] Complexes with Phosphine-Ligand Scaffolds", Chem. -Eur. J., 27, 11450-11457, 2021.

- [9] Ryu Tanimoto, Tomoyuki Wada, Keiji Okada, Daisuke Shiomi, Kazunobu Sato, Takeji Takui, Shuichi Suzuki, Takeshi Naota, Masatoshi Kozaki, "A Molecule Having 13 Unpaired Electrons: Magnetic Property of a Gadolinium(III) Complex Coordinated with Six Nitronyl Nitroxide Radicals", Inorg. Chem, 61, 3018-3023, 2022.
- [10] 中谷祐介, 鹿島千尋, 宮西杏奈, 西田修三, "人 口減少による淀川流域の水・物質動態の変化", 土木学会論文集G(環境), Vol.77, No.3, pp.83-102, 2021.
- [11] 鹿島千尋,中谷祐介,"琵琶湖の底層溶存酸素の回復過程に関する三次元流動水質シミュレーション",土木学会論文集B1(水工学),Vol.77,No.2, pp.I_1057-I_1062, 2021.
- [12] K. Sugimoto, N. Iwata, A. Sunahara, T. Sano, and Y. Sentoku, "Dynamics of ultrafast heated radiative plasmas driven by petawatt laser light".
- [13] A. Sunahara, and T. Morita, "Numerical Analysis on Propellant Performance", J. Plasma Fusion Res., Vol.97, No.11, 634-640, 2021.
- [14] Y. Mori, K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, Y. Nishimura, O. Komeda, T. Hioki, T. Motohiro, A. Sunahara, Y. Sentoku, A. Iwamoto, H. Sakagami, E. Miura, and T. Johzaki, "10-Hz Beads pellet injection and laser engagement", Nucl. Fusion, 62, 36028, 2021.
- [15] T. Ozaki, Y. Abe, Y. Arikawa, S. Okihara, E. Miura, A. Sunahara, K. Ishii, R. Hanayama, O. Komeda, Y. Sentoku, A. Iwamoto, H. Sakagami, T. Johzaki, J. Kawanaka, S. Tokita, N. Miyanaga, T. Jitsuno, Y. Nakata, K. Tsubakimoto, Y. Mori and Y. Kitagawa, "Hot Electron and Ion Spectra in Axial and Transverse Laser Irradiation in the GXII-LFEX

Direct Fast Ignitin Experiment", Plasma and Fusion Research, 16, 2402076, 2021.

- [16] K. Ohno, Y. Ohta, S. Kawamoto, S. Abe, R. Hino, S. Koshimura, A. Musa, and H. Kobayashi, "Realtime automatic uncertainty estimation of coseismic single rectangular fault model using GNSS data", Earth Planets Space, 73, 127, 2021.
- [17] K. Ohno, Y. Ohta, R. Hino, S. Koshimura, A. Musa, T. Abe and H. Kobayashi, "Rapid and quantitative uncertainty estimation of coseismic slip distribution for large interplate earthquakes using real-time GNSS data and its application to tsunami inundation prediction", Earth Planets Space, 74, 24, 2022.
- [18] Z. Shen, J.-P. Du, S. Shinzato, Y. Sato, P. Yu, S. Ogata, "Kinetic Monte Carlo simulation framework for chemical short-range order formation kinetics in a multi-principal element alloy", Computational Materials Science, 198, 110670, 2021.
- [19] Fan-Shun Meng, Jun-Ping Du, Shuhei Shinzato, Hideki Mori, Peijun Yu, Kazuki Matsubara, Nobuyuki Ishikawa, and Shigenobu Ogata, "General-purpose neural network interatomic potential for the α-iron and hydrogen binary system: Toward atomic-scale understanding of hydrogen embrittlement", Physical Review Materials, Vol.5, No.11, pp.113606(1)-113606(16), Nov. 2021.
- [20] Peijun Yu, Jun-Ping Du, Shuhei Shinzato, "Fan-Shun Meng, Shigenobu Ogata", Theory of history dependent multi-layer generalized stacking fault energy–A modeling of the micro-substructure evolution kinetics in chemically ordered mediumentropy-alloys, Acta Materialia, 117504-1-12, 224, 2022.
- [21] T. Hiejima and K. Nishimura, "Effects of fuel injection speed on supersonic combustion using separation-resistant struts", AIP Advances, 11 [6], No.065123, 13 pages, 2021.
- [22] T. Hiejima, "A high-order weighted compact nonlinear scheme for compressible flows", Computers and Fluids, 232 [10], 105199, 11 pages2022.
- J. Guan, T. Pal, K. Kamiya, N. Fukui, H. Maeda, T. Sato, H. Suzuki, O. Tomita, H. Nishihara, R. Abe, R. Sakamoto, "wo-Dimensional Metal–Organic Framework Acts as a Hydrogen Evolution

Cocatalyst for Overall Photocatalytic Water Splitting", ACS Catal, Vol.12, No.014317, pp3881–3889, 2020.

- [24] Takayuki Myo, Mengjiao Lyu, Hiroshi Toki, Hisashi Horiuchi, Qing Zhao, Masahiro Isaka, Hiroki Takemoto, Niu Wan, "New many-body method using cluster expansion diagrams with tensor-optimized antisymmetrized molecular dynamics", Physical Review C105 (2022), No.044306.
- [25] Takayuki Myo, Myagmarjav Odsuren, Kiyoshi Kato, "Five-body resonances in 8He and 8C using the complex scaling method", Physical Review C104 (2021).
- [26] Tsuboi, N., Hayashi, A. K., Tamauchi, Y., Kodama, T., "Numerical Simulation of the Deflagration to Detonation Transition in a Tube with Repeated Obstacles", Experimental Scale Simulation Using the Artificial Thickened Flame Method, Transactions on Aerospace Research, 4(265), pp.41-52, 2021.
- [27] Reza Aulia Rahman, Tsutomu Uenohara, Yasuhiro Mizutani, Yasuhiro Takaya, "First Step Toward Laser Micromachining Realization by Photonic Nanojet in Water Medium", International Journal of Automation Technology, Vol.15, No.4, pp. 492-502, 2021.
- [28] 岡林希依, "ミウラ折り型ジグザグリブレットによる 摩擦抵抗低減の試み", ながれ, (日本流体力学 会誌; 特集「境界層の摩擦抵抗低減技術」), Vol.40, No.4, pp.264-270, Aug. 2021.
- [29] 岡林希依, "キャビテーション流れに特化した乱 流解析法", ターボ機械, Vol.49, No.11, pp. 656-666, Nov.2021.
- [30] Takashi Ohta and Keisuke Nakatsuji, "Spatialscaling method and modified large eddy simulation to examine rough-wall turbulence", Journal of Turbulence, Vol.22, No.7(2021), pp.413-433, 2021.
- [31] Takashi Ohta, Tatsuya Yonemura, and Yasuyuki Sakai, "Numerical investigation of the effect of rotation on non-premixed hydrogen combustion in developing turbulent mixing layers", Journal of Turbulence, Vol.22, No.10(2021), pp.597-622, 2021.
- [32] Takashi Ohta, Fumiya Osaka, and Yuta Kitagawa, "Modulation of turbulent Couette flow with vortex cavitation in a minimal flow unit", Journal of

Turbulence, Vol.23, No.3(2022), pp.152-172, 2022.

- [33] Takashi Ohta, Yuta Onishi, and Yasuyuki Sakai, "Modulation of wall turbulence by propagating flame of premixed hydrogen-air combustion", Combustion and Flame, Mar 2022.
- [34] Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, Suehiro H, Akita T, Takemoto M, Sakai J, Yatomi A, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Negi N, Kono A, Ashihara T, Hirata K, "Late-gadolinium enhancement properties associated with atrial fibrillation rotors in patients with persistent atrial fibrillation", Cardiovasc Electrophysiol, 32, 1005-1013, 2021.
- [35] Haraguchi R, Ashihara T, Yoshimoto J, Matsuyama T, "High accessory pathway conductivity blocks antegrade conduction in Wolff-Parkinson-White syndrome", Arrhythm, 37, 683-689, 2021.
- [36] Tomii N, Yamazaki M, Ashihara T, Nakazawa K, Shibata N, Honjo H, Sakuma I, "Spatial phase discontinuity at the center of moving cardiac spiral waves", Comput Biol Med, 130, 2021.
- [37] K. Hagita, T. Murashima, H. Shiba, N. Iwaoka, T. Kawakatsu, "Role of chain crossing prohibition on chain penetration in ring-linear blends through dissipative particle dynamics simulations", Computational Materials Science, 203, 111104, Feb. 2022.
- [38] K. Hagita, T. Murashima, H. Jinnai, "Demonstration of reinforcement in polymer composite with rings penetrating the diamondlattice network", Polymer, 243, 124637, Mar. 2022.
- [39] K. Hagita, T. Murashima, M. Ebe, T. Isono, T. Satoh, "Trapping probabilities of multiple rings in end-linked gels", Polymer, 245, 124683, Apr. 2022.
- [40] Yamaguchi Y, Kim B, Kitamura T, Akizawa K, Chen H, Shimoda Y, "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks", Applied Energy, 117907, 306, 2022.
- [41] Tomoya Hayata, Yoshimasa Hidaka, Arata Yamamoto, "Lattice Lindblad simulation", PTEP, 053, 2022.
- [42] Hideo Suganuma and Hiroki Ohata, "Local Correlation among the Chiral Condensate,

Monopoles, and Color Magnetic Fields in Abelian Projected QCD", Universe, 7, 9, 318, 2021.

- [43] Y. Murakami, M. Sekiguchi, H. Wada and M. Wakayama, "Properties of the five dimensions for the truncated overlap fermions", Journal of Physics Communications 5, 85009, 2021.
- [44] Sibo Wang, Qiang Zhao, Peter Ring, and Jie Meng, "Nuclear matter in relativistic Brueckner-Hartree-Fock theory with Bonn potential in the full Dirac space", Physical Review, C 103, 054319, 2021.
- [45] Hiroaki Kouno, "Number density in Z3-symmetric lattice QCD at finite chemical potential under the phase quenched approximation", Reports of the Faculty of Science and Engineering, Saga University, Vol. 50, No.1, pp1-5, 2021.
- [46] K. Nakazato, H. Togashi and K. Sumiyoshi, "Numerical study of stellar core collapse and neutrino emission with the nuclear equation of state obtained by the variational method", Publications of the Astronomical Society of Japan, 73, 639-651, 2021.
- [47] M. Arimoto et al, "Gravitational wave physics and astronomy in the nascent era", 39th in the alphabetical list of 53 authors, 83, 2021.
- [48] H. Sotani and K. Sumiyoshi, "Stability of the protoneutron stars toward black hole formation", Monthly Notices of the Royal Astronomical Society, 507, 2766-2776, 2021.
- [49] C. Nagele, H. Umeda, K.Takahashi, T. Yoshida, and K. Sumiyoshi, "Neutrino emission from the collapse of ~104Msun population III supermassive stars", Monthly Notices of the Royal Astronomical Society, 508, 898-841, 2021.
- [50] K. Nakazato, F. Nakanishi, M. Harada, Y. Koshio, Y. Suwa, K. Sumiyoshi, A. Harada, M. Mori, and R. A. Wendell, "Observing supernova neutrino light curves with Super-Kamiokande: II. impact of nuclear equation of state", Astrophysical Journal, 925, 98, 98, 2022.
- [51] K. Yoshida, "Cranked Skyrme-Hartree-Fock-Bogoliubov approach for a mean-field description of nuclear rotations near the drip line", Phys. Rev. C, 105, 024313, 2022.
- [52] K. Yoshida, "Super- and hyperdeformation in 60Zn, 62Zn, and 64Ge at high spins", Phys. Rev. C, 105, 024318, 2022.

2. 国際会議会議録掲載論文

- [1] Haruka Taniguchi, Koichi Tsujimoto, Toshihiko Shakouchi, Toshitake Ando, Mamoru Takahashi, "Analysis of oscillation-controlled multiple impinging jets with varying impinging distance using DNS", Proceedings of the 7th International Conference On Jets, Wakes and Separated Flows, 5p, Mar. 2022.
- [2] Yuichi Banno, Koichi Tsujimoto, Toshihiko. Shakouchi, Toshitake Ando, Mamoru Takahashi, "Flow and heat transfer characteristics of inclined rotating impinging jets using DNS", Proceedings of the 7th International Conference On Jets, Wakes and Separated Flows, 5p, Mar. 2022.
- [3] Yuki Kato, Kengo Sato, Jakob Hull Havgaard and Yukio Kawahara, "Deep learning-based prediction of potential RNA G-quadruplexes with D-Quartet", 29th Conference on Intelligent Systems for Molecular Biology and the 20th European Conference on Computational Biology (ISMB/ECCB2021), Poster, 784, Virtual, Jul. 2021.
- [4] Daiki Okada, Hiroki Kijima, Tomotaka Konayashi, Ken Naitoh, "Computation of Compressive Flow in Pulsed Focusing Engine(Fugine) Set in Shock Tube", JSST2021, Sep 2021.
- [5] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi, "Neural Symplectic Form: Learning Hamiltonian Equations on General Coordinate Systems", Advancesin Neural Information Processing Systems 34 (NeurIPS2021), 2021.
- [6] Keisuke Yoshidomi, Nobuhiro Kurita, Kohei Ozawa, Nobuyuki Tsuboi, A Koichi Hayashi, Hideto Kawashima, "Numerical Simulation on Rotating Detonation Engine: Effect of Number of Injection Ports in Non-Premixed H2-O2 Gases", AIAA SciTech2022, AIAA 2022-1112, San Diego, CA & Virtual, Jan 2022.
- [7] Tomohito Nakatsukasa, Taishi Amano, Takahide Araki, Hiroshi Terashima, Nobuyuki Tsuboi, Kohei Ozawa, "Numerical Study of Cryogenic Hydrogen Jet in Crossflow under Supercritical Pressure: Effects of the Number of Injector holes", 33rd International Symposium on Space Technology and Science, 2022-a-27, Beppu, Japan, March 2022.
- [8] Kalash Dixit, Kohei Ozawa, Nobuyuki Tsuboi, "Three-dimensional Numerical simulation of Hypersonic flow over a Ramp : Effects of angle of

attack on shock wave structure", 3rd International Symposium on Space Technology and Science, 2022-e-14, Beppu, Japan, March 2022.

- [9] Tsutomu Uenohara, Makoto Yasuda, Yasuhiro Mizutani, Yasuhiro Takaya, "DETECTION OF SHOCK WAVE IN LASER ABLATION USING A PHOTONIC NANOJET", XXIII IMEKO World Congress, Aug. 2021.
- [10] Tsutomu Uenohara, Reza Aulia Rahman, Yasuhiro Mizutani, Yasuhiro Takaya, "LASER MICRO MACHINING USING A PHOTONIC NANOJET IN WATER MEDIUM", Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, 60045, Jun. 2021.
- [11] Takehiro Fujii, Takeshi Omori, Takeo Kajishima, "Immersed Boundary Projection Method for the Incompressible Navier-Stokes Equation with Arbitrarily Shaped Navier Slip Boundaries", 25th International Congress of Theoretical and Applied Mechanics, Aug.2021.
- [12] Toshikazu Noda, Kie Okabayashi, Shintaro Takeuchi, Takeo Kajishima, "Application of Deep Reinforcement Learning and Transfer Learning for Optimization of Geometry Parameters of Corrugated Wing", Proc. of AIAA SciTech Forum 2022, AIAA-2022-0458, Jan. 2022.
- [13] Tatsuro Yamazaki, Yutaka Oda, Ryosuke Matsumoto, Masashi Katsuki, "Momentum and Heat Transfer Associated with Vortex Structure in Pulsating Turbulent Channel Flow", The 15th International Symposium in Science and Technology 2021, In: Ext. Abstracts of 2nd Asian Conf. on Thermal Sci. (2nd ACTS), ME-O05, Aug. 2021.
- [14] K. Sumikawa, K. Ushijima, and T. Tsukahara, "Numerical simulation of solid-gas-liquid threephase flow in SLM processing", In: Ext. Abstracts of 2nd Asian Conf. on Thermal Sci. (2nd ACTS), Virtual, 50414, Oct. 2021.
- [15] K. Kawazu, T. Homma, I. Ueno, and T. Tsukahara, "Numerical study on basic-flow patterns of thermal Marangoni convection in rectangular free liquid film", In: Ext. Abstracts of 2nd Asian Conf. on Thermal Sci. (2nd ACTS), Virtual.
- [16] T. Kurihara, T. Ishigami, and T. Tsukahara, "Regression-type inverse estimation by CNN to identify a scalar source in turbulent channel flow", In: Proc. of the 8th Asian Symp. on Computational

Heat Transfer and Fluid Flow (ASCHT2021), Qingdao, China (hybrid), ASCHT2021-266, 6 pages, Sep. 2021.

- [17] K. Takeda, M. Sano, and T. Tsukahara, "Side-wall effect of high-aspect-ratio duct flow on turbulent bands in subcritical transition", In: Proc. of the 8th Asian Symp. on Computational Heat Transfer and Fluid Flow (ASCHT2021), Qingdao, China (hybrid), ASCHT2021-256, 10 pages, Sep. 2021.
- [18] Y. Matsukawa and T. Tsukahara, "Subcritical transition of Taylor-Couette-Poiseuille flow", In: Proc. of the 8th Asian Symp. on Computational Heat Transfer and Fluid Flow (ASCHT2021), Qingdao, China (hybrid), ASCHT2021-241, 6 pages, Sep. 2021.
- [19] K. Nakagawa, T. Tsukahara, and T. Ishida, "Turbulent transition induced by an interaction between freestream turbulence and discrete roughness in swept-flat-plate boundary layer", In: Proc. of the 8th Asian Symp. on Computational Heat Transfer and Fluid Flow (ASCHT2021), Qingdao, China (hybrid), ASCHT2021-077, 7 pages, Sep. 2021.
- [20] T. Tsukahara, C. Izumi, Y. Matsukawa, and K. Takeda, "Patterning of turbulent natural convection in vertical channel", In: Proc. of the 8th Asian Symp. on Computational Heat Transfer and Fluid Flow (ASCHT2021), Qingdao, China (hybrid), ASCHT2021-041, 2 pages, Sep. 2021.
- [21] K. Takeda and T. Tsukahara, "Intermittent turbulent structures in subcritical transition of annular Couette flow with/without imaginary domain", In: Abst. 25th Int. Congress of Theor. Appl. Mech. (ICTAM2020+1), Milan, Italy (virtual), pp. 98-99, Aug. 2021.
- [22] H. Morimatsu and T. Tsukahara, "Study of intermittent structure in annular Couette-Poiseuille flow from turbulent puff to turbulent stripe", In: Abst. 25th Int. Congress of Theor. Appl. Mech. (ICTAM2020+1), Milano, Italy (virtual), pp. 114-115, Aug. 2021.
- [23] Peter Ring, Sibo Wang, Qiang Zhao, and Jie Meng, "Relativistic Brueckner-Hartree-Fock Theory in Infinite Nuclear Matter", EPJ Web of Conferences, 252, 02001, 2021.
- [24] K. Sumiyoshi, "Equation of state and neutrino transfer in supernovae and neutron stars", European Physical Journal A, 57, 331, 12 pages,

2021.

[25] Masayasu Hasegawa, "Instanton effects on chiral symmetry breaking and hadron spectroscopy", PoS/The 38th International Symposium on Lattice Field Theory, LATTICE2021, 397.

3. 国内研究会等発表論文

- [1] Mai Mizukami, Mariko Inoue, Tokiya Teraishi, Hayato Tsurugi, Kazushi Mashima, "Hydroaminoalkylation of Styrenes Catalyzed by Cationic Half-titanocene",日本化学会第102 春季年会,オンライン開催,2022年3月26日.
- [2] Mariko Inoue, Tokiya Teraishi, Mai Mizukami, Hayato Tsurugi, and Kazushi Mashima, "Mechanistic Study on Branch-selective Hydroaminoalkylation of Styrenes Catalyzed by Cp*TiMe3/AlMe3",日本化学会第102春季 年会,オンライン開催,2022年3月26日.
- [3] Koichi Shinohara, Hayato Tsurugi, and Kazushi Mashima, "N-Methylation of Amines via Reductive Carbon Dioxide Fixation Catalyzed by Lanthanum Complexes bearing a Nitrogen Tridentate LigandHydridotriarylborate",日本化 学会第101春季年会,オンライン開催,2021年 3月20日.
- [4] Koichi Shinohara, Hayato Tsurugi, and Kazushi Mashima, "希土類アミド錯体とトリアリール ボランを触媒に用いた二酸化炭素を C1 源と するアミン化合物のN-メチル化反応",第 37 回希土類討論会,オンライン開催,2021年5月 20日.
- [5] Koichi Shinohara, Hayato Tsurugi, and Kazushi Mashima, "CO2 Fixation into Amine via Hydrosilylation of CO2 Catalyzed by Lanthanum Hydridotriarylborate Complexes with an N,N''-Bis(pentafluorophenyl)diethylenetriamine Ligand",第67回有機金属化学討論会,オン ライン開催,2021年9月7日.
- [6] 村瀬智哉、加藤大樹、長江春樹、劒隼人、関雅 彦、真島和志,"有機銅試薬によるチオエステ ル選択的なケトン合成法の開発",第47回反 応と合成の進歩シンポジウム,オンライン開 催,ポスター発表,2021年10月2-4日.
- [7] 加藤大樹、村瀬智哉、長江春樹、劒隼人,"関 雅彦、真島和志、有機銅アート試薬によるチ オエステルのケトン合成反応の反応機構解 析",日本化学会第102春季年会,オンライン

開催,口頭発表,2022年3月23日.

- [8] 長谷川航大,馬場吉弘,長岡直人,津端裕之, 西孝祐樹,"雷撃を受けたCFRPの導電率温度 依存性を考慮した電磁界と熱の FDTD 解析", 電気学会放電・プラズマ・パルスパワー/開 閉保護/高電圧合同研究会,オンライン,2021 年11月.
- [9] 清水口裕樹, 芝原正彦, "全固体電池における Liイオンの拡散に関する分子動力学シミュレ ーション", 日本機械学会 関西学生会 2021 年 度学生員卒業研究発表講演会, 2022 年 3 月.
- [10] 藤井祐作,藤原邦夫,津島将司,芝原正彦, "界面付着触媒ナノ粒子の反応性に関する分 子シミュレーション",日本機械学会熱工学 カンファレンス,2021年10月.
- [11] Kunichika Tsumoto, Takao Shimamoto, Akira Amano, Yasutaka Kurata., "Relations between early afterdepolarizations and ventricular lethal arrhythmias in long QT syndrome: a simulation study.", 第67回日本不整脈心電学会学術集会, 福岡国際会議場/福岡サンパレス,福岡市, July 2021.
- [12] 津元国親、島本貴生、青地悠馬、天野晃、九田 裕一、谷田守、倉田康孝,"心室不整脈トリガ ーの発生機序:シミュレーション研究",第68 回中部日本生理学会,金沢医科大学,内灘町, Oct-21.
- [13] 津元国親、島本貴生、青地悠馬、九田裕一、谷田守、天野晃、倉田康孝, "Mechanisms of early afterdepolarization-mediated lethal arrhythmias in patients with long QT syndrome type II: an in silico study.",第95回日本薬理学会年会,福岡,福岡市, Mar 2022.
- [14] 津元国親、島本貴生、青地悠馬、九田裕一、谷田守、天野晃、倉田康孝, "Onset mechanisms of spiral wave reentry occurring in a long QT syndrome type 2 model: insights from a simulation study.",第99回日本生理学会大会,仙台,仙 台市, Mar 2022.
- [15] 津元国親, "Breakups of excitation propagation in the heart: cardiac arrhythmias. ヒト心筋細胞 の早期後脱分極応答に起因した不整脈トリガ ー:in silico研究",第99回日本生理学会大会, 仙台,仙台市, Mar 2022.
- [16] 鹿島千尋,戸村祐希,山根成陽,中谷祐介, "高解像非構造格子モデルを用いた瀬戸内海 の埋め立てによる流動影響解析",第56回日

本水環境学会年会, 3-A-10-2, 2022.

- [17] 稲垣翔太,中谷祐介,秋山諭,木村祐貴, "底 曳網漁業が大阪湾の水質構造に及ぼす影響の 数値解析",第56回日本水環境学会年会,2-A-09-4,2022.
- [18] 山根成陽, 鹿島千尋, 中谷祐介, "分布型流出 モデルを用いた瀬戸内海の過去 30 年の淡水 流入特性の解析", 第56回日本水環境学会年 会, 3-A-10-1, 2022.
- [19] Kashima, C., Nakatani, Y., and Tomura, Y., "Y.: Regional-scale changes in flow due to coastal land reclamation in the Seto Inland Sea", Coastal and Estuarine Research Federation (CERF) 26th Biennial Conference, 16th Estuarine Coastal Modeling Session (ECM16), 2021.
- [20] Tomura, Y. and Nakatani, Y., "Y.: Dynamics analysis of refractory organic matter from the Pacific Ocean in the Seto Inland Sea", Coastal and Estuarine Research Federation (CERF) 26th Biennial Conference, 16th Estuarine Coastal Modeling Session (ECM16), Online, 2021.
- [21] Huang, R., Nakatani, Y., and Irie, "M.: Evaluating impacts of the Yangtze River water transfer on water quality in Lake Taihu", The Water and Environment Technology Conference (WET2021), China, 1A-3-d, 2021.
- [22] 井上真吾,稲垣翔太,中谷祐介,西田修三, "発電所取放水が高閉鎖性海域の流動水質に 及ぼす影響",2021 年度土木学会関西支部年 次学術講演会概要集,II-38,2021.
- [23] 谷口 晴香, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "近距離における振動制御した多重 衝突噴流の解析".
- [24] 坂野 友一, 越後謙太郎, 辻本公一, 社河内敏 彦, 安藤俊剛, 高橋護, "DNS による傾斜回 転制御した自由噴流の初期条件の検討".
- [25] 谷口晴香, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "衝突距離を変更した振動制御下に おける多重衝突噴流のDMD解析".
- [26] 藤森 航紀, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "間欠制御された多重衝突噴流の DNS", 第 99 期日本機械学会流体工学部門講 演会, 4p, Nov. 2021.
- [27] 坂野 友一, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "DNSを用いた傾斜回転させた衝突 噴流の流動・伝熱特性", 第 99 期日本機械学

会流体工学部門講演会, 4p, Nov. 2021.

- [28] 坂野 友一, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "周波数比を変化させた傾斜・回転制 御させた衝突噴流のDNS".
- [29] 谷口晴香, 辻本公一, 社河内敏彦, 安藤俊剛, 高橋護, "振動制御下における多重衝突噴流 の伝熱性能の均一化", 日本機械学会東海支 部第 71 期総会・講演会講演論文集, 1p, Mar. 2021.
- [30] 藤森航紀, 辻本公一, "DNSによる間欠制御さ れた多重衝突噴流の周波数特性", 日本機械 学会東海支部第 53 回学生会卒業研究発表講 演会講演論文集, 2p, Mar. 2022.
- [31] 粂田智洋 他, "レーザープラズマから放出 される水の窓領域X線のレーザー強度依存 性",日本物理学会,2022年春季大会,2022年 3月16日.
- [32] 加藤 有己, 佐藤 健吾, Jakob Hull Havgaard, 河原 行郎, "畳み込みニューラルネットワー クによるRNAグアニン4重鎖領域予測",第 21回日本RNA学会年会,東京都文京区, P-29, Jul. 2019.
- [33] 加藤 有己,佐藤 健吾, Jakob Hull Havgaard, 河原 行郎, "深層学習に基づくRNAグアニン 4 重鎖構造識別法の検討",第 20 回日本RNA 学会年会,大阪府大阪市, P-40, Jul. 2018.
- [34] 前田陽生,比江島俊彦, "高マッハ数における 衝撃波捕獲の精度改善に関する研究",第 35 回数値流体力学シンポジウム講演論文集, C08-4, p1-2, 2021.
- [35] 水野賢吾,比江島俊彦, "スクラムジェットエンジンのインレットにおけるゲルトラー渦の 生成について",第35回数値流体力学シンポジウム講演論文集, D02-3, p1-2, 2021.
- [36] 村岡亮太、比江島俊彦、"不足膨張ジェット流におけるマッハディスクの発生に関する研究",第35回数値流体力学シンポジウム講演論文集,A06-3, p1-2, 2021.
- [37] 松山 力生, 土岐 紘大, 比江島 俊彦, "超音 速ジェット流におけるマッハ波の発生に関す る数値計算", 日本機械学会関西支部 2021 年 度関西学生会卒業研究発表講演会論文集, 10736, pl-1, 2022.
- [38] 松山 力生, 土岐 紘大, 比江島 俊彦, "超音 速ジェット流によるマッハ波発生の要因につ いて", 2021 年度衝撃波シンポジウム講演論

文集, 3A1-1, p1-1, 2022.

- [39] 加藤慎太郎,橋本啄哉,原田隆史,中西周次, 神谷和秀,"金属担持有機構造体による高速 CO2 電解還元とその第一原理解析",電気化 学会第89回大会,オンライン開催,Mar 2022.
- [40] 山本泰暉,原田隆史,中西周次,神谷和秀, "亜鉛イオンを活性中心に有する人工炭酸脱 水酵素の開発:理論計算化学からのアプロー チ",日本化学会 第102春季年会(2022),オン ライン,Mar 2022.
- [41] 大橋圭太郎,原田隆史,神谷和秀,中西周次, "単一銅原子触媒による一酸化炭素の選択電 解還元とその第一原理解析",電気化学会第 89回大会,オンライン開催,Mar 2022.
- [42] 藤田友輝,河原伸幸,"ガスパーセル法を用いた天然ガス噴流挙動の数値解析",第32回内燃機関シンポジウム,講演番号57,2021年12月8日.
- [43] 戸上稔基,河原伸幸,"軽油着火式二元燃料ガ スエンジンにおけるPREMIER燃焼一圧縮性 を考慮したエンドガス部における天然ガス自 着火の数値解析",第32回内燃機関シンポジ ウム,講演番号68,2021年12月9日.
- [44] 陳鈺涵,徐百歌,松原崇,谷口隆晴,"ニュー ラルシンプレクティック形式とその応用", 日本応用数理学会第 18 回研究部会連合発表 会,オンライン,2021.
- [45] 陳鈺涵,松原崇,谷口隆晴,"シンプレクティ ック形式の学習による一般座標系での深層物 理モデル",日本応用数理学会環瀬戸内応用 数理研究部会第 25 回シンポジウム,岡山, 2021.
- [46] 陳鈺涵, 松原崇, 谷口隆晴, "ニューラルシン プレクティック形式とそれによる一般座標系 でのハミルトン方程式の学習", 第 24 回情報 論的学習理論ワークショップ(IBIS2021), オ ンライン, 2021.
- [47] 二宮雅輝,林侑介,藤平哲也,酒井朗,"第一 原理計算手法に基づく外部電場下におけるル チル型TiO2 中の酸素空孔挙動の解析",第82 回応用物理学会秋季学術講演会,オンライン, 10p-S203-3,2021 年9月.
- [48] 藤井 健博, 大森 健史, 梶島 岳夫, "滑り速 度を有する境界に対する埋め込み境界射影 法:境界力の分配演算子が満たすべき条件", 数値流体力学シンポジウム, 2021.12.16.

- [49] 河野宏明,柏浩司,開田丈寛, "量子色力学の有 効模型の複素化学ポテンシャル領域における 解析",日本物理学会2021年秋季大会,オ ンライン開催,2021年9月15日.
- [50] 河野宏明,柏浩司,開田丈寛, "低温極限におけ る有効ポリヤコフライン模型",第 127 回日 本物理学会九州支部例会,オンライン開催, 2021年12月4日.
- [51] 大塚高弘、阿久津泰弘、"テンソルネットワー クを用いたMonomer-dimerモデルにおける臨 界現象の格子依存性の解析",日本物理学会 2021 年秋季大会(9月).
- [52] 井上豪,坪井伸幸,小澤晃平,林光一, "詳細化学反応モデルを用いたアンモニア/ 空気予混合気の爆轟に関する二次元数値解析 -水素混焼による影響の評価-",C224,2021.
- [53] 中司智仁, 荒木天秀, 寺島洋史, 小澤晃平, 坪 井伸幸, "主流と混合する複数噴射口からの 極低温水素噴流に関する数値解析:主流方向 に2つの噴射口を設けた場合", 日本航空宇 宙学会西部支部講演会(2021), JSASS-2021-S015, 2021.
- [54] 大倉毅士、坪井伸幸、小澤晃平、野中聡、伊藤 隆, "再使用ロケット実験機 RV-X の空力特 性における数値解析",第65回宇宙科学技術 連合講演会,3F10,2021.
- [55] 大倉毅士、坪井伸幸、小澤晃平、野中聡、伊藤 隆, "再使用ロケット実験機 RV-X の空力特 性における数値解析",令和3年度 宇宙航行 の力学シンポジウム,2021.
- [56] 高田泰成,上野原努,水谷康弘,高谷裕浩,"フ オトニックナノジェットを利用した微細加工 に関する研究(第9報)一空間光変調器を用い たフォトニックナノジェットの強度分布制御 一",2022年度精密工学会春季大会学術講演会, C07, Mar. 2022.
- [57] 野田 隼司, 岡林 希依, 竹内伸太郎, 梶島 岳 夫, "深層強化学習を用いた折れ曲がり翼の 形状パラメータ最適化の試み", 第53回流体 力学講演会/第39回航空宇宙数値シミュレ ーション技術シンポジウム, 1B05, Jun.2021.
- [58] 岡林 希依, 梶島 岳夫, "シートキャビティ周 りの流線に基づくキャビテーションモデルに よる翼周り流れの非定常解析",日本混相流 学会 混相流シンポジウム 2021 講演論文集, E0115, Aug.2021.

- [59] 岡林 希依, 梶島 岳夫, "乱流要素渦を考慮した翼回りキャビテーション乱流の非定常解析に関する研究",第20回キャビテーションに関するシンポジウム, T1-7, Dec. 2021.
- [60] 藤井 健博, 大森 健史, 梶島 岳夫, "滑り速 度を有する境界に対する埋め込み境界射影 法:境界力の分配演算子が満たすべき条件", 第 35 回数値流体力学シンポジウム, B12-3, Dec. 2021.
- [61] 長友英夫, "放射流体としてのレーザープラズマ",日本物理学会2021年秋季大会シンポジウム「原子・分子過程で繋ぐマルチスケールプラズマの科学」,オンライン,21pB1-6,2021年9月21日.
- [62] 永井 優河,太田 貴士,酒井 康行, "DNSに よる天然ガス予混合燃焼を伴う壁乱流の観 察",第19回日本流体力学会中部支部講演会, Nov. 2021.
- [63] 北川 雄太,太田 貴士, "渦キャビテーション を伴うクエット乱流で乱流構造の変化を予測 するためのDNSの実現",流体工学シンポジ ウム(第68回北陸流体工学研究会),Dec.2021.
- [64] 白畑 風太郎,太田 貴士,"円柱周り軸方向流 れの乱流構造の特徴と半径レイノルズ数の関 係",流体工学シンポジウム(第68回北陸流 体工学研究会),Dec. 2021.
- [65] 永井 優河,太田 貴士,酒井 康行, "天然ガ ス予混合燃焼を伴う壁乱流における乱流構造 と火炎構造の変調",第35回数値流体力学シ ンポジウム, Dec. 2021.
- [66] 都築 昇悟,太田 貴士, "DNSに基づく粘弾性 流体乱流のためのLESモデルの提案と検証", 日本機械学会 北陸信越支部 2022 年合同講演 会, Mar. 2022.
- [67] 藤野潤,本告遊太郎,後藤晋, "円柱背後の乱 流中における渦の階層とその生成機構",日 本物理学会第77回年次大会,M17pB12-4,Mar. 2022.
- [68] 本告遊太郎,後藤晋, "壁乱流中の秩序構造の 階層による粒子の輸送",第 37 回生研TSFDシ ンポジウム, No. 3, Mar. 2022.
- [69] 増田颯人,小井手祐介,本告遊太郎,後藤晋, "高分子溶液のレオロジー特性の解明に向け た2つの異なるスケールの連成シミュレーシ ョン",日本機械学会関西学生会 2021 年度学 生員卒業研究発表講演会,No. 10836, Mar. 2022.

- [70] 村端秀基,本告遊太郎,後藤晋イルカの背び れ周りの流れの解明に向けた数値シミュレー ション日本機械学会関西学生会 2021 年度学 生員卒業研究発表講演会No. 10639Mar. 2022.
- [71] 江田駿介,藤嶋歩里,中谷謙介,本告遊太郎, 後藤晋, "強化学習による流れの能動制御の 実験と数値シミュレーション",日本機械学 会関西学生会 2021 年度学生員卒業研究発表 講演会, No. 10711, Mar. 2022.
- [72] 森脇渉太,本告遊太郎,後藤晋,"リザバーコンピューティングを用いた壁乱流の秩序構造の推定",日本機械学会関西学生会 2021 年度学生員卒業研究発表講演会,No. 10712, Mar. 2022.
- [73] 安房井,本告遊太郎,後藤晋,"非球形粒子の 乱流輸送現象の解明に向けた直接数値シミュ レーション",日本機械学会関西学生会 2021
 年度学生員卒業研究発表講演会, No. 10832, Mar. 2022.
- [74] 山崎龍朗,小田豊,松本亮介,香月正司,"脈 動乱流における乱れの再分配機構に基づく運 動量・熱輸送の局時的非相似性の検討",第58 回日本伝熱シンポジウム, Paper No. F124, May-21.
- [75] 柳 尚紀, 坪井 和也, "インジェクタの内部流 動がキャビテーション生成に及ぼす影響に関 する数値的研究",日本機械学会 中国四国支 部第60期総会・講演会講演論文集,07a1,2022 年3月.
- [76] 岸田優作,浦田智和,大星直樹,宮崎晃,芦原 貴司,坂田憲祐,柴田仁太郎,井尻敬,高山健 志,信太宗也,原良昭,稲田慎,中沢一雄, "ヒト心房の3次元モデルに基づく心房細動 興奮伝播様式の再現を目指した電気生理学的 シミュレーションと可視化",第41回医療情 報学連合大会(第22回日本医療情報学学術大 会),2021年11月18-21日.
- [77] Sakata K, Okuyama Y, Ozawa T, Fujii Y, Kato K, Haraguchi R, Inada S, Nakazawa K, Sugimoto Y, Yamashiro K, Nakagawa Y, Ashihara T, "The strategy of ExTRa Mapping-guided minimal ablation should be determined by the size of left atrium",第 67 回日本不整脈心電学会学術大 会(JHRS), 2021 年 07 月 1-4 日.
- [78] Inada S, Aiba T, Shibata N, Haraguchi R, Ashihara T, Kusano K, Shimizu W, Ikeda T, Sakuma I, Nakazawa K, "A simulation study for investigating mechanisms of ventricular arrhythmia induced

from conduction delay zone in right ventricular outflow tract.", 第 67 回日本不整脈心電学会学 術大会(JHRS), 2021 年 7 月 1-4 日.

- [79] Inada S, Shibata N, Haraguchi R, Ashihara T, Ohkubo S, Mitsui K, Nakazawa K, "Theoretical study for comparing vectorcardiogram in normal and abnormal excitation in the heart",第60回日 本生体医工学会大会・第36回日本生体磁気学 会大会,2021年6月15-17日.
- [80] 岸田優作,浦田智和,宮崎晃,大星直樹,芦原 貴司,坂田憲祐,柴田仁太郎,井尻敬,高山健 志,信太宗也,原良昭,稲田慎,中沢一雄, "ヒト心房の3次元モデルに基づく洞調律興 奮伝播シミュレーションと可視化",第60回 日本生体医工学会大会・第36回日本生体磁気 学会大会,2021年06月15-17日.
- [81] 鳴川公彬、山口容平、西島拓海、下田吉之、 "ストックの経年変化を考慮した業務部門地 球温暖化対策計画評価",第38回エネルギー システム・経済・環境コンファレンス講演論 文集, pp. 135-140, 2022.
- [82] 山下皓太郎、山口容平、大塚敦、西島拓海、鳴 川公彬、下田吉之、"業務部門における温室効 果ガス排出量削減効果の評価:省エネルギー 技術普及シナリオによる検討",第38回エネ ルギーシステム・経済・環境コンファレンス 講演論文集, pp. 141-146, 2022.
- [83] 山口容平,西本隆哉,藤原みさき,鳴川公彬,山下皓太郎,西島拓海,大塚敦,榎原史哉,内田英明,下田吉之,荻本和彦,岩船由美子,井上智弘,黒沢厚志,加藤悦史,"ソフトリンクによる 2050 年のエネルギー需給分析 その2 (1)民生部門エネルギー需要",第38回エネルギーシステム・経済・環境コンファレンス 講演論文集, pp. 729-734, 2022.
- [84] 松川 裕樹, 塚原 隆裕, "対向回転するTaylor-Couette-Poiseuille 流の圧力勾配増加に伴う層 流化", 第 35 回数値流体力学シンポジウム 講 演論文集, オンライン開催, A11-1, 4 pages, Dec. 2021.
- [85] 中川 皓介,石田 貴大,塚原 隆裕, "後退平 板境界層における乱流遷移のDNS:横流れ渦 に生じる二次不安定機構の主流乱れ非依存 性",第 35 回数値流体力学シンポジウム 講 演論文集,オンライン開催,A10-2,6 pages,Dec. 2021.
- [86] 竹田 一貴, 塚原 隆裕, "乱流パフの時空間欠 性に関するDomany-Kinzel モデルによる再現

の試み",第35回数値流体力学シンポジウム 講演論文集,オンライン開催,A07-5,5 papers, Dec. 2021.

- [87] 平賀 惇之輔,"主流乱れの強度および波長が 後退平板境界層乱流遷移に与える影響",第 59 回飛行機シンポジウム 講演集,オンライ ン会場, JSASS-2021-5059, 5 papers, Nov. 2021.
- [88] 澄川 一夫, 塚原 隆裕, 牛島 邦晴, "Selective Laser Melting (SLM)の溶融凝固過程における 固気液三相流の数値シミュレーション",日 本機械学会 第 99 期 流体工学部門講演会 講 演論文集, オンライン, OS12-01, 1 papers, Nov. 2021.
- [89] 川津 晃貴,本間 貴大,黒瀬 築,上野 一郎, 塚原 隆裕, "数値解析による矩形型自由液膜 内温度差マランゴニ対流における基本定常流 のMa・Ca依存性",日本機械学会 第99 期 流 体工学部門講演会 講演論文集,オンライン, OS06-23,1 papers, Nov. 2021.
- [90] 本間 貴大,川津 晃貴,和田 亮平,塚原 隆裕,黒瀬 築,上野一郎,"矩形自由液膜内温度差マランゴニ対流における single-layered flow構造とアスペクト比の関係性",日本機械学会第99期流体工学部門講演会講演論文集,オンライン,OS06-22,4 pages, Nov. 2021.
- [91] 竹田 一貴, 佐野 雅己, 塚原 隆裕, "亜臨界 遷移の高アスペクト比ダクト流で形成される 大規模乱流間欠構造に関する研究ー側壁にお ける乱流挙動に着目して-",日本機械学会 第99期 流体工学部門講演会 講演論文集,オ ンライン, OS04-17, 4 pages, Nov. 2021.
- [92] 松川 裕樹,塚原 隆裕, "Taylor-Couette-Poiseuille流における局在乱流の層流化",日本 機械学会 第 99 期 流体工学部門講演会 講演 論文集,オンライン, OS04-13, 4 pages, Nov. 2022.
- [93] 田代 雅哉, 塚原 隆裕, "粘弾性流体乱流にお けるU-Netを用いた構成方程式の代理モデル 構築",日本機械学会 第 99 期 流体工学部門 講演会 講演論文集,オンライン, OS01-14, 4 pages, Nov. 2022.
- [94] 本間 貴大,和田 亮平,川津 晃貴,塚原 隆 裕,黒瀬 築,上野 一郎,"自由液膜内温度差 マランゴニ対流におけるアスペクト比依存性 - Single layered flow対流場構造-",日本機械 学会熱工学コンファレンス 2021 講演論文集, 佐賀(オンライン開催),1 page, Oct. 2021.

- [95] 細井 理央,石田 貴大,大平 啓介,徳川 直 子,塚原 隆裕, "後退平板境界層での円柱孤 立粗さによる遷移点位置の変化に関する実験 的研究",日本流体力学会年会 2021 講演論文 集,東京(オンライン開催),3 pages, Sep. 2021.
- [96] 中川 皓介,石田 貴大,塚原 隆裕, "後退平 板境界層における定在波と主流乱れの相互作 用による乱流遷移の直接数値解析",日本流 体力学会年会 2021 講演論文集,東京(オンラ イン開催),4 pages, Sep. 2021.
- [97] 塚原 隆裕,泉 千種,松川 裕樹,竹田 一貴, "鉛直平行平板間自然対流における亜臨界乱 流遷移過程",第58回日本伝熱シンポジウム 講演論文集,オンライン,F211,5 pages, May-21.
- [98] 加藤 悠宇汰,大場 春佳,水野 信也, "実社 会における施設内密集度評価のためのシミュ レーション構築",情報処理学会第 55 回 イ ンターネットと運用技術研究発表会.
- [99] 水野信也, "連続時間型マルコフ連鎖を利用 した施設密集度最適化手法の提案",日本オ ペレーションズ・リサーチ学会 2021 年秋季研 究発表会.
- [100] 鈴木 彰, 大場 春佳, 水野 信也, "BCMP待ち 行列ネットワークの実社会応用に対する技術 的課題の検討,", スケジューリング学会スケ ジューリング・シンポジウム 2021.

4. 著書

[1] 梶島岳夫, "流体工学の基礎", 森北出版, Apr. 2022.

5. その他

- [1] Kotaro Tomiyoshi, Tokiya Inoue, Fumiaki Kamisaki, Shingo Tamaki, Sachie Kusaka, Fuminobu Sato, Isao Murata, " γ -Ray Dose Measurement Using Radio-Photoluminescence Glass Dosimeter (RPLGD) in Neutron/ γ -Ray Mixed Field for BNCT ~ Examination of the response of RPLGD in low-energy region~", 19th International Congress on Neutron Capture Therapy (Online), Sep-21.
- [2] 井手坂朋幸,"衝撃波点火方式における高速 電子の特性評価",大阪大学工学部環境エネ ルギー工学科, Feb. 2022.
- [3] 大野誠之, "大規模オミクス解析に基づく病 原レンサ球菌侵襲性感染症の発症機構の解

明", 岩垂育英会奨学金授与式・講演会. 受賞 講演., 2022 年 3 月 19 日.

- [4] M.SATO, N.BELMILOUD, Y.OKUNO, "LARGE SCALE EDDY SIMULATION OF A LIQUID FILM FLOWING OVER A ROTATING DISK: WAVES PATTERNS AND DYNAMICS.", Cambridge, United Kingdom, The 17th OpenFOAM Workshop, 11-14 July 2022.
- [5] 明孝之, "テンソル最適化AMD法における 3 重相関関数の導入",日本物理学会 2021 年秋 季大会, September, 2021(オンライン開催).
- [6] Takayuki Myo, "Structure of neutron-rich Λ hypernuclei in He isotopes", 4th international workshop on strangeness nuclear physics, December, 2021(オンライン開催).
- [7] 岡田和記,和田隆宏, "5 次元Langevin方程式 を用いたアクチノイド領域における核分裂動 力学の研究",一般社団法人 日本物理学会, 2022 年 3 月 17 日.
- [8] 岡田和記,和田隆宏, "5次元Cassiniパラメー タを用いたアクチノイド領域における核分裂 動力学の研究",一般社団法人日本原子力学 会,2022年3月17日.
- [9] 岡田和記,和田隆宏, "Cassiniパラメータにおける輸送係数の核分裂動力学への寄与",一般社団法人日本物理学会,2021年9月16日.
- [10] 岡田和記,和田隆宏,"4次元Cassinパラメー タを用いたアクチノイド領域における核分裂 動力学の研究",一般社団法人日本原子力学 会,2021年9月10日.
- [11] Kazuki Okada and Takahiro Wada, "Langevin approach to fission dynamics with Cassini shape parameterization", The 15th International Symposium in Science and Technology 2021, August 5, 2021, Osaka, Japan.
- [12] Kie Okabayashi, Shintaro Takeuchi, Takeo Kajishima, "DNS on Effectiveness of Miura-foldtype Zigzag Riblet", 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT2021), Oral presentation, Nov.2021.
- [13] T. Tsukahara, "Scalar-source estimation of turbulent mass diffusion using machine learning", The 8th Int. Workshop on Fluid Flow, Heat Transfer & Turbulent Drag Reduction (IWFHT2021), Qingdao, China, Sep. 2021.

 T. Tsukahara, "Scalar-source estimation of turbulent mass diffusion using machine learning", IISc-TUS Joint Workshop in Data Sciences, Online, May. 2021.

第 27 回スーパーコンピューティングコンテスト (SuperCon2021) 報告および 第 28 回スーパーコンピューティングコンテスト (SuperCon2022) 告知

大阪大学サイバーメディアセンター准教授 吉野 元

1. SuperCon2021

昨年 2021 年 8 月 23 日から 27 日までの 5 日間に 高校生・高専生を対象とする「スーパーコンピューテ ィングコンテスト(SuperCon2021)」が行われました。 一昨年は新型コロナ感染拡大のもと、本選そのもの が中止されましたが昨年は引き続きコロナ禍にあり ながらもオンラインにて本選を開催することができ ました。これに向けて予選が行われ、20 チームが予 選を通過しました。その結果は下記 HP に掲載され ております。通常は西日本の上位 10 チーム、東日本 の上位 10 チームを選抜し、それぞれ大阪大学(阪大) と東京工業大学(東工大)の会場に集まって本選が 開催されていました。しかし、オンライン開催であ るため東西区別なく上位 20 チームが本選に参加す る、ということになりました。

ここでは本選について説明いたします。このコン テストは、2名又は3名を1チームとする高校生・ 高専生の参加者たちが、与えられた課題を解くプロ グラムを3日間に渡って作成し、最終日にスーパー コンピュータで実行して、解答の正確さや計算の速 さを競うもので、そのレベルの高さから、別名「電 脳甲子園」とも呼ばれています。過去の出場者が大 学進学後に国際大学対抗プログラミングコンテスト で活躍するなど、次世代の情報科学を担う若手育成 にも貢献しており、2008年度の文部科学大臣賞も受 賞しています。

1995 年の第1回から 2005 年の第11回までは東京 工業大学(東工大)学術国際情報センター(Global Scientific Information and Computing Center:GSIC)の 単独主催でしたが、2006 年の第12回からは大阪大 学(阪大)(Cybermedia Center:CMC)も共同主催して います。予選に参加したチームの中から、富士川以 東 50Hz 地域からは10 チームが、60Hz 地域からは やはり10 チームが参加します。東工大と阪大の二つ の会場で同時に開催した年は、wikiやポリコムなど で相互に交流し、開会式・表彰式などもポリコムを使 って二元中継で行ってきました。このコンテストは 5 日間にも渡る合宿型で、実際にスーパーコンピュ ータを高校生・高専生が使うことができるという、世 界的にも大変ユニークなものです。原則として毎年 交互に両大学のスーパーコンピュータを使います。 2007、2011年は阪大 CMC の SX-8R が、2009年は SX-9 が、2015年、2017年は SX-ACE が使われまし た。2020年の本選では SQUID が用いられる予定で したが中止されました。その代わりに理化学研究所 のスーパーコンピュータ富嶽を使った臨時イベント (富嶽チャレンジ)が開催されました。これを機に、

理研もスーパーコンピューティングコンテストに参 画することになり、2021 年本戦では富嶽が用いられ ました。これまでのwiki、ポリコムに代わってdiscord、 slack が相互交流に使われ、開会式・表彰式、問題説 明、チュートリアルなどでは zoom が用いられまし た。

2. 予選

2021年の予選課題は6月2日に下記の SuperCon web に公表されました。この予選課題を解くプログ ラムを作成し、6月18日正午までにプログラムを含 む必要書類を添付してメールで申し込んでもらいま した。予選問題は、スーパーコンピュータを使わな くても学校や家庭にある普通のパソコンでも解ける ような課題が出題されます。2021年の予選課題は、 東工大の作成チームによる「マス目と到達可能性判 定問題」というものでした。これは障害物の置かれ た碁盤目の上を幾つかの基本動作の組み合わせで移 動してゆくロボットの設計に関する問題です。これ を含め、過去の予選課題、本選課題は SuperCon web に全て掲載されています。また、参加者が2名以上 集まらない人のために、希望者には「認定証」も発 行しています。予選課題を正確に解くプログラムが 書けたら、「SuperCon 1 級」が認定されます。問題の レベルに応じて 2 級と 3 級もあります。

3. 本選

本選の初日は開会式で参加チームの紹介、本選課 題の発表、攻略法の解説がありました。本選課題は 阪大の作成チームによる「感染症流行のネットワー ク解析」に関する問題でした。感染症の流行予測や 解析によく用いられる SIR 模型を使って、ランダム ネットワーク上の感染症の流行についてある種の予 測立て、その精度を競うというものです。実際の本 選では、課題に取り組む前に、富嶽スーパーコンピ ュータ、また OpenMP/MPI を用いた並列プログラミ ング関するオリエンテーションと講義が行われ、チ ームごとに本選課題を解くためのプログラム設計に 入りました。そして、本選2日目から4日目の午前 中まではチームごとにプログラムを作成しました。 大学生・大学院生、スタッフがチューターとしてバグ 取りなどを手伝いましたが、課題そのものに関する 助言はしません。最終日の成果発表会、表彰式の後 にはオンライン懇親会も行われました。本高校生・ 高専生の参加者たちと、両大学の教員、学生チュー ターたちが、プログラミングや大学について語らう 大切な時間となっています。

4. SuperCon 2022 の告知

2022年は8月22日(月)から26日(金)までの 5日間での開催を予定しています。新型コロナウィ ルス感染拡大予防のため、オンライン開催となりま す。予選課題は6/1日に公表、課題提出×切は6月 17日正午です。理化学研究所も主催者に加わり、使 用するスーパーコンピュータは、理化学研究所の富 岳の予定です。本年もチャレンジする高校生・高専 生、引率の先生方など参加者の皆さんに喜んでいた だけるよう様々な工夫を凝らそうと関係者一同考え ています。本稿が皆様のお目に触れるときには既に スケジュールが進行しているかもしれませんが、も しも可能ならば皆様もお知り合いの高校生に SuperCon2022 というものがあり、大変に楽しい行事 であることを呼びかけてください。また、来年以降、 すなわち SuperCon2023 以降への参加、お申し込みを ご検討頂ければ幸いです。

5. Web

http://www.gsic.titech.ac.jp/supercon/ がコンテスト ページです。ぜひ一度御覧ください。

大規模計算機システム利用者講習会等の紹介

大阪大学サイバーメディアセンター教授 降籏 大介

1. 概要

サイバーメディアセンターの教職員をはじめ、大 阪大学の大規模計算機システムの運営、開発、支援 に関わっている関係者は、システムをユーザにより 有効に活用していただくために何が出来るかを日々 考えています。たとえばその一端として、マニュア ル・ドキュメント類を充実させること、ユーザから の質問をメールなどで受け付け適切に返答するため の仕組みの構築と維持、それらを明文化するための FAQ の整備などの活動を行っています。

そうした活動の中でもわれわれが重要と考えてい るのが、ここで紹介する利用者講習会です。利用者 講習会は計算機ユーザへ知識を伝える場だというだ けでなく、その場での質問などを通じてユーザと直 接やりとり出来る場でもあり、大変貴重な機会です。 そのためしばしば、大規模計算機システムの運営・ 開発・管理・支援などを行っている関係者が立ち会 います。

これら講習会の内容は、OS である Unix 環境、 スーパーコンピュータのハードウェアについての概 要説明といった入門的内容から、大規模計算を行う 近年のユーザにとって重要な OpenMP, MPI, OpenACC などの並列計算通信プロトコルの概要か らこれらや GPU を上手に使いこなすための各種プ ログラミング技法の詳細、昨今のデータ志向型研究 へ対応可能な大阪大学のストレージシステム ONION の利用の仕方、スーパーコンピュータ上の コンテナ利用講習会、バッチシステムの講習会、そ して汎用第一原理計算プログラム OpenMX といった 各方面の専門家用の特殊なソフトウェア等々、多岐 にわたります。こうした内容はユーザの要望に沿っ て、計画されています。詳しくは次ページに掲載し ております表に掲載しておりますが、大規模計算機 の利用者だけではなく、学生、教員、研究者を幅広 く対象とし、年に 13~14 回開催しております (2021

年度は 19 回開催いたしました)。また、より詳細な 情報をサイバーメディアセンター大規模計算機シス テムの web において掲載しておりますので、ぜひご 参照ください。

2. 多忙な方も参加しやすく

近年、学生も研究者も大変に多忙です。これをう けて、サイバーメディアセンターの講習会は原則と して年に2回、ほぼ同じ内容の講習会を時期をずら して開催するように工夫しています。実際には、6 月後半と9月頭~12月頃に開催しています。これは、 「学期始まりや学期末の時期は外して欲しい」「あま り遅い時期では、学生の研究開始に間に合わない」 などのユーザの声を反映したもので、なるべく多く のユーザが参加できるように、また、講習会の受講 が意義あるものになるようにと配慮した結果です。 また、これまで現場での開催のみだった講習会にも 2019 年よりその一部についてオンライン配信を開 始し、ユーザがより参加しやすいような形へと拡張 しています。このようにオンライン配信を導入して いたため、コロナ禍の中ながら2021年も無事にすべ ての利用者講習会をオンラインにて実施することが できました。

また、OpenMX などの研究者用専門ソフトウェア の講習会では講師を確保しにくいという問題があり ますが、われわれは高度情報科学技術研究機構と協 力して講師を確保するなどして、こうした専門家向 けソフトウェアの講習会を開催しています。こうし た努力の甲斐あってか、これまでに各講習会ともに 一定数のユーザの参加をいただいており、講習会を ユーザの皆様に役立てていただいていると考えてい ます。

3. 初学者にも優しく

未参加の方にとって、こうした講習会は敷居が高 いと思われがちです。しかし、先に述べたように初 学者も講習会の対象で、2021 年の 19 回の講習会の うち、おおよそ 1/4 は初学者が対象の内容のもので す。

具体的には、OS である Unix の簡単な操作方法の 解説や、スーパーコンピュータのハードウェアの概 要説明、細かい技法の説明の前に必要となる並列計 算の概念の説明などからなります。スーパーコンピ ュータを使うユーザというと、こうした知識やプロ グラミング技法について通じた大変なプロフェッシ ョナルばかりと想像されることもありますが、もち ろんそれは違います。どなたも「最初は初心者」で す。そして、細かい技術についてのマニュアルは豊 富に見つかっても基礎的な概念や手法についてはな かなか良い資料・ドキュメント類が見つからないと いうことは珍しくないのです。

われわれサイバーメディアセンターでは、こうし た点を補い、より広い分野・方面の方にユーザとし てシステムを使ってもらうべく、常に初学者に優し くありたいと考え、講習会をこのような構成にして います。

4. プロフェッショナルな方も

もちろん、われわれは初学者ばかりでなくプロフ エッショナルなユーザへの支援も怠っておりません。 各種の専門的な内容について、多くの講習会を計画 し、そして実施しています。

大阪大学の誇る大規模計算機である SQUID と OCTOPUS を利用しての講習会、近年の並列計算プ ログラミングに必須である OpenMP や MPI につい ての講習会、GPU プログラミングに必要な OpenACC の講習会や SQUID に搭載されているベ クトルプロセッサ SX-Aurora TSUBASA の講習会、 CPU ノードにおける高速化技法の講習会、近代型 データストレージシステム ONION の講習会、そし て、汎用第一原理計算プログラム OpenMX の講習 会も行っています。また、一部の講習会は、無料配 布アカウントを用いて大規模計算機システムその ものを実際に使って行う実習形式をとっており、微 細な部分に至るまで具体的な体験を得られ、現実的 な議論を行うことが出来る機会としてもユーザの 皆様にご利用いただいております。

5. ぜひご参加され、そしてフィードバックを

講習会の情報については、われわれサイバーメデ ィアセンターの web

http://www.hpc.cmc.osaka-u.ac.jp/lecture_event/lecture/ にて常に公開しております。情報は随時更新してお りますので、ぜひ頻繁にご覧になり、ご興味のある 講習会に積極的にご参加ください。皆様のご参加を 常に歓迎いたします。

また、大規模計算機のハードウェア、ソフトウェ ア、そしてユーザの使い方といったものは日々変化 していくものです。上記に述べたように様々な工夫 や努力を通じて開催している講習会ではありますが、 こうした変化に合わせ、講習会のありかたも変化、 進歩していく必要があります。そして、それにはユ ーザの方々からいただく意見がなにより重要です。 そのフィードバックの先により良い講習会の実現が あるのです。ユーザの皆様におかれましては、遠慮 をせずに、いつでも構いませんので、講習会につい ての要望をぜひサイバーメディアセンターまでお聞 かせください。

2022 年度 大規模計算機システム利用講習会

	講習会名	開催日時	講師	開催場所
1	初めてのスパコン	5月23日 9月7日	サイバーメディアセンター 木戸 善之 招へい教授 情報基盤課 技術職員	オンライン開催
2	スパコンに通じる 並列プログラミングの基礎	5月30日 8月29日	サイバーメディアセンター 宮武 勇登 准教授	オンライン開催
3	OpenMP 入門	6月1日	サイバーメディアセンター 吉野 元 准教授	オンライン開催
4	並列プログラミング入門 (OpenMP/MPI)	6月16日 9月開催予定	日本電気(株)	オンライン開催
5	スーパーコンピュータ バッチシステム入門 / 応用	6月22日 9月開催予定	日本電気(株)	オンライン開催
6	ONION 活用講習会	6月23日	日本電気(株)	オンライン開催
7	SX-Aurora TSUBASA 高速化技法の基礎	6月27日 9月開催予定	日本電気(株)	オンライン開催
8	汎用 CPU ノード 高速化技法の 基礎(Intel コンパイラ)	7月22日 9月開催予定	エクセルソフト(株)	オンライン開催
9	GPU プログラミング入門 (OpenACC)	8月30日 9月開催予定	プロメテック・ ソフトウェア(株)	オンライン開催
10	コンテナ入門	9月開催予定	日本電気(株)	オンライン開催
11	GPU プログラミング実践	9月開催予定	プロメテック・ ソフトウェア(株)	オンライン開催
12	ONION-object 入門	9月開催予定	クラウディアン(株)	オンライン開催

◆受講者数(すべてオンラインで開催)

講習会名	申込者数	受講者数
スパコンに通じる並列プログラミングの基礎(6/14)	56	46
初めてのスパコン(6/18)	42	37
OpenMP 入門(7/19)	23	13
スーパーコンピュータ バッチシステム入門 / 応用(9/16)	17	17
GPU プログラミング入門(OpenACC)(10/6)	13	12
ベクトルプロセッサ 高速化技法の基礎(10/7)	4	3
並列プログラミング入門(OpenMP/MPI)(10/15)	9	7
コンテナ入門(10/21)	19	14
ONION 活用講習会(11/9)	20	20
スパコンに通じる並列プログラミングの基礎(11/19)	46	41
初めてのスパコン(11/26)	27	26
ONION-object 入門(12/2)	9	9
スーパーコンピュータ バッチシステム入門(12/3)	14	10
GPU プログラミング入門(OpenACC)(12/8)	23	17
SX-Aurora TSUBASA 高速化技法の基礎(12/9)	5	5
並列プログラミング入門(OpenMP/MPI)(12/10)	11	7
GPU プログラミング実践(OpenACC)(12/20)	16	10
汎用 CPU ノード 高速化技法の基礎(Intel コンパイラ)(1/14)	15	15
合計	369	309

◆講習会についてどのようにお知りになりましたか。(複数回答可)

◆開催日は適当でしたか。

◆講習会の時間は適当でしたか。

◆今回の講習会の音声はいいかがでしたか。

◆講習会の内容はどうでしたか。

◆講習会で取り扱った内容量はどうでしたか。

◆講師の進め方はどうでしたか。

◆満足度は?

◆講習会の資料はどうでしたか。

◆皆さんの今後の研究・業務・勉学に役立つと思いますか。

◆他の情報基盤センター等も含め、これまでにスーパーコンピュータを利用したことがありますか。

◆「ある」と回答された方の利用方法

◆サイバーメディアセンターの大規模計算機システムの利用を希望されますか。

2022 年度「HPCI(High Performance Computing Infrastructure)利用」の 活動状況

HPCI(High Performance Computing Infrastructure)システムは、個別の計算資源提供機関ごとに分断されがち な全国の幅広いハイパフォーマンスコンピューティング(HPC)ユーザ層が全国のHPCリソースを効率よく 利用できる体制と仕組みを整備し提供することを目的として構築され、2012年10月より運用開始しました。 北海道大学、東北大学、筑波大学、東京大学、東京工業大学、名古屋大学、京都大学、大阪大学、九州大学の 各情報基盤センター、及び理化学研究所、海洋研究開発機構、統計数理研究所が資源提供機関となり、計算 機資源や、共有ストレージ、ネットワーク、認証基盤、可視化装置等といったシステムを、中立・公正で科 学的・技術的・社会的根拠に基づき配分・提供しています。

本センターの計算機資源を利用する 2022 年度 HPCI 採択課題一覧

利用枠	利用資源	研究課題名
一般課題	SQUID	星形成と惑星形成分野を横断する大規模数値シミュレーション
一般課題	OCTOPUS	安全・安心を目指した大型観光バスの換気設計とウィルスの高効率排除
一般課題	SQUID	航空機用エンジン燃焼器流れラージ・エディ・シミュレーションの実証
一般課題	SQUID	Gradient flow による物理点 QCD の熱力学
一般課題	SQUID	活動銀河核フィードバックと宇宙の化学汚染
一般課題	SQUID	水中 Tetra-PEG ゲルの負のエネルギー弾性と粘弾性の分子論的解明
一般課題	OCTOPUS	シクロデキストリン系架橋高分子がもつ分子吸収特性の網羅的探索と材料設計への展開
若手課題	SQUID	添加分子の官能基に着目したインスリン解離の共溶媒自由エネルギー解析
若手課題	SQUID	Direct numerical simulations of turbulence of non-Newtonian fluids
産業課題	SQUID	分子動力学計算によるイオン液体/電極界面近傍の CO2 溶解特性評価
産業課題	SQUID	うつ病の診断・治療に向けた 4D 脳機能画像 Deep Learning 解析
「富岳」 一般課題	SQUID	局所シュレーディンガー方程式法に基づく原子・分子の精密量子化学計算
「富岳」 一般課題	SQUID	メソスケールの境界潤滑摩擦における焼付きシミュレーションモデル開発と その高速化、およびマルチスケール化
「富岳」 若手課題	SQUID	OpenFOAM を用いた高ウェーバー数の大型気泡群流れの大規模数数値計算
「富岳」 産業課題	SQUID	3段多孔穴を用いた調節弁のエロ―ジョン抑制に関する研究

2022 年度「学際大規模情報基盤共同利用・共同研究拠点」の活動状況

「学際大規模情報基盤共同利用・共同研究拠点」は、北海道大学、東北大学、東京大学、東京工業大学、 名古屋大学、京都大学、大阪大学、九州大学にそれぞれ附置するスーパーコンピュータを持つ8つの共同利 用の施設を構成拠点とし、東京大学情報基盤センターがその中核拠点として機能する「ネットワーク型」共 同利用・共同研究拠点として、文部科学省の認可を受け、平成22年4月より本格的に活動を開始しました。

本ネットワーク型拠点の目的は、超大規模計算機と大容量のストレージおよびネットワークなどの情報基 盤を用いて、地球環境、エネルギー、物質材料、ゲノム情報、Web データ、学術情報、センサーネットワー クからの時系列データ、映像データ、プログラム解析、その他情報処理一般の分野における、これまでに解 決や解明が極めて困難とされてきた、いわゆるグランドチャレンジ的な問題について、学際的な共同利用・ 共同研究を実施することにより、我が国の学術・研究基盤の更なる高度化と恒常的な発展に資することにあ ります。本ネットワーク型拠点には上記の分野における多数の先導的研究者が在籍しており、これらの研究 者との共同研究によって、研究テーマの一層の発展が期待できます。

2022 年度の課題募集には合計 63 課題が採択されました。このうち以下の 12 課題が本センターと共同研究 することになっています。

課題代表者	研究課題名	
鈴木 恒雄	Dirac 流モノポールによる QCD のカラー閉じ込め機構のモンテ・カルロ研究	
(大阪大学)		
横田 理央		
(東京工業大学)	Hierarchical low-rank approximation methods on distributed memory and GPUs	
飯田 圭	高密度領域まで適用可能なモンテカルロ法の開発と有限密度2カラーQCD	
(高知大学)	の相図の決定	
関口 宗男	按了 OOD に トスカノニュ 対称姓し マカニ 内眼乙酰基化己酸 構の研究	
(国士舘大学)	格子 QCD によるガイ ノル対称性とヘガノー中间子員重生成機構の研究	
滝沢 寛之	よいた。間、市地にトマ子あれ到笠次近相供に間小マ町空	
(東北大学)	センター同連携による朱軟な計算貨源旋浜に関する研究	
岩崎 昌子	老姑了她祖母母歌。 。你你我没到了这田田安	
(大阪市立大学)	素粒于物理子夫練への機械子首の適用研究	
下川 隆史	十相博マプリケーションの言姓始わ宇田的マクセラレーク社内モン	
(東京大学)	入規模ノブリケーションの間性能な美用的ノクセブレータ対応十伝	
萩田 克美	CDUI並列計算に上て京八乙材料でいる。レーションの宣連化技法の検討	
(防衛大学校)	GPU並列計算による同分丁材料ポンミュレーションの同座化技法の検討	
村田 健史	HPC と高速通信技術の融合による大規模データの拠点間転送技術開発と	
(情報通信研究機構)	実データを用いたシステム実証試験	
村田忠彦	Arthロプロジェクト, …れたたてへrthロデータベーフの建筑	
(関西大学)	「「放入ロノロジェクト:mdx による「放入ロケータパースの構築	
森田 尭	CT 両進し深屋学羽な田いた島故博士しの形能学的亦用の可担化し発目	
(大阪大学)	C1 四豚C休僧子百を用いた 同俗 保本工の 形態子 的 変 共の 可 祝 化 と 光 見	
杉木 章義	※世代学術信報其般に向けた其般ソフトウェアの実味的わ研究,問惑,認知	
(北海道大学)	び 単氏子 前 目 報 密 益 に 回 け に 密 益 ノ ノ ド リ エ ノ 切 天 域 时 な 朝 九 ・ 開 光 ・ 計 恤	

2021 年度 大規模計算機システム公募型利用制度(追加募集)の活動状況

大阪大学サイバーメディアセンターでは、大規模計算機システムを活用する研究開発の育成・高度化支援 の観点から、本センターが参画する「ネットワーク型」学際大規模情報基盤共同利用・共同研究拠点(JHPCN) や革新的ハイパフォーマンス・コンピューティング・インフラ(HPCI)の目的を踏まえつつ、今後の発展が 見込まれる萌芽的な研究課題や本センターの大規模計算機システムを最大限活用することで成果が見込まれ る研究課題を公募しています。2021年度は通常の募集に加えて追加募集を行い、以下の3課題を採択しまし た。

若手·女性研究者支援萌芽枠 採択課題

代表者名	研究課題名
兼安 洋乃 様	Ginzburg-Landau 理論に基づいた数値シミュレーションによる
(兵庫県立大学 理学研究科)	超伝導の磁場依存性の研究
大塚 高弘 様 (大阪大学 理学研究科)	テンソルネットワークを用いた多体系の統計力学的研究
森田 尭 様	画像と深層学習を用いた骨格標本上の
(大阪大学 産業科学研究所)	形態学的変異の可視化と発見

2022 年度 大規模計算機システム公募型利用制度の活動状況

2022 年度も引き続き研究課題の公募を行い、以下の10課題を採択しました。

若手·女性研究者支援萌芽枠 採択課題

代表者名	研究課題名
山口 雅也 様 (大阪大学 歯学研究科)	レンサ球菌の大規模ゲノム情報解析による病原因子の探索
吉田 賢市 様 (京都大学 理学研究科)	原子核密度汎関数法によるエキゾチック原子核の 集団励起モードの系統的記述:中性子ドリップ線近傍核から 超重核の統一的理解へ向けて
齋川 賢一 様	ストリングから生成されるアクシオン暗黒物質の
(金沢大学 理工研究域)	スペクトルの解析
肥喜里 志門 様	薬用低分子構造に着目したインスリン解離における
(大阪大学 基礎工学研究科)	共溶媒和自由エネルギー解析
周 靖得 様	異なる並列計算機システム間において連成計算可能な
(京都大学 情報学研究科)	フレームワークの研究開発
高棹 真介 様	磁気流体シミュレーションによる原始星への
(大阪大学 理学研究科)	質量・磁場降着過程の研究
中谷 祐介 様 (大阪大学 工学研究科)	瀬戸内海における外洋起源有機物の動態解析
Anas Santria 様	Interaction between the Photo-excited π System and the f System in
(大阪大学 理学研究科)	Rare-earth-based Macrocyclic Ligand Complexes

大規模 HPC 支援枠 採択課題

代表者名	研究課題名
村上 匡且 様	メガテスラ磁気再結合による極超高エネルギー粒子加速の
(大阪大学 レーザー科学研究所)	3次元シミュレーション

人工知能研究特設支援枠 採択課題

代表者名	研究課題名
白川 岳 様 (吹田徳洲会病院)	心臓大血管手術における術前評価や術者トレーニングに 応用可能な3次元臓器形状を得るためのディープラーニングを 用いた医療画像セグメンテーションの可能性

大規模計算機システム Q&A

当センターに寄せられた質問を掲載しております。 同じ内容を以下の Web ページでも閲覧いただけます。 http://www.hpc.cmc.osaka-u.ac.jp/faq/

Q. 年度途中で計算資源やストレージ容量の追加は可能でしょうか?

A. はい。可能です。資源追加の申請につきましては、以下の利用者管理 WEB システムから申請頂いております。

利用者管理システム(要認証) https://manage.hpc.cmc.osaka-u.ac.jp/saibed/

申請手順につきましては、以下のページにまとめておりますので、ご参照ください。

一般利用(学術利用)資源追加申請 http://www.hpc.cmc.osaka-u.ac.jp/service/basic_resourceadd/

Q. 年度途中で利用負担金の支払い費目や支払い時期を変更できますか?

A. WEB システムからは変更できませんので、下記までご連絡ください。
 大阪大学 情報推進部 情報基盤課 研究系システム班
 Mail: <u>system@cmc.osaka-u.ac.jp</u>
 TEL: 06-6879-8808

Q. ディスク容量を追加した場合、利用期限はいつまでですか?

A. 年度途中に申し込まれた場合でも、利用期限は年度末までとなります。翌年度にディスク容量を追加しない場合は、データの整理を3月中にお願いいたします。やむを得ない事情がある場合や、間に合わない場合は、ご連絡くださいませ。原則として、事前連絡無しにこちらでデータを削除することはありません。

Q. ユーザ間でファイルを転送することは可能でしょうか?

A. scp コマンドを使用することで可能です。

例えば、カレントディレクトリ下の abc ディレクトリの中のファイル sample.c を、b61234 のホームデ ィレクトリに転送する場合は以下のようなコマンドとなります。

scp ./abc/sample.c b61234@localhost:

Q. 一度に大量のジョブを投入し、ジョブごとに入力ファイル/実行ファイルを変更したい

A. ファイル名に連続した数値が含まれている場合、パラメトリックジョブという投入方法で、一度に大量のジョブを投入できます。 パラメトリックジョブでは、ジョブスクリプト内の"\$PBS_SUBREQNO"環境変数に、-t で指定した数値(下)

記の例では1から5までの数値)が格納されます。qsub すると同時に5本のジョブが投入され、a.out に対してそれぞれ異なる入力ファイル(下記の例では input1 から input5)が設定されます。

ジョブスクリプト例(jobscript.sh)

#PBS -q OCTOPUS
#PBS -l elapstim_req=0:30:00,cpunum_job=24
cd \$PBS_O_WORKDIR
./a.out input\$PBS_SUBREQNO

投入方法

qsub -t 1-5 jobscript.sh

qstatの表示例:パラメトリックジョブの場合、1回の qsub につき1件分の表示となります

 RequestID
 ReqName
 UserName
 Queue
 Pri
 STT
 S
 Memory
 CPU
 Elapse
 R
 H
 Jobs

 ----- ---- ---- ---- ---- ---- ---- ----

 123456[].oct
 nqs
 username
 OC1C
 0
 QUE
 Y
 Y
 1

sstat の表示例:-t で指定した数値分だけ表示されます

RequestID	Reql	Name UserNar	ne Queue	Pri	STT PlannedStartTime	
123456[1].oct	nqs	username	OC1C	0.5002/	0.5002 QUE -	
123456[2].oct	nqs	username	OC1C	0.5002/	0.5002 QUE -	
123456[3].oct	nqs	username	OC1C	0.5002/	0.5002 QUE -	
123456[4].oct	nqs	username	OC1C	0.5002/	0.5002 QUE -	
123456[5].oct	nqs	username	OC1C	0.5002/	0.5002 QUE -	
						/

Q. 機種変更/紛失/何らかの問題で SQUID の2 段階認証ができなくなった

A. 2 段階認証のリセットには管理者の操作が必要となりますので、お問い合わせフォームからお知らせく ださい。その際、氏名、利用者番号、メールアドレスは登録時のものを記入してください。2 段階認証 のリセット時にパスワードもあわせて初期化いたしますので、予めご了承ください。

お問い合わせフォーム http://www.hpc.cmc.osaka-u.ac.jp/support/contact/auto form/

利用規程等

・規程関係

大阪大学サイバーメディアセンター大規模計算機システム利用規程 ・・・・・・・・・・・・	77
大阪大学サイバーメディアセンター大規模計算機システム利用負担額一覧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
大阪大学サイバーメディアセンター大規模計算機システム試用制度利用内規・・・・・・・・・	81

・附表

大規模計算機システム	ホスト一覧 ・・・・・	82
スーパーコンピュータ	ジョブクラス一覧 ・・・・・	82
2021年度大規模計算機ジ	/ステム稼働状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85

・規程関係

大阪大学サイバーメディアセンター大規模計算機 システム利用規程

- 第1条 この規程は、大阪大学サイバーメディアセンター(以下 「センター」という。)が管理・運用する全国共同利用のスー パーコンピュータシステム及びワークステーションシステム (以下「大規模計算機システム」という。)の利用に関し必要な 事項を定めるものとする。
- 第2条 大規模計算機システムは、学術研究及び教育等のため に利用することができるものとする。
- 第3条 大規模計算機システムを利用することのできる者は、 次の各号のいずれかに該当する者とする。
- (1)大学、短期大学、高等専門学校又は大学共同利用機関の教員(非常勤講師を含む。)及びこれに準ずる者
- (2) 大学院の学生及びこれに準ずる者
- (3) 学術研究及び学術振興を目的とする国又は地方公共団体が 所轄する機関に所属し、専ら研究に従事する者
- (4) 学術研究及び学術振興を目的とする機関(前号に該当する 機関を除く。)で、センターの長(以下「センター長」という。)が認めた機関に所属し、専ら研究に従事する者
- (5) 科学研究費補助金の交付を受けて学術研究を行う者
- (6)第1号、第3号又は第4号の者が所属する機関との共同研究に参画している民間企業等に所属し、専から研究に従事する者
- (7)日本国内に法人格を有する民間企業等に所属する者(前号に該当する者を除く。)で、別に定める審査に基づきセンター長が認めた者
- (8) 前各号のほか、特にセンター長が適当と認めた者
- 第4条 大規模計算機システムを利用しようとする者は、所定 の申請を行い、センター長の承認を受けなければならない。 ただし、前条第6条の者は、この限りでない。
- 2 前項の申請は、大規模計算機システム利用の成果が公開で きるものでなければならない。
- 第5条 センター長は、前条第1項による申請を受理し、適当 と認めたときは、これを承認し、利用者番号を与えるものと する。
- 2 前項の利用者番号の有効期間は、1年以内とする。ただし、 当該会計年度を超えることはできない。
- 第6条 大規模計算機システムの利用につき承認された者(以下「利用者」という。)は、申請書の記載内容に変更を生じた 場合は、速やかに所定の手続きを行わなければならない。
- 第7条 利用者は、第5条第1項に規定する利用者番号を当該 申請に係る目的以外に使用し、又は他人に使用させてはなら ない。
- 第8条 利用者は、当該申請に係る利用を終了又は中止したと きは、速やかにその旨をセンター長に届け出るとともに、そ

の利用の結果又は経過を所定の報告書によりセンター長に報告しなければならない。

- 2 前項の規定にかかわらず、センター長が必要と認めた場合 は、報告書の提出を求めることができる。
- 3 提出された報告書は、原則として公開とし、センターの広報等の用に供することができるものとする。ただし、利用者があらかじめ申し出たときは、3年を超えない範囲で公開の延期を認めることがある。
- 第9条 利用者は、研究の成果を論文等により公表するときは、 当該論文等に大規模計算機システムを利用した旨を明記しな ければならない。
- 第10条 利用者は、当該利用に係る経費の一部を負担しなけ ればならない。
- 第11条 前条の利用経費の負担額は、国立大学法人大阪大学 諸料金規則に定めるところによる。
- 第12条 前条の規定にかかわらず、次の各号に掲げる場合に ついては、利用経費の負担を要しない。
- (1) センターの責に帰すべき誤計算があったとき。
- (2) センターが必要とする研究開発等のため、センター長が特に承認したとき。
- 第13条 利用経費の負担は、次の各号に掲げる方法によるものとする。
- (1) 学内経費(科学研究費補助金を除く。)の場合にあっては、 当該予算の振替による。
- (2)前号以外の場合にあっては、本学が発する請求書の指定す る銀行口座への振込による。
- 第14条 センターは、利用者が大規模計算機システムを利用 したことにより被った損害その他の大規模計算機システムに 関連して被った損害について、一切の責任及び負担を負わな い。
- 第15条 センターは、大規模計算機システムの障害その他や むを得ない事情があるときは、利用者への予告なしに大規模 計算機システムを停止することができる。
- 第16条 センター長は、この規程又はこの規程に基づく定め に違反した者その他大規模計算機システムの運営に重大な支 障を生じさせた者があるときは、利用の承認を取り消し、又 は一定期間大規模計算機システムの利用を停止させることが ある。
- 第17条 この規程に定めるもののほか、大規模計算機システ ムの利用に関し必要な事項は、センター長が定める。
- 附 則
- 1 この規程は、平成12年4月1日から施行する。
- 2 大阪大学大型計算機センターの利用に関する暫定措置を定 める規程(昭和43年9月18日制定)は、廃止する。
- 3 この規程施行前に大阪大学大型計算機センターの利用に関 する暫定措置を定める規程に基づき、平成12年度の利用承

認を受けた利用者にあっては、この規程に基づき利用の登録 があったものとみなす。 附 則 この改正は、平成13年1月6日から施行する。 附 則 この改正は、平成13年4月1日から施行する。 附 則 この改正は、平成14年4月1日から施行する。 附 則 この改正は、平成14年6月19日から施行し、 平成14年4月1日から適用する。 附 則 この改正は、平成15年4月1日から施行する。 附 則 この改正は、平成16年4月1日から施行する。 附 則 この改正は、平成18年2月15日から施行する。 附 則 この改正は、平成19年9月28日から施行する。 附 則 この改正は、平成20年4月16日から施行する。 附 則 この改正は、平成23年4月1日から施行する。 附 則 この改正は、平成24年5月10日から施行する。

国立大学法人大阪大学諸料金規則 別表第17

大阪大学サイバーメディアセンター大規模計算機システム利用規程第11条の規定に基づく負担額

(1) OCTOPUSの負担額 (A) 占有

)占有	
基本負担額	占有ノード数
191,000円/年	汎用CPUノード群 1ノード
793,000円/年	GPUノード群 1ノード
154,000円/年	XeonPhiノード群 1ノード

(B)共有

	基本負担額	OCTOPUSポイント
	10万円	1,000 ポイント
7-7	50万円	5,250 ポイント
- //	100万円	11,000 ポイント
	300万円	34,500 ポイント
	500万円	60,000 ポイント

(C)ディスク容量追加

计分位重定加	
基本負担額	提供単位
2,000円/年	1TB

備考

- 1 負担額は上記負担額で算出した合計額に、消費税(10%)を加えて得た額とする。 ただし、産業利用成果非公開型の負担額は、上記負担額で算出した合計額に5を乗じ、 消費税(10%)を加えて得た額とする。
- 2 登録時の利用期限または年度を越えて利用はできない。
- 3 ディスク容量は1申請単位で3TBを割り当てる。ただし、他のディスク容量と合算できない。
- 4 (A)は占有ノード数を追加する場合のみ変更申請を受け付ける。
- 5 (A)の2ノード以上の基本負担額は、1ノードを基準に比例するものとする。
- 6 (A)は資源提供状況により10ノード以上3か月単位の申請を受け付ける場合がある。 その場合の月額の負担額は、1ノード年の基本負担額の1/10とする。
- 7 (B)は年度の途中でコースの変更はできない。新たにコースを追加する場合は申請を受け付ける。
- 8 計算ノードの利用に使用するOCTOPUSポイントは、使用したノード時間に対して以下の消費係数および季節 係数を乗じたものとする。季節係数は前年の利用状況等を鑑み、0を超える1以下の値を設定する。

ノード群	消費係数	季節係数
汎用CPUノード群	0.0520	
GPUノード群	0.2173	大規模計算機システム
XeonPhiノード群	0.0418	WEBページに記載
大容量主記憶搭載ノード群	0.3703	

9 (C)は年度の途中は追加申請のみ受け付ける。

10 (C)は1つの申請グループにつき、500TBの追加を上限とする。

(2)SQUIDの負担額

(A<u>)占有</u>

基本負担額	占有ノード数
575,000円/年	汎用CPUノード群 1ノード
3,516,000円/年	GPUノード群 1ノード
2,168,000円/年	ベクトルノード群 1ノード

(B)共有

2 1 1 4		
コース	基本負担額	SQUIDポイント
	10万円	1,000 ポイント
	50万円	5,250 ポイント
	100万円	11,000 ポイント
	300万円	34,500 ポイント
	500万円	60,000 ポイント

(C)ストレージ容量追加

基本負担額	提供単位
2,000円/年	HDD 1TB
5,000円/年	SSD 1TB

備考

- 1 負担額は上記負担額で算出した合計額に、消費税(10%)を加えて得た額とする。 ただし、産業利用成果非公開型の負担額は、上記負担額で算出した合計額に5を乗じ、 消費税(10%)を加えて得た額とする。
- 2 登録時の利用期限または年度を越えて利用はできない。
- 3 ストレージ容量は1申請単位でHDD 5TBを割り当てる。ただし、他のストレージ容量と合算できない。
- 4 (A)は占有ノード数を追加する場合のみ変更申請を受け付ける。
- 5 (A)の2ノード以上の基本負担額は、1ノードを基準に比例するものとする。
- 6 (A)は資源提供状況により3か月単位の申請を受け付ける場合がある。 その場合の月額の負担額は、1ノード年の基本負担額の1/10とする。
- 7 (B)は年度の途中でコースの変更はできない。新たにコースを追加する場合は申請を受け付ける。
- 8 計算ノードの利用に使用するSQUIDポイントは、使用したノード時間に対して以下の消費係数および季節係数 を乗じたものとする。季節係数は前年の利用状況等を鑑み、0を超える1以下の値を設定する。

ノード群		消費係数	禾篮区粉	
/ □ □ □ □ □ □	高優先度	通常優先度	シェア	子即休奴
汎用CPUノード群	0.1873	0.1499	0.1124	十田博士管地シフテレ
GPUノード群	1.1467	0.9174	0.6881	八尻侯司 昇機シハノム WEBページに記載
ベクトルノード群	0.7070	0.5656	0.4242	

9 (C)は年度の途中は追加申請のみ受け付ける。

10 (C)は1つの申請グループにつき、HDD 500TB、SSD 10TBの追加を上限とする。

(3) ONION(オブジェクトストレージ)の負担額

基本負担額	提供単位
12,000 円/年	1TB

備考

年度の途中は追加申請のみ受け付ける。

大阪大学サイバーメディアセンター大規模計算機 システム試用制度利用内規

- 第1条 この内規は、大阪大学サイバーメディアセンター(以下「センター」という。)が管理運用する全国共同利用のスーパーコンピュータシステム(以下「大規模計算機システム」という。)の試用制度を利用するための必要な事項を定める。
- 第2条 試用制度は、初めてセンターの大規模計算機システム を利用する者(以下「利用者」という。)に一定の期間利用さ せることによって、利用者の研究活動における大規模計算機シ ステムの有用性を確認できるようにすることを目的とする。
- 第3条 試用制度を利用することができる者は、大阪大学サイ バーメディアセンター大規模計算機システム利用規程第3条 に該当する者とする。
- 第4条 利用者は所定の申請手続きを行い、センター長の承認 を得なければならない。
- 第5条 センター長は、前条の申請について適当と認めた場合 は、利用者番号を与えて承認するものとする。
- 第6条 利用者の有効期間は初めて利用する計算機資源毎に3 ヶ月間とする。ただし、当該会計年度を超えることはできない ものとする。
- 2 利用有効期間内は別に定める資源量上限まで計算機資源毎 に利用できるものとする。資源量上限を超えた場合は、利用 を停止するものとする。
- 3 利用有効期間を超えた場合は、利用を停止するものとする。
- 第7条 利用者は、第5条に規定する利用者番号を当該申請に 係る目的以外に使用し、又は他人に使用させてはならない。
- 第8条 センター長は、この内規に違反した場合、もしくは氏 名等を偽り利用した場合、その他大規模計算機システムの運営 に重大な支障を生ぜしめた場合には、当該利用の承認を取り消 すことがある。

```
附則

この内規は、平成12年11月30日から施行し、平成12年

4月1日から適用する。

附則

この改正は、平成13年1月6日から施行する。

附則

この改正は、平成14年4月1日から施行する。

附則

この改正は、平成16年4月1日から施行する。

附則

この改正は、平成18年4月1日から施行する。

附則

この改正は、平成19年1月5日から施行する。

附則

この改正は、平成19年9月28日から施行する。
```

附 則

- この改正は、平成24年4月1日から施行する。 附則
- この改正は、平成28年4月1日から施行する。 附 則
- この改正は、平成30年11月1日から施行し、平成30年4
- 月1日から適用する。

附 則

この改正は、令和3年8月1日から施行する。

・附表

大規模計算機システム ホストー覧

サーバ名	ホスト名
ログインサーバ (SQUID)	squidhpc.hpc.cmc.osaka-u.ac.jp
ログインサーバ (OCTOPUS)	octopus.hpc.cmc.osaka-u.ac.jp

※スーパーコンピュータなどの演算システムへは、ログインサーバ経由での接続となります。 (ホストー覧表には明記していません)

スーパーコンピュータ ジョブクラス一覧

<SQUID>

汎用 CPU ノード群

利用方法	ジョブ クラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用可能ノード数	備考
共有利用	SQUID	24 時間	38,912 Core (76Core×512 ノード)	124 TB (248GB×512 ノード)	512ノード	
	SQUID-R	24 時間	38,912 Core (76Core×512 ノード)	124 TB (248GB×512 ノード)	512ノード	₩1
	SQUID-H	24 時間	38,912 Core (76Core×512 ノード)	124 TB (248GB×512 ノード)	512 ノード	*2
	SQUID-S	24 時間	38 Core (76Core×0.5 ノード)	124 GB (248GB×0.5 ノード)	0.5 ノード	₩3
	DBG	10 分	152 Core (76Core×2 ノード)	496 GB (248GB×2 ノード)	2ノード	
	INTC	10 分	152 Core (76Core×2 ノード)	496 GB (248GB×2 ノード)	2ノード	
占有利用	mySQUID	無制限	76Core×占有ノード数	248GB×占有ノード数	占有ノード数	

※1. クラスタを跨ぐ(相互接続網の帯域が狭い経路の)割当を許容するキュー。実行待ち時間が短縮される場合がある。

※2. 高優先度のため実行待ち時間が短縮されるが、ポイントの消費が大きくなる。

※3. 他のジョブとの1ノード内での資源共有を許容するキュー。ポイント消費が小さくなるが、他のジョブの影響を受ける可能性がある。

GPUノード群

利用方法	ジョブ クラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用 可能ノード数	備考
	SQUID	24 時間	2,432 Core (76Core×32 ノード)	15.75 TB (504GB×32 ノード)	512 ノード	
共有利用	SQUID-H	24 時間	2,432 Core (76Core×32 ノード)	15.75 TB (504GB×32 ノード)	512 ノード	×1
	SQUID-S	24 時間	38 Core (76Core×0.5 ノード)	252 GB (504GB×0.5 ノード)	0.5 ノード	×2
	DBG	10 分	152 Core (76Core×2 ノード)	1,008 GB (504GB×2 ノード)	2ノード	
	INTC	10 分	152 Core (76Core×2 ノード)	1,008 GB (504GB×2 ノード)	2ノード	
占有利用	mySQUID	無制限	76Core×占有ノード数	504GB×占有ノード数	占有ノード数	

※1. 高優先度のため実行待ち時間が短縮されるが、ポイントの消費が大きくなる。

※2. 他のジョブとの1ノード内での資源共有を許容するキュー。ポイント消費が小さくなるが、他のジョブの影響を受ける可能性がある。

ベクトルノード群

利用方法	ジョブ クラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用 可能 VE 数	備考
	SQUID	24 時間	2,560 Core (10Core×256VE)	12 TB (48GB×256VE)	256VE	
共有利用	SQUID-H	24 時間	2,560 Core (10Core×256VE)	12 TB (48GB×256VE)	256VE	×1
	SQUID-S	24 時間	40 Core (10Core×4VE)	192 GB (48GB×4VE)	0.5 ノード	*2
	DBG	10 分	40 Core (10Core×4VE)	192 GB (48GB×4VE)	0.5 ノード	
	INTC	10 分	40 Core (10Core×4VE)	192 GB (48GB×4VE)	0.5 ノード	
占有利用	mySQUID	無制限	10Core×占有 VE 数	48GB×占有 VE 数	占有 VE 数	

※1. 高優先度のため実行待ち時間が短縮されるが、ポイントの消費が大きくなる。

※2. 他のジョブとの1ノード内での資源共有を許容するキュー。ポイント消費が小さくなるが、他のジョブの影響を受ける可能性がある。

<0CTOPUS>

汎用 CPU ノード群

利用方法	ジョブクラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能 最大メモリ	同時利用 可能ノード数
共有利用	OCTOPUS	120 時間	3,072 Core (24Core×128 ノード)	23,680 GB (185GB×128 ノード)	128 ノード
	DBG	10分	24 Core	185 GB	1ノード
占有利用	myOCTOPUS	無制限	24Core×占有ノード数	185GB×占有ノード数	占有ノード数

GPUノード群

利用方法	ジョブクラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用 可能ノード数
十右利田	OCTOPUS	120 時間	768 Core (24Core×32 ノード)	6,080 GB (185GB×32 ノード)	32 ノード
共有利用	DBG	10分	24 Core	185 GB	1ノード
占有利用	myOCTOPUS	無制限	24Core×占有ノード数	185GB×占有ノード数	占有ノード数

Xeon Phi ノード群

利用方法	ジョブクラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用 可能ノード数
共有利用	OCTPHI	120 時間	2,048 Core (64Core×32 ノード)	6,080 GB (185GB×32 ノード)	32 ノード
占有利用	myOCTPHI	無制限	24Core×占有ノード数	185GB×占有ノード数	占有ノード数

大容量主記憶搭載ノード群

利用方法	ジョブクラス	利用可能 経過時間	利用可能 最大 Core 数	利用可能メモリ	同時利用 可能ノード数
共有利用	OCTMEM	120 時間	256 Core (128Core×2 ノード)	12TB (6TB×2 ノード)	2ノード

2021 年度大規模計算機システム稼働状況

稼働状況

																(単位:時間)
事	「項	月	4	5	6	7	8	9	10	11	12	1	2	3	合計	月平均
稼動	計算サービス	時間 (A1)	614:00	744:00	720:00	744:00	744:00	720:00	744:00	720:00	744:00	689:00	696:00	732:00	8611:00	717:35
時間	初期化•後処	理時間 (A2)	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00
[日]	業務時間	引 (A3)	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00
(A)	小		614:00	744:00	720:00	744:00	744:00	720:00	744:00	720:00	744:00	689:00	696:00	732:00	8611:00	717:35
侟	、守 時 間	(B)	106:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	55:00	0:00	12:00	173:00	14:25
お	(障時間	(C)	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00
そ	の他の時間	(D)	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00
通	転時間	(A+B+C+D)	720:00	744:00	720:00	744:00	744:00	720:00	744:00	720:00	744:00	744:00	696:00	744:00	8784:00	732:00
移	『動率 (A/(A+B+C+D)%)	85.28	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	92.61	100.00	98.39		98.02
運	重転日数	(E)	30	31	30	31	31	30	31	30	31	31	28	31	365	30
_	·日平均稼動時	f間 (A/E)	20:28	24:00	24:00	24:00	24:00	24:00	24:00	24:00	24:00	22:13	24:51	23:36		23:35

処理状況

		SQI	JID		OCTOPUS		
	共有	 有利用	占有利用	<u> 柔川田 太(0/)</u>	共社	 有利用	ポリ田本(0/)
処理月	ジョブ件数	CPU時間(時)	CPU時間(時)	利用举(%)	ジョブ件数	CPU時間(時)	利用举(%)
4月	-	-	-	-	8,087	165,708	84.6%
5月	15,462	209,500	-	21.3%	9,621	217,116	91.6%
6月	55,794	508,102	-	86.8%	5,608	206,605	90.0%
7月	63,818	762,797	-	82.9%	8,605	212,083	89.4%
8月	42,104	338,127	1,908	67.5%	7,850	221,024	93.1%
9月	73,898	301,179	2,532	71.7%	15,103	208,694	90.9%
10月	112,219	531,840	6,373	74.8%	30,832	220,960	93.1%
11月	177,934	560,982	8,640	84.9%	28,392	184,486	80.4%
12月	177,934	560,982	8,928	70.7%	163,456	186,028	78.8%
1月	77,390	682,607	7,980	63.8%	30,555	183,388	80.3%
2月	319,739	584,984	7,706	73.3%	20,762	193,820	90.5%
3月	246,104	508,662	8,700	79.7%	13,361	193,825	81.7%
合計	1,362,396	5,549,764	52,767	-	342,232	2,393,737	-

 ⁽注)利用率は、次の計算式により算出している。
 SQUIDの利用率 = (SQUID の ノード時間積/稼働中ノードの合計サービス時間)*100
 OCTOPUSの利用率 = (OCTOPUS のノード時間積/稼働中ノードの合計サービス時間)*100

募 集

大規模計算機システムを利用して行った研究・開発等の記事の募集について・・・・・・	•••• 89
大規模計算機システム利用案内(サービス内容・サービス時間等)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• 90

大規模計算機システムを利用して行った研究・開発等の記事の募集について

センターでは、大規模計算機システムを利用して研究したことを主体とする内容の 広報誌「サイバーメディア HPC ジャーナル」を発行しています。この広報誌に掲載 する次の内容の記事を募集しますので、皆さんのご投稿をお待ちしています。

- 1. 随筆
- 2. 大規模計算機システムを利用して行った研究・開発の紹介
- 3. プログラムの実例と解説
- 4. その他、広報誌に掲載するにふさわしいもの

*投稿いただいた方には、掲載した広報誌5部を進呈いたします。

【原稿の執筆および提出方法】

1. 原稿の執筆は、以下の書式設定で作成をお願いします。

- ページ設定 (Microsoft Word2010 の設定です。)
 - ・用紙サイズ A4 縦
 - ・1ページの文字数と行数:行数 40、行送り 18.2 pt、1 頁 2 段書き
 - ・フォント 本文 MS 明朝 10 pt 題名 MS ゴシック 14 pt、半角英数 Times New Roman 執筆者氏名 MS 明朝 10 pt、なお、姓と名の間及び機関と研究科と専攻名の間は 半角スペースを入れる。
 - ・余白
 上 20mm、下 20mm、左右 20mm、印刷形式:標準
 - ・その他 セクションの開始位置:次のページから開始
 用紙の端からの距離:ヘッダ 15mm、フッタ 17.5mm
 垂直方向の配置:上寄せ
 - ・文字等の設定
 - ・年は西暦で記述する。
 - ・数字、英字は半角(書式: Times New Roman)、数字英字を括弧で閉じる場合は、括弧も同様に 半角
 - ・文字、漢字は全角、文字漢字を括弧で閉じる場合は、括弧も同様に全角
 - ・日本語文中の句読点は半角の",""."を使用せず、全て全角の"、""。"とする。
- 2. Microsoft Word 以外の日本語ワープロソフト及び、その他の文書作成ソフトで作成された原稿を投稿される場合は、PDF ファイルに変換してください。
- 3. 原稿は、電子メールにて以下のアドレスにお送りください。
 - zyosui-kikaku-soumu@office.osaka-u.ac.jp

なお、送信の際、件名を「HPC ジャーナル原稿」と入力くださるよう、お願いします。

4. 電子メールの容量が 35MB を超える場合は、CD-R 等の電子媒体に記録のうえ、以下の送付先にお送 りください。

【原稿の送付先】

 $\overline{7}$ 5 6 7 - 0 0 4 7

大阪府茨木市美穂ヶ丘5-1 大阪大学情報推進部情報企画課総務係

【注意事項】

- 1. お送りいただいた原稿を掲載する際、原稿の修正をお願いすることがありますのでご了承ください。
- 2. 提出いただいた原稿は、サイバーメディアセンターのホームページにて公開いたしますので、ご了承 ください。

大規模計算機システム利用案内(サービス内容・サービス時間等)

・サービス内容

ナなみ、ビフ内安	反,声效比效	開館時間			
主なサービス内谷	が・理裕元寺	月~金	土・日・祝休日		
センター見学の申込、広報	情報推進部情報企画課 総務係(本館1F) 電話 06-6879-8805 zyosui-kikaku-soumu@office.osaka- u.ac.jp				
利用負担金に係る会計事務(請求及び収納)	情報推進部情報企画課 会計係(本館1F) 電話 06-6879-8980,8981 zyosui-kikaku-kaikei@office.osaka-u.ac.jp	8:30~12:00	閉		
利用案内、受付 利用案内、利用申請、利用負担金、 利用講習会受付、 計算機マニュアルの閲覧	情報推進部情報基盤課 研究系システム班(本館1F) 電話 06-6879-8808,8812 system@cmc.osaka-u.ac.jp	13:00~17:15	館		
利用方法の問い合わせ スーパーコンピュータ、PCクラスタ等の 利用方法	情報推進部情報基盤課 研究系システム班(本館1F) 電話 06-6879-8812,8813 system@cmc.osaka-u.ac.jp				

・サービス時間

スーパーコンピュータ、PCクラスタ等	オンラインサービス 24時間365日(注)	

(注)障害の発生等により、予告なしにサービスを中止することがあります。計画停電・定期保守によりサービスを停止する場合は、ホームページでお知らせします。

・大規模計算機システムURL

大規模計算機システムホームページ	http://www.hpc.cmc.osaka-u.ac.jp/
大規模計算機システムポータル	OCTOPUS
(スーパーコンピュータ等についての情報を提供	https://portal.hpc.cmc.osaka-u.ac.jp/portal/
しています。マニュアルの閲覧、稼働状況の表示、	SQUID
利用実績の確認等が行えます。)	https://squidportal.hpc.cmc.osaka-u.ac.jp/portal/

・利用相談

プログラム、センターの利用に関する 管理・相談	利用相談を電子メールで受付けます。 E-mail: system@cmc.osaka-u.ac.jp
具问 仰欧	に質問・相談をお寄せください。
	※お問い合わせの際には、利用者番号をお申し出ください。

(お願い)

サイバーメディア HPC ジャーナルは、本センター利用者(利用登録者)の皆様に配布しています。お近くの研究者・大学 院生の方にも、本冊子をご回覧くださるようお願い申し上げます。

大阪大学サイバーメディアHPCジャーナル No. 12 2022年9月発行

.....

編集 : 大阪大学サイバーメディアセンター

発行 : 大阪府茨木市美穂ヶ丘 5-1 (〒567-0047) 大阪大学サイバーメディアセンター Cybermedia Center, Osaka University Tel: 06-6879-8805 URL: https://www.hpc.cmc.osaka-u.ac.jp/

印刷 : 阪東印刷紙器工業所

表紙デザイン:阿部 浩和(大阪大学)

ISSN 2186-473X

大規模計算機システムホームページ http://www.hpc.cmc.osaka-u.ac.jp/j/