Origin of the nucleation preference of coherent and semicoherent nanoprecipitates in AI-Cu alloys based on atomistically informed classical nucleation theory

Department of Mechanical Science and Bioengineering, Osaka university				
		g Liao, Yujie Jia, Yangen Li, Shihao Zhang, Ho Fanshun Meng, Junping Du, Shuhei Shinzato, S		
Purpose	Identify the energetics of preferential nucleation of precipitates in AI-Cu alloys for clarifying the optimal conditions for the formation of precipitates that effectively contribute to hardening.			
Outline	In this study, using classical nucleation theory (CNT) along with a recently developed machine-learning- based interatomic potential with near first-principles accuracy, we characterized the nucleation preference of coherent Guinier-Preston (GP) zones and semicoherent θ' nanoprecipitates in Al–Cu alloys at various temperatures and solute concentrations.			
Results	perature and barriers of the temperature alternates a	tically informed CNT model revealed the overall tem d solute-concentration dependencies of the nucleation he nanoprecipitates, which determine the crossover es at which the ease of formation of each precipitate at the solute concentration of interest. The predicted and agreement with the previous experimental observation		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Computing system:		SQUID General Purpose CPU nodes		

300

200

0.5

٥

2

1.5

1

Concentration (at.%Cu)

2.5

node-hour memory used parallelize

1500 node-hour/job 20 GB 1 nodes