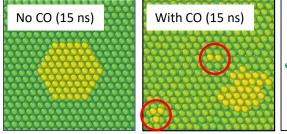
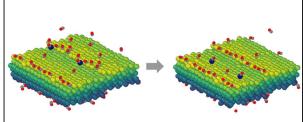
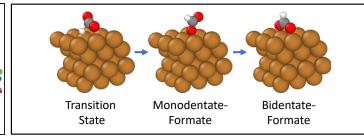
The Elucidation of Non-equilibrium States of Heterogenous Catalysis by Data-driven Multiscale Simulation: A Case Study of Methanol Synthesis

Graduate School of Engineering, Osaka University Harry H. Halim, Ryo Ueda, Yuki Yamada

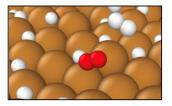

Purpose

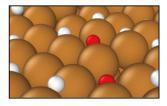

Elucidating non-equilibrium states of the interaction between CO_2 , CO, and H_2 gases with Cu catalyst (i.e., early stage of methanol synthesis)


Outline

Molecular Dynamics simulation driven by machine learning potential (MLP) is used to observe and measure atomistic events during non-equilibrium states. MLP is built based on first-principles data generated by active learning scheme.

Result




CO induces the formation of small Cu clusters

CO helps the detachment of single adatom

Non-equilibrium states of CO₂ hydrogenation

Computing system: node-hour memory used parallelize SQUID General Purpose CPU and GPU nodes 55,920 node-hours (CPU), 2500 node-hours (GPU) 1 TB 1 node

Explicit splitting and recombination of H₂ on Cu(111)