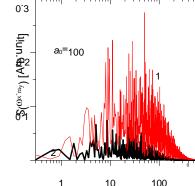
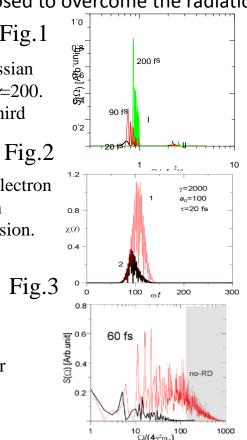
Radiation Reaction Effects in Cascade Scattering of Intense, Tightly Focused Laser Pulses by Relativistic Electrons. Classical approach. A. Zhidkov

Photon Pioneers Center, Osaka University


I have made the calculation of electron motion in a strong counter-propagating laser pulse including the radiation damping and spectral analysis of electron radiation in the classical approach using 6-orde Runge-Kutta method. A booster scheme is proposed to overcome the radiation friction. Fig.1

Computers	SX8
Run	600 hours
Memory	30 GB


Fig.4

Spectra of backward scattering ($\theta=\pi$) in the two pulse scheme ; both pulses have $a_0=100$, $\tau=10$ fs the scattered pulse is focused in $w_0=5$ µm, the driving pulse is a plane wave. Spectra of backward scattering at $a_0=1$ for Gaussian pulses 20, 90, and 200 fs; head-on collision at $\gamma=200$. (I) are the fundamental harmonics, (II)- the third harmonics. Radiation damping is included.

Time evolution of the quantum parameter for an electron γ =2000 with and without the radiation damping in a 20 fs Gaussian pulse with a_0 =100; head-on collision.

Spectra of backward scattering with $a_0=200$ Gaussian pulses of 60 fs for a head-on collision, $\gamma=700$,

