

大阪大学 情報推進部 情報基盤課

本日のプログラム

I. システムのご紹介

- II. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

SX-ACE

NEC製のベクトル型スーパーコンピュータ

	ノード毎	1クラスタ (512ノード)	総合 (3クラスタ)
CPU数	1	512	1536
コア数	4	2048	6144
演算性能	276GFLOPS	141TFLOPS	423TFLOPS
ベクトル 性能	256GFLOPS	131TFLOPS	393TFLOPS
主記憶容量	64GB	32TB	96TB

VCC(大規模可視化対応PCクラスタ)

NEC製のスカラ型クラスタシステム GPU計算や可視化装置との連動が可能

	1ノード	総合 (62ノード)
CPU数	2	124
コア数	20	1240
演算性能	400GFlops	24.8Tflops
主記憶 容量	64GB	3.968TB

HCC(汎用コンクラスタ)

NEC製のスカラ型クラスタシステム 学生用の端末PCとしても使用している

	豊中地区		吹田地区		箕面地区	
	1ノー ド	総合 (268 ノード)	1ノード	総合 (169 ノード)	1ノード	総合 (138 ノード)
CPU数	2	536	2	338	2	276
演算性能	28.8 GFLOP S	7.7 TFLOPS	28.8 GFLOPS	4.9 TFLOPS	28.8 GFLOPS	4.0 TFLOPS
主記憶容	4GB	1.1TB	4/12GB	1.2TB	4GB	0.6TB
ノード数	268ノード		169ノード		138,	ノード
全ノード 数	575ノード					

フロントエンド端末

プログラムのコンパイルや計算結果の確認を行う ための作業用端末

フロントエンド端末から各計算機に対して 処理の実行を指示 ※詳細は後述

計算機自体へのログインは原則禁止(一部例外有)

本日のプログラム

I. システムのご紹介II. 利用方法の解説・実習

- i. システムへの接続
- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入

III. 利用を希望する方へ

利用方法の解説・実習

本項では初心者を対象に

大規模計算機システムの利用方法を解説します

途中、実習も行います

配布したアカウントは講習会後もしばらく利用可能 ご自宅からでもシステムに接続できます

本日のプログラム

I. システムのご紹介

II. 利用方法の解説・実習

- i. システムへの接続
- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入

III. 利用を希望する方へ

ログインはSSH (Secure Shell)接続 Win: TeraTermなど, Mac: ターミナルを使用

接続先は login.hpc.cmc.osaka-u.ac.jp 【参考】ファイル転送はSFTP接続

接続先は ftp.hpc.cmc.osaka-u.ac.jp

本日のプログラム

I. システムのご紹介

II. 利用方法の解説・実習

i. システムへの接続

- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入

III. 利用を希望する方へ

プログラムの作成

計算機を利用するために、まずプログラム を作成する必要があります 今回はプログラムを用意しました

当センターの計算機で使用可能な言語 Fortran言語、C言語、C++言語

> 「プログラムの書き方」については 特に説明しません

コンパイル

プログラムを「機械が実行できる形式」に 変換すること

コンパイルの種類

セルフコンパイル コンパイルした環境と同じ環境で実行

クロスコンパイル

コンパイルした環境とは別の環境で実行

当センターでは「クロスコンパイル」を使用

コンパイルの方法

コンパイルを行う際のコマンド

	Fortran言語	C言語	C++言語
SXクロスコンパイラ (SX-ACE用)	sxf90	SX	C++
Intelコンパイラ (HCC,VCC用)	ifort	icc	icpc

コマンド例(SX-ACE用Fortranプログラム) \$ <mark>sxf90</mark> program.f →実行形式ファイル「a.out」が生成

コンパイルオプション

コンパイル時にオプションを指定することで 様々な機能を使用することが可能 \$ sxf90 program.f -option

オプションの一例 -o [filename]:実行形式のファイル名を指定 指定しない場合は「a.out」が出力

-Rn: 翻訳リスト出力 (nには0~5を指定) 最適化等によるプログラムの変形内容を出力

-ftrace: 簡易性能解析機能 ジョブスクリプトに"setenv F_FTRACE YES "の指定が必要 プログラム実行後に解析ファイルを出力

コンパイルオプション(参考)

オプションの一例

-P [suboption]: 並列化オプション

並列化処理を使用する場合に指定 suboptionには、auto、openmp、multi等を指定可能

-C [suboption]: 最適化オプション

ベクトル化、最適化のレベル指定 suboptionには、hopt、vopt、vsafe、ssafe、debugを指定可能

> 詳しい解説は下記の講習会にて行います SX-ACE 高速化技法の基礎 日時: 2015年6月18日(木) 13:00~16:00

> > 残席わずか!

演習1 (コンパイル)

1. 演習用プログラムを取得してください

(例) \$ <u>cp /sc/cmc/apl/kousyu/20150616/sample.f ~/</u>

- 2. sample.f をSX用にコンパイルしてください (例) \$ <u>sxf90 -o sx.out sample.f</u>
- 3. sample.f をHCC,VCC用にコンパイルしてく ださい
- (例) \$ ifort -o pcc.out sample.f

※文字入力時は [Tab]キーでの補完機能を活用してください

本日のプログラム

I. システムのご紹介

II. 利用方法の解説・実習

- i. システムへの接続
- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

計算機の利用方法

会話型(インタラクティブ利用) コマンド等を通してコンピュータに直接命令し、 リアルタイムで処理を実行

操作として手軽

一括処理型(バッチ利用) コンピュータにまとめて処理を命令し実行 処理の命令が終われば、ログアウトしてもOK

会話型

原則として利用不可 旧SXでは会話型が利用可能だった →**SX-ACEでは利用不可**

ただし会話型風に一括処理利用する機能はあり

フロントエンド端末での計算実行も禁止

基本的に「一括処理型」で利用

一括処理型

処理を「ジョブスクリプト」に記述

スクリプトに基づき計算機が処理を実行

ジョブスクリプト

ジョブスクリプトの構成

リソースや環境設定:#PBSから始まるNQSオプション スパコンに実行させる処理の記述:シェルスクリプト

ジョブスクリプトの例

リソース、環境設定の指定

NQSIIオプション(以下)でリソースや環境の設定を行う

オプション	説明	
#PBS -q	ジョブクラスを指定し、計算に使用する計算機やリソースを指定する	→ ぶ 須
#PBS -I	使用する資源値	
	memsz_job : 1ノードあたりのメモリ量	
	elapstim_req : ジョブの経過時間	
	cpunum_job : 1ノード当たりのCPU数	
#PBS -m	計算の処理状態に変化が起きたときメール通知を行う	
	a : ジョブが異常終了したとき	
	b : ジョブが開始したとき	
	e : ジョブが終了したとき	
#PBS -M	メールの通知先アドレスを指定する	
#PBS -v	環境変数の指定(setenvではなくこちらを使うことを推奨する)	
#PBS -T	MPI 実行時に指定	
	mpisx : MPI/SX 利用時	
	intmpi : IntelMPI 利用時	

ジョブクラス一覧(SX-ACE)

使用する計算機、リソースはジョブクラスで指定 NQSIIオプション「#PBS -q」の後に続けて記述

ジョブクラス	利用可能 経過時間	利用可能 最大Core数	利用可能 メモリ	同時利用可能 ノード数
ACE	24時間	1024Core (4Core×256ノード)	1.5TB (60GB×256ノード)	256ノード
DBG	20分	32Core (4Core×8ノード)	480GB (60GB×8ノード)	8ノード

ジョブクラス一覧(HCC)

ジョブクラス	利用可能 経過時間	利用可能 CPU数	利用可能 メモリ	同時利用 可能ノード数
H-single	最大300時間 程度	2CPU (2CPU×1ノード)	4GB (4GB×1ノード)	1ノード
H-small	最大300時間 程度	32CPU (2CPU×16ノード)	64GB (4GB×16ノード)	2~16ノード
H-large	最大300時間 程度	128CPU (2CPU×64ノード)	256GB (4GB×64ノード)	17~64ノード
H-mem+	最大300時間 程度	64CPU (2CPU×32ノード)	384GB (12GB×32ノード)	1~32ノード
Gaussian	最大300時間 程度	2CPU (2CPU×1ノード)	4GB (4GB×1ノード)	1ノード

ジョブクラス一覧(VCC)

ジョブクラス	利用可能 経過時間	利用可能最大 Core数	利用可能 メモリ	同時利用 可能ノード数
VCC	120時間	640Core (20Core×32ノード)	1920GB (60GB×32ノード)	32ノード
VCC	336時間	40Core (20Core×2ノード)	120GB (60GB×2ノード)	2ノード
GVC (GPU利用)	120時間	180Core (20Core×9ノード)	540GB (60GB×9ノード)	9ノード

実行させる処理の記述

ファイルやディレクトリの実行・操作を記述 記述方法はシェルスクリプト

よく使用するNQSII 用の環境変数 **\$PBS_O_WORKDIR**:ジョブ投入時のディレクトリが設定される

標準出力/標準エラー出力の容量制限 ⇒ SX-ACE: 30MB、VCC:10MB、HCC:10MB ⇒ これ以上出力したい場合はリダイレクション(>)を利用

処理の記述の最終行に改行を入れること! ⇒ 未入力の場合、その行のコマンドが実行されない

ジョブスクリプト解説

演習2(ジョブスクリプト)

1. 演習用スクリプトを取得してください

(例) \$ <u>cp /sc/cmc/apl/kousyu/20150616/sample.nqs ~/</u>

- 2. sample.nqsを元にSX-ACE用のジョブスク リプトを作成してください
- (例) \$ <u>cp sample.nqs sx.nqs</u>

\$ emacs sx.nqs -nw

ジョブクラスは**DBG**を使用してください エディタはviもしくはemacsが利用可能です

本日のプログラム

I. システムのご紹介

II. 利用方法の解説・実習

- i. システムへの接続
- ii. プログラムの作成・コンパイル
- iii. ジョブスクリプトの作成
- iv. ジョブスクリプトの投入
- III. 利用を希望する方へ

ジョブスクリプトは**ジョブスケジューラ**が受け付ける ジョブスケジューラが各計算機にジョブの実行を指示

スケジューラとは

あらかじめ管理者によって設定された資源割当ポリシーに 従い、ジョブを計算資源に割り当てる

クラスタを構成する計算機(ノード)の静的情報※を把握 ※ディスク容量、メモリ容量、CPU性能、etc ノード毎の資源使用率を定期的に監視、管理 ユーザより実行したいジョブ要求を受信 ジョブを実行するのに適切なノードを選定 ジョブ実行に伴う入出力データのファイル転送

スケジューラとは

当センターではバックフィル型を採用

ジョブの実行開始時間のマップを作成する

マップに載れば、実行開始時間と経過時間が保障される

実行中は指定したリソースを占有して割当てる

スケジューラのイメージ

ジョブが実行を開始する時間

ジョブの投入方法

フロントエンド端末からジョブを投入

\$ qsub [ジョブスクリプトファイル]

(参考) 特殊な投入方法

リクエスト連携: 順番通りにジョブを実行したい場合に利用

\$ qsub [JobScript1] [JobScript2] • • •

※順番無く複数のジョブを同時に投入する場合は

上記のようにしないよう注意

投入済みジョブの確認方法

ジョブの状態を確認することが可能 ^{コマンド} \$ qstat

投入済みジョブの確認方法

ジョブの予約状況の確認することが可能 ^{コマンド} \$ sstat

投入済みジョブの操作方法

ジョブのキャンセル ^{コマンド} \$ qdel [RequestID]

実行結果

\$ qdel 12345.cmc

Request 12345.cmc was deleted.

実行結果の確認方法

実行結果や実行エラーは指定しない限り「標準出力」となる

標準出力は**ジョブスクリプト名.oリクエストID** 標準エラー出力は**ジョブスクリプト名.eリクエストID** というファイル名で自動出力される

catやlessコマンドでファイルの内容を出力し確認

\$ cat nqs.o12345

※リダイレクション(./a.out > result.txt)を使った場合は、そちらも確認

意図通りの結果が表示されていれば計算は成功

演習3(ジョブスクリプトの投入)

- 1. 作成したジョブスクリプトを使用してジョブを投入 \$ <u>qsub sx.nqs</u>
- 2. 投入したジョブの状態を確認
 \$ <u>sstat</u>
 \$ <u>qstat</u>
- 3. 結果ファイルの確認 \$ <u>cat sx.nqs.o12345</u>
 - \$ <u>cat sx.nqs.e12345</u>

早く終わった方はVCCやHCCにもジョブを投入してみましょう

より高度な利用に向けて

利用の参考になるWebページ

サイバーメディアセンター 大規模計算機システム Webページ

http://www.hpc.cmc.osaka-u.ac.jp/system/manual/

利用方法

http://www.hpc.cmc.osaka-u.ac.jp/system/manual/

FAQ

http://www.hpc.cmc.osaka-u.ac.jp/faq/

お問い合わせ

<u>http://www.hpc.cmc.osaka-u.ac.jp/support/contact/auto_form/</u> 研究成果

http://www.hpc.cmc.osaka-u.ac.jp/researchlist/

より高度な利用に向けて

本日以降に実施予定の講習会

講習会名	日時	場所
SX-ACE高速化技法の基礎	6月18日(木) 13:00 - 16:00	サイバーメディアセンター 吹田本館 2階小会議室
並列コンピュータ高速化技法の基礎	6月23日(火) 13:00 - 16:00	サイバーメディアセンター 吹田本館 2階小会議室
SX-ACE並列プログラミング入門(MPI)	6月25日(木) 10:00 - 16:00	サイバーメディアセンター 吹田本館 2階小会議室
SX-ACE並列プログラミング入門(HPF)	6月30日(火) 13:00 - 16:00	サイバーメディアセンター 吹田本館 2階小会議室

9月頃にも同様の講習会を開催します!

本日のプログラム

I. システムのご紹介

- II. 利用方法の解説・実習
 - i. システムへの接続
 - ii. プログラムの作成・コンパイル
 - iii. ジョブスクリプトの作成
 - iv. ジョブスクリプトの投入

III. 利用を希望する方へ

利用を希望する方へ

大規模計算機システムの利用申請は 随時受け付け中です!

申請は年度単位(4月から翌年3月まで)です 申請方法は下記をご覧ください

http://www.hpc.cmc.osaka-u.ac.jp/service/shinsei/application/

大規模計算機システムに関するご質問は 大阪大学 情報推進部 情報基盤課 研究系システム班 system@cmc.osaka-u.ac.jp

までお気軽にご連絡ください!