
大規模計算機システム 利用講習会

スーパーコンピュータ利用入門

大阪大学 サイバーメディアセンター

大規模計算研究部門

吉野 元

yoshino@cmc.osaka-u.ac.jp

2

参考資料

「大規模計算機システム 利用講習会

スーパーコンピュータ利用入門 (2013年9月10日)」

大阪大学 サイバーメディアセンター

大阪大学 情報推進部 情報基盤課 研究系システム班

3

目 次

• UNIX環境を利用するための基礎知識

4

UNIX 環境を利用するための基礎知識

(1) ssh loginとlogoutをやってみる
(2) ファイルシステムの階層構造を探検
(3) 簡単なファイル操作を試す
(4) Emacs はじめの一歩
(5) 標準入出力、シェルスクリプト

5

UNIX (Linux)の利用

• ログインして利用する

– リモートマシンを利用する場合

• sshプロトコルが使えるアプリケーションを利用
– TeraTerm など(Windows)
– terminal (Mac, Linux)

• 終了時はログアウトする %logout

○ SSH
ユーザー端末

Linuxマシン

（ログインサーバ）

5

次の例は、ユーザ名v6a022で接続する例です。
% ssh login.hpc.cmc.osaka-u.ac.jp –l v6a022

6

UNIX (Linux)の利用

• ファイルの転送
• プロトコルが使えるアプリケーションを利用

– TeraTerm など(Windows)
– terminal (Mac, Linux)

○ SCP
ユーザー端末

Linuxマシン

（ログインサーバ）

6

次の例は、ローカルマシンにあるファイル”foo”を
ユーザ名v6a022のホームディレクトリに転送する例です
% scp foo v6a022@login.hpc.cmc.osaka-u.ac.jp :~/

逆の操作は
% scp v6a022@login.hpc.cmc.osaka-u.ac.jp :~/foo .

7

UNIX (Linux)とシェル

• UNIX (Linux)のバージョン

– 開発過程などの違いからさまざまなバージョ
ンがある

• Redhat, CentOS, SUSE, Debian, Ubuntsu, Fedora,
Vine Linux, ….

• シェル (Shell)
– 利用者はシェル上でコマンドを実行する

– シェルのバージョン

• csh, tcsh, bash, ….

7

コマンドラインでwhoを実行してみる。
コマンドラインでps auxを実行してみる。

8

UNIX
• 1968～69年頃にアメリカAT&T社のベル研究所で
開発されたオペレーティングシステム（OS）
– C言語で記述される

• マルチタスク

– 複数のジョブをほぼ同時に実行可能

• マルチユーザ

– 複数のユーザで同時に利用可能

• ネットワーク

– ネットワーク機能が充実

8

9

ディレクトリ・ファイルの構造

• ディレクトリ構造 ： Windowsと同様の階層構造

• UNIX 環境での違い

– 全てがルートディレクトリの下に展開

– １つのディスクドライブがルートに割り当て

– 他のディスクドライブはいずれかのディレクトリに割り当て

– 統一的に管理･運用が可能

9

Windowsでは、ツリー構造が

各ディスクドライブの下に広がる

ルートディレクトリ

user1のホームディレクトリ

ファイル

/

home

user1 user2

dir1
file1

file2 file3

コマンドラインで
pwdコマンドを実行

10

特別なディレクトリ

• ホームディレクトリ

– UNIX：そこから下位層は個人用となるディレクトリ

– Windows：特に存在しない
• 敢えてあげるならデスクトップ、マイドキュメント

• 環境変数HOMEで指定すれば利用可能

• ルートディレクトリ

– 単に「/」（スラッシュ）だけで表現

– 最上位の場合のみ該当

• それ以外では「/」は別の意味を持つ

10

Unixコマンドを使ってファイルシステムの階層構造を探検！

11

特別なディレクトリ

• その他のディレクトリ

– カレントディレクトリ(current directory)：現在いるディレク
トリ

• 作業ディレクトリ(working directory)とも呼ぶ

– 親ディレクトリ：
カレントディレクトリの１つ上のディレクトリ

• ディレクトリの表記方法

– / ： ルートディレクトリ

– ~/ ： ユーザのホームディレクトリ

– ./ ： カレントディレクトリ

– ../ ： 親ディレクトリ

11

12

パス

• パスとは

– あるディレクトリやファイルが
ディレクトリツリーのどこにあるかという情報

• UNIXでの記述方法

– / → home → user1 ⇒ /home/user1
– 先頭以外の「/」は階層の区切りを示す

• （参考） Windowsでの記述方法

– C: → Windows → Task ⇒ C:¥Windows¥Task
– 欧米環境だと「￥」は「 ＼ 」

12

13

パスの種類

• 絶対パス

– ルート（Windowsだとドライブ名）からのパス表現

• UNIX ：「/」から始まる

• Windows ：「C:¥」 等から始まる

– カレントディレクトリに左右されず一意に決定

– 下の方の階層になるとパスが長くなる

• 相対パス

– カレントディレクトリを基準としたパス表現

• ディレクトリ名、「./」や「../」から始まる

– 下の方の階層でも短いパスで記述が可能

– カレントディレクトリが変わると基本的に使えない

13

14

パスの使い分け

• 一般的な基準

– 絶対パス：必ず特定のディレクトリやファイルを指定したい場合
に利用

– 相対パス：ユーザの個人作業で利用
⇔ ホームディレクトリ以下での作業 等

• 表現例（アカウント user1 の場合）

– 絶対パス： /home/user1/program/samples/source.f90
– /home/user1/program にいる時の相対パス

• ./samples/source.f90
• samples/source.f90
• ~/program/samples/Lesson001.txt

14

15

UNIX コマンド

• コマンドとは
– ユーザがキーボードなどで特定の文字列を入力して

コンピュータに与える命令のこと

– 記述は１行（入力後は必ずEnterキーを押す）

– 実行結果は文字列で返ってくる

– 引数やオプションを付ける場合もある

– % command [オプション] [引数]

• 引数（argument）とは
– 命令に対する目的語

• オプションとは
– コマンドの働きをいろいろと修飾する

– 一般にコマンドの後に「-[文字]」の形で記述する 15

16

主なUNIXコマンド

• ファイル操作コマンド

– ls： ファイル・ディレクトリの一覧表示

– cd： 作業ディレクトリを引数で指定したディレクトリに移動

– mkdir： ディレクトリの作成

– rm： ファイルの削除

– cp： ファイルのコピー

– mv： ファイルの名称変更・移動

• ファイル閲覧コマンド

– cat : ファイル内容を表示

– more : ファイルの内容をページごとに表示

– less : moreの高機能版

16

17

ls
• 概要

– ファイル・ディレクトリの一覧表示

– list の略

– ディレクトリ移動後は基本的に最初に実行

• 引数

– 一覧を表示したいディレクトリへのパス

– 省略時はカレントディレクトリの一覧を表示

• 通常はこちらの形式で利用

17

18

ls
• 主要なオプション

– -l ： 詳細情報(long format)
– -a ： 隠しファイル（ . で始まるファイル名）も表示(all)
– -t ： タイムスタンプでソート(time)
– -F ： ファイルとディレクトリを区別して表示(File)
– -r ： 逆順にソートして表示(reverse)
– -R ： 下方のディレクトリ内も再帰的に表示(Recursive)
– -h : -lオプションと共に用いるとファイルの大きさの表記がわかりや

すくなる

• 利用方法
– 複数のオプションはまとめて記述

– よく使われる形式

• ls -l, ls -a, ls -ltr, ls -lR

18

ファイルの所有者、権限、大きさ など

19

cd
• 概要

– 作業ディレクトリを引数で指定したディレクトリに移
動

– change directory の略

• 引数

– 絶対パス・相対パスのどちらも利用可能

– 省略するとhomeに戻る

• パス情報に関するコマンド

– pwd：カレントディレクトリの絶対パスを表示

19

20

mkdir
• 概要

– ディレクトリの作成

– make directory の略

• 引数

– 作成したいディレクトリの名前

• 類似コマンド

– rmdir：ディレクトリの削除（後述）

– touch：空のファイルを作成

20

21

rm
• 概要

– ファイルの削除

– remove の略

– 削除されたファイルを元に戻すことは不可能

• 引数

– 削除するファイル名(複数指定可能)
– ワイルドカード「*」の利用が可能

• 「*」以外が一致するファイルは全て処理対象

– 例1：a*.txt ⇒ a1.txt, a123.txt, abc.txt, …
– 例2：* ⇒ そのディレクトリにある全てのファイル

21

22

rm

• 主要なオプション
– -i：ファイルの削除前に問い合わせる

• 「yes」か「y」を入力しなければ削除しない

– -f：警告せずに削除

– -r：ディレクトリごとファイルを削除
⇔ ディレクトリの削除コマンド：rmdir

・ディレクトリの中が空の場合のみ利用可能

– -v：処理内容を表示

• 利用例
– rm hoge ：ファイルhoge を削除

– rm -vi hoge ：ファイルを削除してよいかの確認があり、結果も表示

– rm hoge* ：hoge で始まるファイルをすべて削除

– rm -rf hoge ：ディレクトリhoge 以下のすべてのファイルと

ディレクトリを削除

22

23

cp
• 概要

– ファイルのコピー

– copy の略

– ディレクトリにも利用可能

• 引数

– 引数は２つ指定

– 第一引数：コピー元のファイル名

– 第二引数：コピー先のファイル名

23

24

cp
• 応用

– ディレクトリのコピー
• 実行時に「-r」オプションを付ける

• 中のファイルごとコピーされる

• 第二引数はディレクトリ名

– 第一引数のファイル名にワイルドカードを利用
• 複数のファイルを一度にコピーできる

• 第二引数はディレクトリ名

⇒ コピー先のファイルは元ファイルと同じ名前

24

25

mv

• 概要

– ファイルの名称変更・移動

– move の略

• 引数

– 引数は２つ指定

– 第一引数：処理対象のファイル名

– 第二引数：記述する形式によって動作が変化

25

26

mv
• 第二引数

– ファイル名 ⇒ その名前に変更
• mv hoge hogehoge

⇒ hoge というファイル名を hogehoge に変更

– ディレクトリ名 ⇒ そのディレクトリに移動
• mv hoge dir/

⇒ ファイル hoge をディレクトリ dir の下に移動

– ディレクトリ名であることを明示するために
後ろに「/」を付ける

– パス付きでファイル名を指定すれば両方を同時実行

26

27

cat

• 概要

– ファイルの内容を出力（表示）

– catenate（連結する）から

• 本来はファイルを連結する操作

• 例

– % cat hoge1
– % cat hoge1 hoge2 >hoge3

27

28

more

• 概要

– ファイル内容をページ（画面）単位で表示

• 操作

– SPACE: 1ページ（画面）進む

– Enter: 1行だけ進む

– q: 終了

– / : 下方向への検索

• n: 同じ検索を繰り返す

28

29

less
• 概要

– moreの高機能版

– ページを戻ったり進んだりできる

• 操作

– moreの操作コマンドに加えて

– f: 1ページ（画面）進む

– b: 1ページ（画面）戻る

– g: ファイル先頭へ移動

– G: ファイル末尾へ移動

– 数字n+操作コマンド: n回の操作コマンドを実施する

29

30

tar
• 概要

– 多くのファイル(ディレクトリを含んでも良い)を一つのアーカ
イブにまとめる

– アーカイブを展開

• 操作

まとめ方

tar –cf archive.tar foo1 foo2 foo3

展開の仕方

tar –tvf archive.tar

30

31

作業環境

• 効率的に作業を行うために

– 各作業ごとにディレクトリを分ける

• ディレクトリが違えば同じ名前のファイルを作成可能

– 文字列補完

• [Tab]キーを使って入力している文字列を補完できる

– ヒストリ機能

• [↑]や[↓]で以前に入力したコマンドを呼び出せる（ctl-pやctl-nも可）

– コマンド「cp」の利用

• 編集前に対象ファイルのコピーを作成し、

バックアップを取る習慣を付けておく方がよい

31

32

標準入出力、リダイレクション、
シェルスクリプト

33

1. 標準入力=キーボード、標準出力=ディスプレイ、標準エラー=ディスプレイ
(例) %pwd コマンドを実行すると結果は標準出力(画面)に表示される。

2. リダイレクション(redirection)によって標準入出力を変更できる。またパイプ(pipe)は
標準出力を標準入力につなぐ。

(例) %pwd > foo
%date >> foo
% who | sort

3. コマンドを並べてゆくとスクリプト(script)ができる。
(例) %cat foo.scrpt

#!/bin/sh (シェルスクリプトの場合)
cal
echo “today =” `date`

emacs で編集し、chmod u+xで実行可能にする。

34

エディタ Emacsの基本的な使い方

エディタ Emacs の基本的な使い方 (1)

1. emacs起動 ターミナルでemacsコマンド

2. ファイルを開く cntl-x cntl-f ファイル名

3. 文字入力 Hello World とタイプ

4. ファイル保存 cntl-x cntl-s

5. emacs終了 cntl-x cntl-c

ファイルが出来ていることを確認

ターミナルでlsコマンド ファイル名のリストを確認

ターミナルでcat ファイル名 で(あるいはmore, less コマンドな
どを使って)中身を確認

エディタ Emacs の基本的な使い方 (2)

ショートカットキー 動作

C-f カーソルを1文字分右へ

C-b カーソルを1文字分左へ

C-p カーソルを1文字分上へ

C-n カーソルを1文字分下へ

C-a カーソルを行頭へ

C-e カーソルを行末へ

C-d カーソル位置にある文字を削除

C-m カーソル位置に改行、カーソルも次の行頭へ

C-o カーソル位置に改行、カーソル位置は移動しない

C-v カーソル位置を1画面分下へ

M-v カーソル位置を1画面分上へ

M-> カーソルをファイルの先頭へ

C-f カーソルをファイル末尾へ

C-l カーソルがある行がウィンドウの中央になるようスクロール

C-_ 編集をUndo

C-g コマンド入力/実行をキャンセル

参考「Emacs 超入門」 長島浩道
http://sourceforge.jp/magazine/09/04/06/1138226

