
Cloudian HyperStore
Administration Guide

Version 7.2.3

This page left intentionally blank.

Confidentiality Notice

The information contained in this document is confidential to, and is the intellectual property of, Cloudian,
Inc. Neither this document nor any information contained herein may be (1) used in any manner other than
to support the use of Cloudian software in accordance with a valid license obtained from Cloudian, Inc, or (2)
reproduced, disclosed or otherwise provided to others under any circumstances, without the prior written per-
mission of Cloudian, Inc. Without limiting the foregoing, use of any information contained in this document in
connection with the development of a product or service that may be competitive with Cloudian software is
strictly prohibited. Any permitted reproduction of this document or any portion hereof must be accompanied
by this legend.

This page left intentionally blank.

Contents

What's New in HyperStore 7.2 1
AWS API Support -- New Features and Enhancements 1
Admin API -- New Features and Enhancements 3
System Operations -- New Features and Enhancements 4
Documentation -- New Features and Enhancements 12

Chapter 1. Introduction 13
1.1. HyperStore Documentation 13
1.2. HyperStore Overview 14
1.3. Licensing and Auditing 15

1.3.1. License Expiration 16

1.3.2. LicensedMaximumOn-Premise Storage Usage 17

1.3.3. LicensedMaximumTiered Storage Usage 18

1.3.4. WORM (Object Lock) License 20

1.3.5. HyperIQLicense 20

1.3.6. License Updating 20

1.3.7. Auditing 21

1.4. HyperStore Services 21

1.4.1. S3 Service 22

1.4.2. HyperStore Service and the HSFS 23

1.4.3. Cassandra Service 26

1.4.4. RedisCredentials and RedisQoSServices 26

1.4.5. RedisMonitor Service 27

1.4.6. Admin Service 28

1.4.7. IAM, STS, and SQSServices 28

1.4.8. CloudianManagement Console (CMC) Service 28

1.4.9. Supporting Services 29

1.5. System Diagrams 30

1.5.1. System Levels 30

1.5.2. Service Interconnections 30

1.5.3. ServicesDistribution -- 3 Nodes, Single DC 31

1.5.4. ServicesDistribution -- Multi-DC, Single Region 32

1.5.5. ServicesDistribution -- Multi-Region 33

1.5.6. Specialized ServicesAvailability 34

1.5.7. S3 PUT Processing Flow 35

1.5.8. S3GET Processing Flow 37

1.5.9. Data Freshness for ReplicatedObject Reads 38

1.5.10. DynamicConsistencyLevels 39

1.5.11. How vNodesWork 42

Chapter 2. Getting Started with a New HyperStore System 51

Chapter 3. Upgrading Your HyperStore Software Version 55
3.1. Preparing to Upgrade Your System 55

3.1.1. AdditionalUpgrade Preparation If Your SystemCurrentlyHasFailed Disks 58

3.1.2. AdditionalUpgrade Preparation If You Are Using Elasticsearch 58

3.2. Upgrading Your System 58

3.2.1. Upgrade Failure and Roll-Back 60

3.3. Verifying Your System Upgrade 61
3.4. Installing a Patch 62

3.4.1. Reapplying the Patch in the Case of Installation Errors 63

3.4.2. Reverting a Patch 63

3.4.3. Adding Nodes to a Patched System 64

Chapter 4. Working with HyperStore Major Features 66
4.1. Management Interfaces and Tools 66

4.1.1. HyperStoreManagement Interfacesand Tools -- Feature Overview 66

4.2. Support for AWS APIs 67

4.2.1. Support for AWSAPIs -- Feature Overview 67

4.3. Nodes, Data Centers, and Regions 68

4.3.1. Nodes, Data Centers, and RegionsFeature Overview 68

4.3.2. CapacityMonitoring and Expansion 71

4.3.3. Using the CMCwithMultiple DCsor Regions 74

4.4. Storage Policies 76

4.4.1. Storage PoliciesFeature Overview 76

4.4.2. ConsistencyLevels 79

4.4.3. Object Metadata Replication 80

4.4.4. SystemMetadata Replication 81

4.4.5. Creating andManaging Storage Policies 83

4.4.6. Assigning a Storage Policy to a Bucket 83

4.4.7. Finding anObject'sReplicasor EC Fragments 84

4.4.8. Storage PolicyResilience to DownedNodes 84

4.5. Security Features 89

4.5.1. HyperStore Shell (HSH) 89

4.5.2. HyperStore Firewall 100

4.5.3. Server-Side Encryption 105

4.5.4. FIPSSupport 113

4.5.5. HTTPSSupport (TLS/SSL) 114

4.5.6. Secure Delete 120

4.5.7. WORM (Object Lock) 121

4.6. User Provisioning and LDAP Integration 129

4.6.1. User Provisioning and LDAP Integration Feature Overview 129

4.6.2. ProvisioningGroups 130

4.6.3. Provisioning Users 130

4.6.4. LDAP Integration 131

4.7. Quality of Service Controls 135

4.7.1. Quality of Service (QoS) Feature Overview 135

4.7.2. Enabling QoSEnforcement 136

4.7.3. Setting QoSLimits for Groups 137

4.7.4. Setting QoSLimits for Users 137

4.8. Usage Reporting and Billing 138

4.8.1. Usage Reporting and Billing Feature Overview 138

4.8.2. Enabling Advanced Usage Reporting Features 142

4.8.3. Validating Storage Usage Data 143

4.8.4. Setting Usage Data Retention Periods 144

4.8.5. Generating a Usage Report 144

4.8.6. Creating Rating Plans for Billing 145

4.8.7. Assigning Rating Plans to Users 147

4.8.8. Creating a "Whitelist" for Free Traffic 148

4.8.9. Generating Billing Data for a User or Group 149

4.9. Automated Data Repair 150

4.9.1. Automated Data Repair Feature Overview 150

4.9.2. Configuring AutomaticData Repair 152

4.9.3. Checking Data Repair Status 153

4.9.4. Disabling or Stopping Data Repairs 154

4.10. Automated Disk Management 157

4.10.1. Automated DiskManagement Feature Overview 157

4.10.2. Configuring DiskUsage Balancing 161

4.10.3. Triggering a DiskUsage Balance Check 162

4.10.4. Configuring DiskFailure Handling 162

4.10.5. Checking DiskUsage and Health Status 163

4.10.6. DiskError Alerts 163

4.10.7. Responding to a Disabled Disk 163

4.11. Object Metadata 164

4.11.1. Object Metadata Feature Overview 164

4.11.2. Creating Object Metadata and Tags 166

4.11.3. Retrieving Object Metadata and Tags 167

4.11.4. Object Metadata Structure in Cassandra 167

4.11.5. Elasticsearch Integration for Object Metadata 171

4.12. Auto-Tiering 176

4.12.1. Auto-Tiering Feature Overview 176

4.12.2. Setting Up Auto-Tiering 180

4.12.3. Accessing Auto-TieredObjects 184

4.13. Cross-Region Replication 186

4.13.1. Cross-Region Replication Feature Overview 186

4.13.2. Configuring Cross-Region Replication for a Bucket 189

4.14. Smart Support 190

4.14.1. Smart Support and DiagnosticsFeature Overview 190

4.14.2. Configuring Smart Support and Node Diagnostics 192

4.14.3. Executing Node DiagnosticsCollection 193

Chapter 5. Cloudian Management Console (CMC) 196
5.1. Dashboard 197

5.1.1. Dashboard 197

5.2. Analytics 206

5.2.1. Cluster Usage 206

5.2.2. CapacityExplorer 209

5.2.3. Usage ByUsers&Groups 211

5.2.4. Object Locator 217

5.3. Buckets 218

5.3.1. Add a Bucket 218

5.3.2. Set Bucket Properties 221

5.3.3. Delete a Bucket 244

5.4. Objects 244

5.4.1. Create or Delete a "Folder" 245

5.4.2. Upload anObject 246

5.4.3. Set Object Properties 248

5.4.4. List or Search for Objects 257

5.4.5. Download anObject 258

5.4.6. Restore an Auto-TieredObject 258

5.4.7. Delete anObject 261

5.5. Users & Groups 262

5.5.1. Manage Users 262

5.5.2. ManageGroups 270

5.5.3. Rating Plan 278

5.5.4. Account Activity 282

5.5.5. Whitelist 283

5.5.6. Set Quality of Service (QoS) Controls 285

5.6. IAM 289

5.6.1. Manage IAMUser 289

5.6.2. Manage IAMGroup 297

5.6.3. Manage IAMPolicy 303

5.7. Cluster 309

5.7.1. Data Centers 309

5.7.2. Node Status 313

5.7.3. Node Activity 323

5.7.4. Node Advanced 326

5.7.5. Cluster Information 330

5.7.6. Configuration Settings 337

5.7.7. Storage Policies 353

5.7.8. Repair Status 380

5.7.9. Operation Status 384

5.8. Alerts 385

5.8.1. Alerts 385

5.8.2. Alert Rules 390

5.8.3. How HyperStore ImplementsAlerts 398

5.9. My Account 399

5.9.1. Profile 399

5.9.2. SecurityCredentials 400

5.10. Customizing the CMC 402

5.10.1. Showing/Hiding CMCUI Functions 402

5.10.2. Rebranding the CMCUI 404

5.10.3. Configuring a Login Page Banner 407

5.10.4. Configuring a Login Page Acknowledgment Gate 408

5.10.5. Implementing Single Sign-On for the CMC 410

Chapter 6. Node and Cluster Operations 415
6.1. Starting and Stopping Services 415

6.1.1. Start or Stop Serviceson AllNodes in the Cluster 415

6.1.2. Start or Stop ServicesonOneNode 417

6.1.3. Shutting Down or Rebooting a Node 419

6.1.4. AutomaticService Start on Node Boot-Up 419

6.2. Adding Nodes 420

6.2.1. Special Requirements if an Existing Node isDown 420

6.2.2. Preparing to Add Nodes 420

6.2.3. Adding Nodes 423

6.3. Adding a Data Center 430

6.3.1. SpecialRequirements if an Existing Node isDown or Unreachable 430

6.3.2. Preparing to Add a Data Center 430

6.3.3. Adding a Data Center 432

6.4. Adding a Region 437

6.4.1. Preparing to Add a Region 437

6.4.2. Adding a Region 439

6.5. Removing a Node 443

6.5.1. Preparing to Remove a Node 443

6.5.2. Removing a Node 448

6.6. Replacing a Node 452
6.7. Restoring a Node That Has Been Offline 453

6.7.1. 6.7.1 Repairing a Node That'sBeen Down for Longer than the Proactive Repair Limit 454

6.8. Changing a Node's IP Address 455
6.9. Backing Up and Restoring a Cluster 455

6.9.1. Backing Up an Entire Cluster 455

6.9.2. Restoring an Entire Cluster 456

6.10. Change Node Role Assignments 457

6.10.1. Move the RedisCredentialsMaster or QoSMaster Role 458

6.10.2. Move or Add a RedisCredentialsSlave or RedisQoSSlave 461

6.10.3. Move the Cassandra Seed Role 462

6.10.4. Reduce or Change the List of CMC Hosts 464

6.10.5. Move the RedisMonitor Primary or Backup Role 465

6.10.6. Move the Cron Job Primary or Backup Role 466

6.10.7. Move the Puppet Master Primary or Backup Role 468

6.10.8. Change InternalNTPServers or ExternalNTPServers 471

6.11. Cron Jobs and Automated System Maintenance 472

6.11.1. System cron Jobs 473

6.11.2. Scheduled Auto-Repair 478

6.11.3. Cassandra Data Compaction 478

Chapter 7. Disk Operations 479
7.1. Disabling a HyperStore Data Disk 479

7.1.1. The Impact of Disabling a Disk 479

7.1.2. Disabling a Disk 479

7.2. Enabling a HyperStore Data Disk 480

7.2.1. The Impact of Enabling a Disk 481

7.2.2. Enabling a Disabled Disk 481

7.3. Replacing a HyperStore Data Disk 482

7.3.1. The Impact of Replacing a Disk 482

7.3.2. Replacing a Disk 483

7.4. Replacing a Cassandra Disk 484
7.5. Responding to Data Disks Nearing Capacity 487
7.6. Responding to Cassandra Disks Nearing Capacity 488
7.7. Adding Disks is Not Supported 489

Chapter 8. System Monitoring 491
8.1. Using the CMC to Monitor Your HyperStore System 491
8.2. Cloudian HyperIQ 491
8.3. Additional Monitoring Tools 492

8.3.1. Using the Admin API toMonitor HyperStore 492

8.3.2. Doing an HTTPHealth Check 492

8.3.3. Using JMX toMonitor Java-Based HyperStore Services 493

8.3.4. Using Native LinuxUtilities for SystemResourceMonitoring 498

8.3.5. Using nodetool to Monitor Cassandra 498

8.3.6. Using the RedisCLI to Monitor Redis 499

Chapter 9. System Configuration 501

9.1. CMC's Configuration Settings Page 501
9.2. Installer Advanced Configuration Options 501
9.3. Pushing Configuration File Edits to the Cluster and Restarting Services 506

9.3.1. Puppet Overview 506

9.3.2. Installation Staging Directory 507

9.3.3. Using the Installer to Push Configuration Changesand Restart Services 507

9.3.4. Option for Triggering a Puppet Sync-Up from the Command Line 509

9.3.5. Excluding a DownNode from an Installer-Driven Configuration Push 509

9.3.6. AutomaticPuppet Sync-Up on an Interval 510

9.4. Using the HSH to Manage Configuration Files 510
9.5. HyperStore Configuration Files 511

9.5.1. common.csv 512

9.5.2. hyperstore-server.properties.erb 544

9.5.3. mts.properties.erb 553

9.5.4. mts-ui.properties.erb 580

9.5.5. Other Configuration Files 594

9.5.6. Using JMX to DynamicallyChange Configuration Settings 597

9.6. Configuration Special Topics 598

9.6.1. Anti-VirusSoftware 598

9.6.2. NTPAutomaticSet-Up 598

9.6.3. Changing S3, Admin, or CMC Listening Ports 599

9.6.4. Changing S3, Admin, CMC, or IAMService Endpoints 600

9.6.5. Tuning HyperStore Performance Parameters 602

9.6.6. VanityDomains for S3 Buckets 603

Chapter 10. Logging 605
10.1. HyperStore Logs 605

10.1.1. Admin Service Logs 605

10.1.2. Cassandra Logs 606

10.1.3. CMC Log 608

10.1.4. HyperStore Firewall Log 609

10.1.5. HyperStore Service Logs 609

10.1.6. HyperStore Shell Log 613

10.1.7. IAMService Logs 613

10.1.8. Monitoring Agent and Collector Logs 615

10.1.9. Phone Home (Smart Support) Log 616

10.1.10. Redis and RedisMonitor Logs 617

10.1.11. S3 Service Logs (including Auto-Tiering, CRR, andWORM) 619

10.1.12. SQSService Logs 625

10.2. Log Configuration Settings 626
10.3. Aggregating Logs to a Central Server 627
10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis 631

10.4.1. Installing Elasticsearch, Kibana, and Logstash 631

10.4.2. Installing Filebeat 634

10.4.3. Configuring Kibana for CustomMetricsVisualizations 635

10.5. Using the HSH to View Logs 640

Chapter 11. Commands 643
11.1. hsstool 643

11.1.1. hsstool cleanup 644

11.1.2. hsstool cleanupec 651

11.1.3. hsstool info 658

11.1.4. hsstool ls 660

11.1.5. hsstoolmetadata 662

11.1.6. hsstool opctl 665

11.1.7. hsstool opstatus 666

11.1.8. hsstool proactiverepairq 674

11.1.9. hsstool rebalance 679

11.1.10. hsstool repair 686

11.1.11. hsstool repaircassandra 695

11.1.12. hsstool repairec 697

11.1.13. hsstool repairqueue 707

11.1.14. hsstool ring 712

11.1.15. hsstool status 714

11.1.16. hsstool trmap 717

11.1.17. hsstoolwhereis 721

11.2. Redis Monitor Commands 726

11.2.1. get cluster 727

11.2.2. get master 728

11.2.3. get nodes 729

11.2.4. get clients 729

11.2.5. enablemonitoring 730

11.2.6. disablemonitoring 730

11.2.7. enable notifications 730

11.2.8. disable notifications 731

11.2.9. set master 731

11.2.10. add node 732

11.2.11. add client 733

11.2.12. test dc partition 733

11.2.13. test split brain 734

11.2.14. disable dcpartitionmonitoring 735

11.2.15. enable dcpartitionmonitoring 736

11.2.16. disable split brain monitoring 737

11.2.17. enable split brain monitoring 738

11.2.18. resolve split brain 739

Chapter 12. Admin API 741
12.1. Introduction 741

12.1.1. HyperStore Admin API Introduction 741

12.1.2. Admin APIMethodsList 742

12.1.3. CommonRequest and Response Headers 745

12.1.4. CommonResponse StatusCodes 746

12.1.5. cURL Examples 746

12.1.6. HTTPand HTTPS for Admin API Access 747

12.1.7. HTTP/SBasicAuthentication for Admin API Access 748

12.1.8. Admin API Logging 750

12.2. billing 751

12.2.1. GET /billing 751

12.2.2. POST /billing 753

12.2.3. billing QueryParameters 755

12.2.4. billing Objects 755

12.3. bppolicy 759

12.3.1. GET /bppolicy/bucketsperpolicy 759

12.3.2. GET /bppolicy/listpolicy 760

12.3.3. bppolicyQueryParameters 761

12.3.4. bppolicyObjects 761

12.4. bucketops 762

12.4.1. GET /bucketops/id 762

12.4.2. GET /bucketops/gettags 763

12.4.3. POST /bucketops/purge 764

12.4.4. bucketopsQueryParameters 765

12.4.5. bucketopsObjects 766

12.5. group 767

12.5.1. DELETE /group 767

12.5.2. GET /group 768

12.5.3. GET /group/list 770

12.5.4. GET /group/ratingPlanId 772

12.5.5. POST /group 773

12.5.6. POST /group/ratingPlanId 774

12.5.7. PUT /group 774

12.5.8. groupQueryParameters 776

12.5.9. groupObjects 776

12.6. monitor 781

12.6.1. DELETE /monitor/notificationrule 781

12.6.2. GET /monitor/events 781

12.6.3. GET /monitor/nodelist 784

12.6.4. GET /monitor/host 785

12.6.5. GET /monitor 790

12.6.6. GET /monitor/history 793

12.6.7. GET /monitor/notificationrules 794

12.6.8. POST /monitor/acknowledgeevents 796

12.6.9. POST /monitor/notificationruleenable 796

12.6.10. POST /monitor/notificationrule 797

12.6.11. PUT /monitor/notificationrule 798

12.6.12. monitor QueryParameters 799

12.6.13. monitor Objects 801

12.7. permissions 819

12.7.1. GET /permissions/publicUrl 819

12.7.2. POST /permissions/publicUrl 820

12.7.3. permissionsQueryParameters 821

12.7.4. permissionsObjects 822

12.8. qos 823

12.8.1. DELETE /qos/limits 823

12.8.2. GET /qos/limits 824

12.8.3. POST /qos/limits 826

12.8.4. qosQueryParameters 827

12.8.5. qosObjects 829

12.9. ratingPlan 832

12.9.1. DELETE /ratingPlan 833

12.9.2. GET /ratingPlan 833

12.9.3. GET /ratingPlan/list 835

12.9.4. POST /ratingPlan 836

12.9.5. PUT /ratingPlan 837

12.9.6. ratingPlanQueryParameters 839

12.9.7. ratingPlanObjects 839

12.10. system 841

12.10.1. GET /system/audit 841

12.10.2. GET /system/bucketcount 842

12.10.3. GET /system/bucketlist 843

12.10.4. GET /system/bytecount 844

12.10.5. GET /system/bytestiered 845

12.10.6. GET /system/groupbytecount 846

12.10.7. GET /system/groupobjectcount 847

12.10.8. GET /system/license 848

12.10.9. GET system/objectcount 850

12.10.10. GET /system/objectlockenabled 851

12.10.11. GET /system/version 852

12.10.12. POST /system/processProtectionPolicy 853

12.10.13. POST /system/repairusercount 854

12.10.14. systemQueryParameters 854

12.10.15. systemObjects 855

12.11. tiering 861

12.11.1. DELETE /tiering/credentials 861

12.11.2. DELETE /tiering/azure/credentials 861

12.11.3. DELETE /tiering/spectra/credentials 862

12.11.4. GET /tiering/credentials 862

12.11.5. GET /tiering/credentials/src 863

12.11.6. GET /tiering/azure/credentials 864

12.11.7. GET /tiering/spectra/credentials 864

12.11.8. POST /tiering/credentials 865

12.11.9. POST /tiering/azure/credentials 866

12.11.10. POST /tiering/spectra/credentials 867

12.11.11. tiering QueryParameters 868

12.12. usage 868

12.12.1. DELETE /usage 868

12.12.2. GET /usage 869

12.12.3. POST /usage/bucket 873

12.12.4. POST /usage/repair 875

12.12.5. POST /usage/repair/bucket 875

12.12.6. POST /usage/repair/dirtyusers 876

12.12.7. POST /usage/repair/user 877

12.12.8. POST /usage/rollup 878

12.12.9. POST /usage/storage 879

12.12.10. POST /usage/storageall 880

12.12.11. usageQueryParameters 880

12.12.12. usageObjects 885

12.13. user 895

12.13.1. DELETE /user 895

12.13.2. DELETE /user/credentials 896

12.13.3. DELETE /user/deleted 897

12.13.4. GET /user 898

12.13.5. GET /user/credentials 900

12.13.6. GET /user/credentials/list 902

12.13.7. GET /user/credentials/list/active 904

12.13.8. GET /user/list 906

12.13.9. GET /user/password/verify 909

12.13.10. GET /user/ratingPlan 910

12.13.11. GET /user/ratingPlanId 912

12.13.12. POST /user 912

12.13.13. POST /user/credentials 913

12.13.14. POST /user/credentials/status 914

12.13.15. POST /user/password 914

12.13.16. POST /user/ratingPlanId 915

12.13.17. PUT /user 916

12.13.18. PUT /user/credentials 918

12.13.19. user QueryParameters 919

12.13.20. user Objects 921

12.14. whitelist 925

12.14.1. GET /whitelist 925

12.14.2. POST /whitelist 926

12.14.3. POST /whitelist/list 927

12.14.4. whitelist QueryParameters 928

12.14.5. whitelist Objects 928

Chapter 13. S3 API 931
13.1. Introduction 931

13.1.1. HyperStore Support for the AWSS3 API 931

13.1.2. S3 Client Application Options 932

13.1.3. Authenticating Requests (AWSSignature Version 4) 933

13.1.4. AccessControl List (ACL) Support 934

13.1.5. S3 CommonRequest and Response Headers 935

13.1.6. S3 Error Responses 936

13.1.7. HyperStore Extensions to the S3 API 937

13.2. Supported S3 Operations 938

13.2.1. AbortMultipartUpload 938

13.2.2. CompleteMultipartUpload 938

13.2.3. CopyObject 939

13.2.4. CreateBucket 941

13.2.5. CreateMultipartUpload 942

13.2.6. DeleteBucket 944

13.2.7. DeleteBucketCors 944

13.2.8. DeleteBucketEncryption 944

13.2.9. DeleteBucketLifecycle 944

13.2.10. DeleteBucketPolicy 945

13.2.11. DeleteBucketReplication 945

13.2.12. DeleteBucketTagging 945

13.2.13. DeleteBucketWebsite 945

13.2.14. DeleteObject 945

13.2.15. DeleteObjects 946

13.2.16. DeleteObjectTagging 947

13.2.17. GetBucketAcl 948

13.2.18. GetBucketCors 948

13.2.19. GetBucketEncryption 948

13.2.20. GetBucketLifecycle 949

13.2.21. GetBucketLocation 949

13.2.22. GetBucketLogging 950

13.2.23. GetBucketNotificationConfiguration 950

13.2.24. GetBucketPolicy 951

13.2.25. GetBucketReplication 951

13.2.26. GetBucketTagging 951

13.2.27. GetBucketVersioning 952

13.2.28. GetBucketWebsite 952

13.2.29. GetObject 952

13.2.30. GetObjectAcl 954

13.2.31. GetObjectLegalHold 954

13.2.32. GetObjectLockConfiguration 955

13.2.33. GetObjectRetention 955

13.2.34. GetObjectTagging 955

13.2.35. GetObjectTorrent 956

13.2.36. HeadBucket 956

13.2.37. HeadObject 957

13.2.38. ListBuckets 958

13.2.39. ListMultipartUploads 959

13.2.40. ListObjects 960

13.2.41. ListObjectsV2 962

13.2.42. ListObjectVersions 963

13.2.43. ListParts 964

13.2.44. OPTIONSObject 965

13.2.45. POST Object 966

13.2.46. PutBucketAcl 967

13.2.47. PutBucketCors 968

13.2.48. PutBucketEncryption 969

13.2.49. PutBucketLifecycle 969

13.2.50. PutBucketLogging 975

13.2.51. PutBucketNotificationConfiguration 976

13.2.52. PutBucketPolicy 977

13.2.53. PutBucketReplication 981

13.2.54. PutBucketTagging 983

13.2.55. PutBucketVersioning 983

13.2.56. PutBucketWebsite 983

13.2.57. PutObject 984

13.2.58. PutObjectAcl 986

13.2.59. PutObjectLegalHold 986

13.2.60. PutObjectLockConfiguration 987

13.2.61. PutObjectRetention 987

13.2.62. PutObjectTagging 988

13.2.63. RestoreObject 988

13.2.64. UploadPart 989

13.2.65. UploadPartCopy 990

Chapter 14. IAM API 991
14.1. Introduction 991

14.1.1. HyperStore Support for the AWS IAMAPI 991

14.1.2. IAMClient Application Options 992

14.1.3. IAMCommonRequest Parameters 994

14.1.4. IAMCommon Errors 994

14.2. Supported IAM Actions 995

14.2.1. AddUserToGroup 995

14.2.2. AttachGroupPolicy 995

14.2.3. AttachRolePolicy 996

14.2.4. AttachUserPolicy 996

14.2.5. CreateAccessKey 997

14.2.6. CreateGroup 997

14.2.7. CreatePolicy 998

14.2.8. CreateRole 999

14.2.9. CreateSAMLProvider 1000

14.2.10. CreateUser 1000

14.2.11. DeleteAccessKey 1001

14.2.12. DeleteGroup 1002

14.2.13. DeleteGroupPolicy 1002

14.2.14. DeletePolicy 1002

14.2.15. DeleteRole 1003

14.2.16. DeleteRolePolicy 1003

14.2.17. DeleteSAMLProvider 1004

14.2.18. DeleteUser 1004

14.2.19. DeleteUserPolicy 1004

14.2.20. DetachGroupPolicy 1005

14.2.21. DetachRolePolicy 1005

14.2.22. DetachUserPolicy 1006

14.2.23. GetGroup 1006

14.2.24. GetGroupPolicy 1007

14.2.25. GetPolicy 1008

14.2.26. GetPolicyVersion 1008

14.2.27. GetRole 1009

14.2.28. GetRolePolicy 1009

14.2.29. GetSAMLProvider 1010

14.2.30. GetUser 1010

14.2.31. GetUserPolicy 1011

14.2.32. ListAccessKeys 1011

14.2.33. ListAttachedGroupPolicies 1012

14.2.34. ListAttachedRolePolicies 1012

14.2.35. ListAttachedUserPolicies 1013

14.2.36. ListEntitiesForPolicy 1013

14.2.37. ListGroupPolicies 1014

14.2.38. ListGroups 1014

14.2.39. ListGroupsForUser 1015

14.2.40. ListPolicies 1015

14.2.41. ListPolicyVersions 1016

14.2.42. ListRolePolicies 1016

14.2.43. ListRoles 1017

14.2.44. ListSAMLProviders 1017

14.2.45. ListUserPolicies 1017

14.2.46. ListUsers 1018

14.2.47. PutGroupPolicy 1018

14.2.48. PutRolePolicy 1019

14.2.49. PutUserPolicy 1019

14.2.50. RemoveUserFromGroup 1020

14.2.51. UpdateAccessKey 1020

14.2.52. UpdateAssumeRolePolicy 1021

14.2.53. UpdateGroup 1021

14.2.54. UpdateRole 1022

14.2.55. UpdateRoleDescription 1022

14.2.56. UpdateSAMLProvider 1022

14.2.57. UpdateUser 1023

14.3. Supported IAM Policy Elements 1023

14.3.1. PolicyDocument Content for Granting S3 or IAMPermissions 1024

14.3.2. PolicyDocument Content for Granting HyperStore Administrative Permissions 1025

14.4. IAM Extensions for Role-Based Access to HyperStore Admin Functions 1027

14.4.1. Comparing the Admin API to the IAM API with RBAC Extensions 1027

14.4.2. Administrative ActionsSupported by the IAM API 1028

14.4.3. Giving Administrative Action Privileges to IAM Users 1030

14.4.4. Using admin_client.py to Call the IAM Service Extensions for Administrative Actions 1031

14.5. SAML Support 1032

14.5.1. Downloading the HyperStore SAMLMetadata Document for IdPSetup 1033

14.5.2. Using the IAM Service to Create andManage SAMLProvider Resources 1033

14.5.3. Using the IAM Service to Create andManage Roles 1034

14.5.4. Using the STSService to Assume aRole 1034

Chapter 15. STS API 1037
15.1. Introduction 1037

15.1.1. HyperStore Support for the AWSSTSAPI 1037

15.1.2. STSCommonRequest Parameters 1037

15.1.3. STSCommon Errors 1037

15.2. Supported STS Actions 1038

15.2.1. AssumeRole 1038

15.2.2. AssumeRoleWithSAML 1039

15.2.3. GetCallerIdentity 1039

Chapter 16. SQS API 1041
16.1. HyperStore Support for the AWS SQS API 1041

16.1.1. Enabling the Bucket Notification Feature and the SQSService 1041

16.2. SQS Supported Actions 1042

Chapter 17. Open Source License Agreements 1045

This page left intentionally blank.

What's New in HyperStore 7.2
This section introduces the main new features and enhancements for Cloudian HyperStore version 7.2. Click
an item for a summary of the change and links to further information.

Note For more granular release details including bug fixes and configuration setting changes please
see the release notes.

AWS API Support -- New Features and Enhancements
S3 API support for Object Lock (WORM)

HyperStore's S3 Service now supports the S3 API calls that implement Object Lock. Object Lock provides
WORM (write once, read many) protection that prevents objects from being deleted or altered before the com-
pletion of a specified time period.

More information, including the requirements that your HyperStore deployment must meet to use Object Lock:

l "WORM (Object Lock)" (page 121)

l "Setting Up Object Lock" (page 123)

Note Support for the standard AWS S3 Object Lock APIs replaces the Cloudian-proprietary "Bucket
Lock" feature that had been introduced in HyperStore 7.1. That proprietary "Bucket Lock" feature has
now been removed from HyperStore in favor of supporting the standard AWS S3 Object Lock calls.

Support for Bucket Notifications and Simple Queue Service (SQS)

HyperStore's S3 Service now supports the S3 API calls that implement bucket notifications. In connection with
supporting these S3 API calls, HyperStore now implements its own Simple Queue Service (SQS) that is com-
patible with the AWS Simple Queue Service API.

The CMC does not yet support this functionality. To use this HyperStore functionality requires that you have an
S3 client application that supports the standard AWS S3 API call that configures bucket notification; and an
SQS client application that supports the standard AWS SQS API calls for operations such as creating queues
and receiving notification messages.

HyperStore's bucket notification feature and its SQS Service are disabled by default. For instructions for
enabling these features see "HyperStore Support for the AWS SQS API" (page 1041).

More information:

l "PutBucketNotificationConfiguration" (page 976)

l "GetBucketNotificationConfiguration" (page 950)

l "HyperStore Support for the AWS SQS API" (page 1041)

l "SQS Supported Actions" (page 1042)

IAM Service now enabled by default

HyperStore's IAM Service is now enabled by default. Previously this service was disabled by default, and you

1

What's New in HyperStore 7.2

had to modify the system configuration if you wanted to activate the service.

More information:

l "HyperStore Support for the AWS IAM API" (page 991)

IAM Service has its own dedicated service endpoint

HyperStore's IAM Service now has its own configurable service endpoint. Previously the IAM Service was
accessed through the Admin Service endpoint.

More information:

l "Changing S3, Admin, CMC, or IAM Service Endpoints" (page 600)

l DNS Set-Up

l Load Balancing

IAM Service supports 'Role' actions

HyperStore's IAM Service now supports all the Actions related to Roles.

The CMC does not yet support this functionality. To use this HyperStore functionality requires that you have an
IAM client application that supports the standard AWS IAM API actions relating to Roles.

More information:

l "Supported IAM Actions" (page 995)

CMC's IAM client has improved support for IAM policy creation and assignment

The CMC's IAM client now supports creating IAM "managed" policies as well as creating IAM "inline" policies
for groups and for users. Previously the CMC's IAM client only supported creating inline policies, and only for
groups.

Additionally, the CMC now includes a GUI-driven method (a "visual editor") for creating policies, as well as a
JSON editor. Previously it only had the JSON editor.

More information:

l "Manage IAM Policy" (page 303)

l "Manage IAM Group" (page 297)

l "Manage IAM User" (page 289)

CMC support for Object Lock (7.2.2)

Starting in HyperStore version 7.2.2, the CMC's S3 client supports Object Lock. In HyperStore 7.2.0 and 7.2.1,
the S3 Service (S3 API server) supported Object Lock but the CMC's S3 client application did not.

More information:

l "Add a Bucket" (page 218)

l "Configure Object Lock Properties for a Bucket" (page 242)

l "Set Object Lock Attributes on an Object" (page 255)

S3 Service support for partNumber query parameter (7.2.3)

HyperStore's S3 Service now supports the partNumber query parameter for the GetObject and HeadObject
operations, in regard to objects that were uploaded using the multipart upload method.

More information:

2

Admin API -- New Features and Enhancements

l "GetObject" (page 952)

l "HeadObject" (page 957)

S3 Service no longer prohibits HTTPS access to static websites (7.2.3)

HyperStore's S3 Service now allows static website requests that use HTTPS (TLS). HyperStore does not
provide a mechanism for setting up TLS for static website requests -- you would need to do so outside of Hyper-
Store, by appropriately configuring your TLS certificates. But the HyperStore S3 Service no longer prohibits
HTTPS access to static websites.

More information:

l "GetObject" (page 952)

l "HeadObject" (page 957)

Support for IAM and STS calls to enable SAML-based access to S3 services (7.2.3)

HyperStore now supports SAML-based access to HyperStore S3 storage services. This includes support for all
the IAM "Role" calls and the Security Token Service (STS) calls that are required in order to implement SAML-
based access.

More information:

l "SAML Support" (page 1032)

l "HyperStore Support for the AWS STS API" (page 1037)

Admin API -- New Features and Enhancements
Group attributes for filtering S3 endpoint displays

The GroupInfo object now includes attributes that give you the option to restrict which S3 endpoints display for
the group's users when they log into the CMC and go to the Security Credentials page. By default in that CMC
page users can view all the S3 endpoints that are configured in the system.

You can specify the S3 endpoint display filtering for a group when you create or edit the group through the
Admin API or through the CMC.

More information:

l "group" (page 767)

l "GroupInfo Object" (page 777)

l "Add a Group" (page 271) (CMC)

l "Edit a Group" (page 276) (CMC)

New API calls for retrieving current storage usage for each user in a specified group

The Admin API now allows you, in a single call, to retrieve current stored byte counts for each user in a spe-
cified group; or, in a single call, to retrieve current stored object counts for each user in a specified group.

More information:

l "GET /system/groupbytecount Get stored byte counts for all of a group's users" (page 846)

l "GET /system/groupobjectcount Get stored object counts for all of a group's users" (page 847)

Randomly generated Admin API HTTP(S) Basic Authentication password (7.2.2)

In new installations of HyperStore version 7.2.2 or newer, the system now generates a random password as

3

What's New in HyperStore 7.2

the default password to be used for Admin API HTTP(S) Basic Authentication. In older versions of HyperStore
the default password for this purpose was "public".

This feature change applies only to new installations. Upgrading from an older version to 7.2.2 or newer does
not change your system's Admin API HTTP(S) Basic Authentication password.

More information:

l "HTTP/S Basic Authentication for Admin API Access" (page 748)

API call to retrieve enabled/disabled status of the Object Lock feature (7.2.3)

The Admin API now supports a call for checking whether or not the Object Lock feature is enabled in your
HyperStore system.

More information:

l "GET /system/objectlockenabled Get Object Lock feature status" (page 851)

System Operations -- New Features and Enhancements
HyperStore shell (HSH)

HyperStore nodes now include a restrictive user login and command shell that enables administrators to log
into HyperStore nodes and execute common HyperStore and OS commands without requiring root access or
using the more open-ended Bash shell. The HyperStore shell is disabled by default.

More information:

l "Security Features" (page 89)

HyperStore firewall

HyperStore nodes now include a built-in firewall that protects HyperStore internal services while allowing
access to HyperStore public services. For fresh installations of HyperStore 7.2, the HyperStore firewall is
enabled by default. For HyperStore systems originally installed as an older version and then upgraded to 7.2,
the HyperStore is available but is disabled by default. You can enable or disable the firewall using the
installer's Advanced Configuration Options.

More information:

l "HyperStore Firewall" (page 100)

FIPS support

HyperStore's core cryptographic module now complies with the requirements of Federal Information Pro-
cessing Standard (FIPS) Publication 140-2. Optionally, you can configure the SSH server on HyperStore nodes
to also comply with those requirements.

More information:

l "FIPS Support" (page 113)

Improved support for managing HTTPS and TLS/SSL certificate keystores

The HyperStore installer's functions for managing HTTPS and the associated TLS/SSL certificate keystores
have been simplified and better automated. This allows you to more easily manage HTTPS and keystores for
the S3 Service, the IAM Service, and the CMC.

More information:

4

System Operations -- New Features and Enhancements

l "HTTPS Support (TLS/SSL)" (page 114)

All HyperStore HTTPS listeners now require clients to use TLS 1.2

HTTPS listeners for the Admin Service, CMC, IAM Service, and S3 Service will not accept client connections
that use TLS versions older than 1.2. Previously only the S3 Service's HTTPS listener required clients to use
TLS 1.2.

More information:

l "HTTPS Support (TLS/SSL)" (page 114)

Faster and easier freeing of existing storage space when adding new nodes

The hsstool rebalance command now includes an option to perform cleanup of existing nodes as part of the
same operation that rebalances data to the newly added node(s). Previously you had to run separate cleanup
operations on each of the older nodes, after the rebalance operation completed for the newly added node(s).
The new method is simpler, and more quickly frees up storage space on your older nodes.

More information:

l "hsstool rebalance" (page 679)

l "Adding Nodes" (page 420)

Automatic creation of installation staging directory

Previously you needed to create an installation directory when you first install HyperStore and then create a dif-
ferent staging directory each time that you upgrade HyperStore to a new version. Now, when you extract the
HyperStore package (.bin file) for a HyperStore version that you are installing or upgrading to, a staging dir-
ectory named /opt/cloudian-staging/<version-number> is automatically created and the package contents are
extracted into that directory.

More information:

l "Upgrading Your HyperStore Software Version" (page 55)

Run hsstool from any directory

In previous HyperStore versions hsstool had to be run from the /opt/cloudian/bin directory. Now HyperStore
automatically adds /opt/cloudian/bin to each host's $PATH variable, so you can run hsstool from any directory.

More information:

l "hsstool " (page 643)

Improved monitoring and management for multi-DC Redis clusters

The Redis Monitor has been enhanced to provide monitoring and management for abnormal conditions that
can occur in Redis clusters if your HyperStore system spans multiple data centers -- specifically, monitoring
and management for "data center partition" conditions and "split brain" conditions.

More information:

l "Redis Monitor Commands" (page 726) (see the commands in sections 11.2.12 through 11.2.18, per-
taining to DC partition and split brain)

CMC's Operation Status page now includes region and DC info

In the CMC's Operation Status page, the information for each operation now includes the region and data cen-
ter in which the target node resides. Previously this page only displayed the hostname of the target node

5

What's New in HyperStore 7.2

without identifying the region and data center.

More information:

l "Operation Status" (page 384)

Improved disk status display in CMC

In the CMC's Node Status page, the scheme of color-coded icons for indicating disk status has been made sim-
pler and more clear.

More information:

l "View a Node's Disk Detail" (page 317)

Improved logging of CMC user logins

All user logins to the CMC are now recorded in the CMC application log cloudian-ui.log. The log entries
include the user ID, group ID, and source IP address.

More information:

l "HyperStore Logs" (page 605)

Puppet Master and Cronjob primary and backup roles now allocated for high availability in multi-DC install

For a new multi-DC installation of HyperStore, the Puppet Master backup role is now allocated to a node in a
different DC as the node hosting the Puppet Master primary role; and the Cronjobs backup role is allocated to
a node in a different DC as the node hosting the Cronjob primary role.

More information:

l "Services Distribution -- Multi-DC, Single Region" (page 32)

hsstool repairec improvements

The hsstool repairec operation now makes greater use of parallel processing and distribution of work across
the cluster in order to improve operation performance and reduce the time the operation takes to complete. It
continues to be a long-running operation -- particularly in environments with high data volumes -- but not so
long-running as it was in prior versions of HyperStore.

Also, more metrics are available to help with troubleshooting operation performance issues or repair failures.
For complete metrics on a repairec run you can use the command hsstool opstatus repairec -a.

More information:

l "hsstool repairec" (page 697)

l "hsstool opstatus" (page 666)

hsstool proactiverepairq output is now clearer

The output of the hsstool proactiverepairq command now makes clear that this command returns only an estim-
ate of the number of objects in a node's proactive repair queue (whereas the more resource-intensive hsstool
proactiverepairq -a option returns an exact count).

More information:

l "hsstool proactiverepairq" (page 674)

/etc/init.d service scripts superseded by systemctl

The /etc/init.d scripts are no longer supported as a way to stop or start services on individual HyperStore

6

System Operations -- New Features and Enhancements

nodes. Instead use systemctl, which is the preferred method on CentOS 7.

More information:

l "Start or Stop Services on One Node" (page 417)

G1GC garbage collection

HyperStore's Java-based services -- such as the S3 Service, the Admin Service, and Cassandra -- now use the
Garbage First Garbage Collector (G1GC), for improved memory management. Previously these services used
the Concurrent Mark Sweep (CMS) garbage collector.

Among other benefits, the switch to G1GC allows for larger default heap size limits for HyperStore's Java-
based services. For example, the S3 Service's heap size limit is now set to 30gb by default, whereas it pre-
viously was set to 8gb.

More information:

l common.csv: "cloudian_s3_heap_limit " (page 531) (and subsequent heap size related settings)

l "View a Node's Memory Usage" (page 320)

OpenJDK Java platform

HyperStore now uses OpenJDK as its Java platform. Previously it used Oracle JDK.

There is nothing that you need to do for this change. The HyperStore installer installs the needed OpenJDK ver-
sions on your host machines, whether you are doing a fresh install of HyperStore 7.2 or upgrading to it.

Configurable CMC session timeout

The CMC's session timeout is now configurable. The default is 30 minutes. After a logged-in user has been
inactive for this long, the CMC terminates the user's session.

More information:

l common.csv: "cmc_session_timeout" (page 541)

Configurable connection timeout from CMC to Admin Service

The connection timeout for when the CMC connects to the Admin Service is now configurable. The default is
10 seconds.

To provide any of its functions for any type of user, the CMC must successfully connect to the Admin Service.

More information:

l mts-ui.properties.erb: "admin.conn.timeout" (page 581)

Configurable maximum concurrent cleanup operations per DC

The maximum number of hsstool cleanup or hsstool cleanupec operations that can be run concurrently within
a data center is now configurable. The default is 1.

More information:

l hyperstore-server.properties.erb: "max.cleanup.operations.perdc" (page 550)

Batch processing of object data deletes is now distributed and configurable

The batch processing job that deletes data from disk after objects have been marked for deletion is now dis-
tributed around the cluster, running on each node. Previously this batch process was centered on the cron job
host node.

7

What's New in HyperStore 7.2

Also, the frequency of the execution of this batch processing job is now configurable. By default it runs hourly,
on each node.

More information:

l mts.properties.erb: "cloudian.delete.queue.poll.interval" (page 566)

JMX now uses fixed ports and internal interface binding

When JMX communications takes place between HyperStore nodes, it now uses fixed ports and is bound to
the internal interface (for nodes that have dual interfaces for internal and public networks).

More information:

l "HyperStore Listening Ports" in the HyperStore Installation Guide

Health check logging in the S3 request log

The S3 request log now includes a special type of log entry that identifies health check requests, so that these
may be easily distinguished from regular S3 requests.

More information:

l "S3 Service Logs (including Auto-Tiering, CRR, andWORM)" (page 619)

l "Doing an HTTP Health Check" (page 492)

Requirement for 128GB RAM for HyperStore host machines (7.2.2)

Installing or upgrading to HyperStore 7.2.2 requires that all of your HyperStore hosts have at least 128GB
RAM. If you are currently running an older version of HyperStore and all or some of your hosts have less than
128GB RAM, contact Cloudian Support.

Mandatory admin user password change on first CMC login (7.2.2)

For fresh installations of HyperStore version 7.2.2 and newer, the first time you try to log in to the CMC as the
admin user with the default password public, you will be required to create a new password.

This does not impact HyperStore systems that are upgraded to version 7.2.2 from an older version.

More information:

l "Cloudian Management Console (CMC)" (page 196)

Improved patch process (7.2.2)

The process for applying a HyperStore patch upgrade has been improved and simplified.

More information:

l "Installing a Patch" (page 62)

Redis QoS automatic clean (7.2.2)

The system now automatically deletes old and no longer needed metadata in the Redis QoS database -- in par-
ticular, metadata relating to the automated mapping and cleanup of tombstones in Cassandra.

Configurable CMC password restrictions (7.2.2)

The system now supports configurable restrictions on users' CMC passwords, including minimum password
length (which is a minimum of nine characters by default). The other new configurable restrictions (which are
disabled by default) are a password expiration period, a restriction against a user's new password being too
similar to their previous password, a restriction on password reuse, and a restriction against too-frequent

8

System Operations -- New Features and Enhancements

password changes.

More information:

l In common.csv, see "user_password_min_length" (page 527) and the subsequent settings.

Alerts for SSD failures (Appliance only) (7.2.2)

For HyperStore Appliances only, an alert is now triggered if an SSD fails, and an error is displayed in the
CMC's Node Status page.

More information:

l "View a Node's Disk Detail" (page 317)

l "Alerts" (page 385)

HyperIQ license information (7.2.2)

The CMC's Cluster Information page and the Admin API call GET /system/license now indicate your Hyper-
Store system license's level of support for Cloudian HyperIQ integration.

Cloudian HyperIQ is a solution for dynamic visualization and analysis of HyperStore monitoring data. HyperIQ
is a separate product available from Cloudian that deploys as virtual appliance on VMware or VirtualBox and
integrates with your existing HyperStore system. For more information about HyperIQ contact your Cloudian
representative.

Administrator access to users' data via the CMC is disabled by default (7.2.2)

The ability of system administrators to access and manage all users' data via the CMC, and the ability of group
administrators to access and manage the data of users within their group via the CMC, is now disabled by
default system configuration. Previously this capability was enabled by default.

More information:

l In common.csv: "cmc_view_user_data" (page 541)

Read-on-repair improvements (7.2.2)

The system's "read-on-repair" functionality has been enhanced to be more comprehensive in the types of
object data replica problems it can automatically detect and repair.

More information:

l "Repair-On-Read" (page 150)

LDAP authentication for system admins (7.2.2)

LDAP authentication is now supported for users in the System Admin group. Previously it was supported only
for regular users.

More information:

l "LDAP Integration" (page 131)

Configurable option to suppress alerts for specific log messages (7.2.3)

HyperStore now has a configuration setting that lets you suppress alerting for specific log messages, based on
the message code.

More information:

l In common.csv: "alert_suppression_list" (page 543)

9

What's New in HyperStore 7.2

HyperStore Shell support for smartctl (7.2.3)

The Linux command line utility smartctl can now be run from within the HyperStore Shell. This utility controls
the Self-Monitoring, Analysis and Reporting Technology (SMART) system built into many ATA-3 and later ATA,
IDE and SCSI-3 hard drives.

More information:

l "Using the HSH" (page 94)

Options for displaying custom security information on CMC login page (7.2.3)

HyperStore now supports two options for displaying custom security information or other company information
on the CMC login page:

l You can display custom banner text at the top of the login page.

l You can implement an acknowledgment gate that requires users to acknowledge having read the gate
text before being allowed to log into the CMC.

More information:

l "Configuring a Login Page Banner" (page 407)

l "Configuring a Login Page Acknowledgment Gate" (page 408)

hsstool whereis enhancement to detect object corruption (7.2.3)

The hsstool whereis command now supports an option to detect corruption of any of a specified object's rep-
licas or erasure coded fragments.

More information:

l "hsstool whereis" (page 721)

Additional detail in hsstool metadata response (7.2.3)

The hsstool metadata command now returns additional detailed metadata for the specified object. This detail
may be useful if working with Cloudian Support to troubleshoot an issue in regard to the object.

More information:

l "hsstool whereis" (page 721)

Cross-region replication to external systems no longer an option in the CMC by default (7.2.3)

The Cross Region Replication tab of the CMC's Bucket Properties dialog no longer displays settings for rep-
licating to an external system (an S3 system other than the HyperStore system in which the bucket resides).
Cloudian, Inc. now discourages use of cross region replication (CRR) to external systems. Instead CRR should
be used only for replicating data from one bucket to another bucket within the same HyperStore system. The
destination bucket can be in a different service region as the source bucket, but both service regions should
be part of the same HyperStore system.

If your organization is a legacy user of cross region replication to an external system, and if you want to con-
tinue to give that option to your users as they configure their buckets in the CMC, you can re-enable the CMC's
display of the relevant CRR settings if you wish. This entails changing a setting in common.csv.

More information:

l common.csv: "cmc_crr_external_enabled" (page 541)

IAM request logging (7.2.3)

There is now a log that records information about requests processed by the HyperStore IAM Service. The log

10

System Operations -- New Features and Enhancements

also records information about requests to the HyperStore STS Service.

Also, new fields have been added to the existing S3 request log, to distinguish S3 requests made by IAM users
and by users who have assumed a role and are using temporary credentials issued by the STS Service.

More information:

l "IAM Service Logs" (page 613)

l "S3 Service Logs (including Auto-Tiering, CRR, andWORM)" (page 619)

Automatic case creation for failed disks (7.2.3)

As an enhancement to the Smart Support feature, if a data disk on a HyperStore node fails, information about
the failed disk is now automatically sent to Cloudian Support within minutes. This results in the automatic cre-
ation of a Support case for the failed disk.

For HyperStore Appliances, automatic case creation is also performed for failed OS disks.

More information:

l "Smart Support and Diagnostics Feature Overview" (page 190)

l "Automated Disk Management Feature Overview" (page 157)

New cleanup option to more efficiently target remnant data from deleted objects (7.2.3)

The hsstool cleanup and hsstool cleanupec operations now include a "-no" option that has the cleanups focus
on removing remnant data from objects that have been deleted from the system (through the S3 interface or the
Admin API), while ignoring data that doesn't belong to the target node's token ranges (which can be time con-
suming to evaluate and process). This helps the cleanup operation more efficiently and quickly free up disk
space after a large number of objects have been deleted.

This option is supported only on the command line -- not in the CMC's interface for these cleanup operations.

More information:

l "hsstool cleanup" (page 644)

l "hsstool cleanupec" (page 651)

LDAP authentication for HyperStore Shell users (7.2.3)

HyperStore now supports LDAP authentication for HyperStore Shell (HSH) users. This is supported only for sys-
tem admin users created while you are running HyperStore version 7.2.3 or later, and only if you have enabled
LDAP authentication for the System Admin group.

More information:

l "LDAP Integration" (page 131)

l "Enabling the HSH and Managing HSH Users" (page 90)

Improved performance for auto-tiering and auto-expiration execution (7.2.3)

The daily cron job that executes auto-tiering and auto-expiration of objects (in accordance with bucket lifecycle
policies) now distributes the required processing work across all nodes in the same service region as the cron
job primary node. Previously all the work was done by the cron job primary node itself.

More information:

l "System cron Jobs" (page 473)

l "Auto-Tiering Feature Overview" (page 176)

11

What's New in HyperStore 7.2

l "Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration" (page 227)

Documentation -- New Features and Enhancements
S3 API support documentation now matches new AWS S3 operation naming scheme (7.2.3)

The documentation for HyperStore support of the AWS S3 REST API has been updated to match the operation
naming scheme changes that were recently made by AWS. In most cases the operation name change is trivial.
For example, what the AWS documentation -- and HyperStore documentation -- used to call "DELETE Object"
is now called "DeleteObject". In some cases though the name change is more substantial -- for example what
used to be named "POST Object Restore" is now named "RestoreObject", and what was formerly "PUT Bucket"
is now "CreateBucket". In the updated HyperStore documentation that now uses the new naming scheme, for
each operation there is a note indicating what the former name of the operation was.

More information:

l Section 13.2 "Supported S3 API Operations"

12

Chapter 1. Introduction

1.1. HyperStore Documentation
The HyperStore user documentation consists of:

l HyperStore Help (HTML5)

l HyperStore Administrator's Guide (PDF)

l HyperStore Installation Guide (PDF)

l HyperStore Quick-Start for Software-Only Users (PDF)

The Help is available through the CMC (by clicking the Help button) and is also available in the directory
<installation-staging>/doc/HyperStoreHelp on each of your HyperStore nodes (in that directory you can open
the HyperStoreHelp.html file). The PDF guides are available in the directory <installation-sta-
ging>/doc/HyperStorePDFManuals on each HyperStore node.

The Help has the exact same content as the Installation Guide and Administrator's guide, just in HTML
rather than PDF. Further, starting with section "1. Introduction to HyperStore", the Help uses the exact same sec-
tion numbering as is used in the Administrator's Guide -- so for example, section 4.1.2 in the Help is the same
content as section 4.1.2 in the Administrator's Guide.

The Help features a built-in search engine. The search box is in the upper right of the interface. As with any
search engine, enclose your search phrase in quotes if you want to limit the results to exact match only.

In the Help, in most cases screen shots are presented initially as small thumbnail images. This allows for a
more compact initial view of the content on a page and makes it easier for you to skim through the text on the
page. If you want to see the full size image simply hold your cursor over it.

Also in the interest of presenting a compact initial view of the content on a page, the Help often makes use of
expandable/collapsible text. To expand (or subsequently collapse) such text you can click on the triangle icon
to the left of the text or on the text itself.

Example of collapsed text in initial view of a Help page:

13

Chapter 1. Introduction

Example of that same page with the first expandable text item expanded:

To expand or collapse all of the expandable/collapsible text on a page, click this button in the upper left of the
Help interface:

If you have a comment or request regarding the HyperStore documentation, please send it to this email
address:

cloudian-pubs@cloudian.com

You will not receive a reply, but the Cloudian Technical Publications team will review your comment and, if
appropriate, redress the issue in an upcoming HyperStore release. Thank you for your feedback.

1.2. HyperStore Overview
Cloudian HyperStore is a multi-tenant object storage system that fully supports the Amazon Simple Storage
System (S3) API. The HyperStore system enables any service provider or enterprise to deploy an S3-compliant
multi-tenant storage cloud.

The HyperStore system is designed specifically to meet the demands of high volume, multi-tenant data stor-
age:

l Amazon S3 API compliance. The HyperStore system is fully compatible with Amazon S3’s HTTP REST
API. Customers' existing HTTP S3 applications will work with the HyperStore service, and existing S3

14

1.3. Licensing and Auditing

development tools and libraries can be used for building HyperStore client applications.

l Secure multi-tenancy. The HyperStore system provides the capability to securely have multiple users
reside on a single, shared infrastructure. Data for each user is logically separated from other users' data
and cannot be accessed by any other user unless access permission is explicitly granted.

l Group support. An enterprise or work group can share a single HyperStore account. Each group mem-
ber can have dedicated storage space, and the group can be managed by a designated group admin-
istrator.

l Quality of service controls. HyperStore system administrators can set storage quotas and usage rate
limits on a per-group and per-user basis. Group administrators can set quotas and rate controls for indi-
vidual members of the group.

l Access control rights. Read and write access controls are supported at per-bucket and per-object
granularity. Objects can also be exposed via public URLs for regular web access, subject to con-
figurable expiration periods.

l Reporting and billing. The HyperStore system supports usage reporting on a system-wide, group-wide,
or individual user basis. Billing of groups or users can be based on storage quotas and usage rates
(such as bytes in and bytes out).

l Horizontal scalability. Running on commodity off-the-shelf hardware, a HyperStore system can scale
up to thousands of nodes across multiple data centers, supporting millions of users and hundreds of
petabytes of data. New nodes can be added without service interruption.

l High availability. The HyperStore system has a fully distributed, peer-to-peer architecture, with no
single point of failure. The system is resilient to network and node failures with no data loss due to the
automatic replication and recovery processes inherent to the architecture. A HyperStore cluster can be
deployed across multiple data centers to provide redundacy and resilience in the event of a data center
scale disaster.

1.3. Licensing and Auditing
Subjects covered in this section:

l Introduction (immediately below)

l "License Expiration" (page 16)

l "Licensed Maximum On-Premise Storage Usage" (page 17)

l "Licensed Maximum Tiered Storage Usage" (page 18)

l "WORM (Object Lock) License" (page 20)

l "HyperIQ License" (page 20)

l "License Updating" (page 20)

l "Auditing" (page 21)

A valid Cloudian software license is required to run HyperStore software. Evaluation licenses are available as
well as production licenses. Before using HyperStore software, you must obtain a license from Cloudian.

A Cloudian HyperStore license has four key attributes:

l Expiration date

l Maximum allowed on-premise storage volume

15

Chapter 1. Introduction

l Maximum allowed tiered storage volume

l Object lock functionality enabled or disabled

You can see the attributes of your particular HyperStore license by accessing the CMC's Cluster Information
page (Cluster -> Cluster Config -> Cluster Information).

The sections that follow describe these attributes and their enforcement in more detail.

1.3.1. License Expiration
Each Cloudian HyperStore license has an expiration date. Also as part of your license configuration there is a
warning period (which commences prior to the expiration date) and a grace period (which extends beyond the
expiration date).

If you reach the warning period preceding your license expiration, then when you use any part of the CMC, the
top of the interface displays a warning that your license expiration date is approaching.

If you reach your license expiration date you enter a grace period, per the terms of your contract. During the
grace period:

l In the CMC, the top of the screen displays a warning indicating that your license has expired and that
your HyperStore system will be disabled in a certain number of days (the number of days remaining in
your grace period).

l The system still accepts and processes incoming S3 requests, but every S3 response returned by the
S3 Service includes an extension header indicating that the system license has expired (header name:
x-gemini-license; value: Expired: <expiry_time>).

If you reach the end of your grace period after the license expiration date:

l No S3 service is available for end users. All incoming S3 requests will be rejected with a "503 Service
Unavailable" error response. The response also includes the expiration header described above.

16

1.3. Licensing and Auditing

l You can still log into the CMC to perform system administration functions (including applying an
updated license), but you will not be able to access users' stored S3 objects.

l The top of the CMC screen will display an error message indicating that your license has expired and
that your HyperStore system has been disabled. Also, in the CMC's Dashboard page the Cluster
Health panel will indicate that the system is disabled.

l If you stop the S3 Service on a node you will not be able to restart it. This applies also to the Admin Ser-
vice and IAM Service, since those services stop and start together with the S3 Service.

It's best to update your license well in advance of your license expiration date. See "License Updating" (page
20) below.

1.3.2. LicensedMaximum On-Premise Storage Usage
Depending on your particular license terms, your HyperStore system will have either a Net storage limit or a
Raw storage limit, for on-premise data storage.

With a license based on Net storage, the limit is on total object storage bytes minus overhead from storage
policies (object replication or erasure coding). For example if a 1GB object is replicated three times in your sys-
tem it counts as only 1GB toward a Net storage limit. A Net storage license is typically used if your cluster con-
sists entirely of software-only nodes, with no HyperStore Appliance nodes.

With a license based on Raw storage the limit is on the total raw storage capacity used in your system. All
HyperStore object data and metadata counts toward this limit, including storage overhead from replication or
erasure coding. For example if a 1GB object is replicated three times in your system it counts as 3GB toward a
Raw storage limit. Likewise, all object metadata and system metadata count toward a Raw storage limit.

A Raw storage license is typically used in either of two types of environments:

l Appliance-only environment. Each HyperStore Appliance has its own amount of licensed Raw storage
capacity. If your system consists entirely of HyperStore Appliances, then the Raw licensed storage capa-
city for your whole system is the simply sum of the individual Appliance licensed capacities.

l Mixed environment of Appliances and software-only nodes. In a mixed environment, the Raw licensed
storage capacity for your whole system is the sum of the individual Appliance licensed capacities plus
an additional raw capacity allowance that Cloudian builds into your license to accommodate the soft-
ware-only nodes.

If your license is based on Raw storage, then your total licensed Raw storage limit will be automatically
increased if you add a new HyperStore Appliance node to the system. The amount of Raw storage added to
your licensed system maximum depends on the particular HyperStore Appliance that you've added to your sys-
tem. Conversely, if you remove an Appliance from your system this will reduce your total licensed system Raw
storage maximum; and the Raw storage allowance associated with a particular Appliance machine cannot be
transferred to other nodes in your system.

Note If your HyperStore licensed maximum storage is in terms of Net bytes, adding a HyperStore Appli-
ance to your cluster will not change your Net storage limit. If you are interested in increasing your Net
storage limit or converting to a Raw storage limit, consult with Cloudian Support.

In the CMC's Cluster Information page you can view the Net or Raw licensed usage maximum for your whole
system and also your current system-wide Net or Raw bytes usage count. If your current usage level exceeds
70% of your licensed maximum usage the CMC displays a warning message in both the Cluster Information
page and the Dashboard page. If your current usage level exceeds 90% of your licensed maximum usage the
CMC displays a critical message in both of those pages.

17

Chapter 1. Introduction

Your total system storage usage maximum will be automatically enforced by the system no longer allowing
S3 clients to upload data to the system. This enforcement will kick in when your system stored byte count
reaches 110% of your licensed maximum usage. At such point the system will reject S3 PUT and POST
requests and return an error to the S3 clients. This will continue until one of the following occurs:

l You delete object data so that the system byte count falls below 100% of your licensed maximum.
HyperStore checks every five minutes to see if your storage usage has fallen below the licensed max-
imum, and if it does fall below the maximum then S3 PUTs and POSTs will again be allowed.

Note In the case of Raw usage, your deletions will not impact your system's raw usage count
until the hourly system cron job for processing the object deletion queue runs. By contrast, a
Net usage count is decremented immediately when you delete objects.

l You acquire and install a new license with a larger storage maximum (see "License Updating" (page
20)). Upon new license installation, S3 PUTs and POSTs will again be allowed.

If the system stored byte count reaches 110% of your licensed maximum usage the CMC will display a pop-up
warning message to the system administrator whenever he or she logs in. This will recur on each login event
until the system byte count falls below 100% of usage, or a new license with larger storage maximum has been
installed.

IMPORTANT ! Regardless of whether your system has a Net storage license or a Raw storage license,
if the data disks on a node become 90% full then that node will stop accepting new S3 writes. This
is not a license enforcement mechanism but rather a system safety feature. For more information see
"Automated Disk Management Feature Overview" (page 157).

1.3.2.1. The Effect of Versioning on On-Premise Storage Volume Measurement

If some users have versioning enabled on their buckets -- so that the system retains rather than overwriting
older versions of an object when the user uploads a new version of the object -- then each stored object ver-
sion (the older versions as well as the current version) counts toward your system stored bytes count. For more
information on versioning see "Set Versioning for a Bucket" (page 239).

1.3.2.2. The Effect of Cross-Region Replication on On-Premise Storage Volume
Measurement

If some users use the cross-region replication feature to replicate objects from one HyperStore bucket to
another HyperStore bucket within the same HyperStore system, then the original source objects and the object
replicas in the destination bucket both count toward your system stored bytes count. For more information on
cross-region replication see "Cross-Region Replication Feature Overview" (page 186).

1.3.3. LicensedMaximum Tiered Storage Usage
HyperStore supports an auto-tiering feature that users can enable on a per-bucket basis. With auto-tiering,
objects can be automatically moved on a configurable schedule to an external destination system such as
Amazon S3 or Glacier, Microsoft Azure, or Google Cloud Storage. For more information on auto-tiering see
"Auto-Tiering Feature Overview" (page 176).

18

1.3. Licensing and Auditing

In regard to HyperStore licensing, the system treats auto-tiered data as a separate category than on-premise
data. Data that's been auto-tiered out of your HyperStore system and is now stored in an external, third party
system counts toward a Maximum Tiered Storage limit -- not toward your on-premise storage limit.

The enforcement of this separate tiered storage limit works in largely the same way as the enforcement of the
on-premise storage limit.

In the CMC's Cluster Information page you can view your tiered storage limit and also your current tiered stor-
age usage level. If your tiered usage level exceeds 70% of your licensed tiered storage maximum the CMC dis-
plays a warning message in the Cluster Information page. This becomes a critical message if the usage
exceeds 90% of licensed maximum.

The tiered usage maximum will be automatically enforced by the system no longer allowing auto-tiering to
any third party destination system. This enforcement will kick in when your tiered storage byte count reaches
110% of your licensed maximum. At this point auto-tiering to third party destinations will no longer work until
one of the following occurs:

l Through the HyperStore interface -- i.e. the CMC or the HyperStore S3 API -- you delete auto-tiered
data so that the total tiered byte count falls below 100% of your licensed maximum. HyperStore checks
every five minutes to see if your tiered storage usage has fallen below the licensed maximum, and if it
does fall below the maximum then auto-tiering to non-HyperStore destinations is allowed again and
automatically resumes.

IMPORTANT ! If you're trying to reduce your tiered storage volume to below your licensed max-
imum, be sure to delete auto-tiered objects through a HyperStore interface and not directly
through one of the tiering destination system's interfaces. If you do the latter, HyperStore will not
detect that you've reduced your tiered storage volume. For more information see "Accessing
Auto-Tiered Objects" (page 184).

l You acquire and install a new license with a larger tiered storage maximum (see "License Updating"
(page 20)). Upon new license installation, auto-tiering to third party destinations will be allowed again
and will automatically resume.

If the tiered byte count reaches 110% of your licensed maximum usage the CMC will display a pop-up warning
message to the system administrator whenever he or she logs in. This will recur on each login event until the
tiered byte count falls below the licensed maximum, or a new license with larger tiered storage maximum has
been installed.

If auto-tiering to third party destination systems stops because you've exceeded 110% of your licensed max-
imum, and then later resumes when you come back into compliance with your license, the system will auto-tier
any objects that were flagged for auto-tiering during the time period when auto-tiering was halted for license
non-compliance. So as long as you come back into compliance, the period of non-compliance will not result in
any permanent failures to auto-tier objects that are supposed to have been auto-tiered based on users' bucket
lifecycle configurations.

1.3.3.1. Tiered Storage Licensing Exceptions and Qualifiers

l Auto-tiered objects count toward your tiered storage licensed maximum, not your on-premise storage
licensed maximum. However, for each auto-tiered object there is a small bit of object metadata (8KB
per object) that is retained on-premise and counts toward your on-premise storage limit.

l The auto-tiering feature supports an option (configurable on a per-bucket basis) to retain a local copy of
auto-tiered objects for a specified period of time. If this option is used, then the retained local copy

19

Chapter 1. Introduction

counts toward your on-premise storage limit (while the tiered object copy counts toward your tiered stor-
age limit), until the local copy reaches the end of its retention period and is automatically deleted from
local storage.

l The auto-tiering feature supports an option to temporarily restore tiered objects into local storage. This
works by downloading a copy of the object. During the time period that the object is locally restored, the
object counts toward your on-licensed on-premise storage limit as well as toward your licensed tiered
storage limit.

l The auto-tiering feature supports an option (configurable on a per-bucket basis) to tier to a HyperStore
destination -- either a different service region within the same HyperStore, or an entirely separate Hyper-
Store system. Tiering to a HyperStore destination does not count toward the licensed tiering limit.
Instead it counts toward the target HyperStore system's licensed on-premise storage limit.

1.3.4. WORM (Object Lock) License
Your license may or may not include support for the HyperStore WORM (Object Lock) feature. To check
whether your license supports this feature, see the CMC's Cluster Information page: it will indicate either
"Object Lock License: Enabled" or "Object Lock License: Disabled". If Disabled, you cannot use the Object
Lock feature -- the system will return a 403 Forbidden response if an S3 client application attempts to create a
new bucket with object lock enabled.

If your current license does not support Object Lock and you want to use this feature, contact Cloudian Support
for information about a license that supports Object Lock.

For more information about this feature, see "WORM (Object Lock)" (page 121).

1.3.5. HyperIQ License
Cloudian HyperIQ is a solution for dynamic visualization and analysis of HyperStore monitoring data. HyperIQ
is a separate product available from Cloudian that deploys as virtual appliance on VMware or VirtualBox and
integrates with your existing HyperStore system. For more information about HyperIQ contact your Cloudian
representative.

Your HyperStore license has a HyperIQ attribute that determines the level of HyperIQ functionality available to
you if you acquire and set up the HyperIQ virtual appliance:

l Basic -- HyperIQ dashboards for OS and service status monitoring are supported indefinitely. This is the
default.

l Enterprise -- HyperIQ dashboards for OS and service status monitoring are supported indefinitely, and
also an S3 analytics dashboard is supported until a defined expiration date. The presence of the S3
analytics dashboard is what distinguishes Enterprise level HyperIQ support from Basic HyperIQ sup-
port.

1.3.6. License Updating
You may need to update your license periodically, depending on the specific terms of your Cloudian license
agreement. Updating your license requires obtaining a new license file from Cloudian and applying that file on
all of your HyperStore nodes. Existing customers can obtain a new license file by emailing a request to cloud-
ian-license@cloudian.com.

Once you've obtained a new license file you can use the CMC's Cluster Information page to dynamically apply
the new license file to your HyperStore system. For instructions see "Install a New License File" (page 337).

20

1.4. HyperStore Services

1.3.7. Auditing
If you have a production license for HyperStore software, the system will regularly transmit auditing data to
Cloudian, Inc., using the system’s Smart Support functionality.

1.4. HyperStore Services
The Cloudian HyperStoreTM system is composed of several types of services each of which plays a role in

implementing the overall HyperStore object storage service. The table below shows the major HyperStore ser-
vices and how the HyperStore installation script distributes these services across a multi-node cluster. There
are common services that are installed to and run on every node, and specialized support services that are
installed and run on only one or a sub-set of nodes.

For services distribution diagrams, see "Services Distribution -- 3 Nodes, Single DC" (page 31).

Note Within your installation cluster, the HyperStore installer automatically chooses the hosts for ser-
vices that are not intended to run on every node. These host assignments are recorded to an install-
ation configuration file that the installer generates when it runs (CloudianInstallConfiguration.txt in your
installation staging directory). After your installation is completed, these host assignments can also be
viewed on the CMC's Cluster Information page. If you want to modify these assignments after install,
see "Change Node Role Assignments" (page 457).

If you installed HyperStore software on only one node, then all these services will run on that node.

Service Category Service Where It Is Installed

Common Services S3 Service Every node.

HyperStore Service Every node.

Cassandra Service Every node.

Admin Service Every node.

IAM Service Every node in the default
service region.

STS Service Every node in the default
service region.

SQS Service Every node.

Cloudian Management Console (CMC) Every node.

Specialized Support Ser-
vices

Redis Credentials DB Master One node per entire Hyper-
Store system.

Redis Credentials DB Slaves Two per data center. If you
have a large cluster (25
nodes or more in a data
center), consult with Cloud-
ian Support about whether
you should add more Redis
Credentials slaves. For
instructions on adding

21

Chapter 1. Introduction

Service Category Service Where It Is Installed

slaves, see "Move or Add
a Redis Credentials Slave
or Redis QoS Slave"
(page 461). (Note: If you
upgraded from a Hyper-
Store version older than
6.0, you will have only one
Redis Credentials slave
per data center.)

Slaves will not be on same
node as Credentials master

Redis QoS DB Master(s) One node per service
region.

Redis QoS DB Slave(s) One node per data center.
Slave will not be on same
node as QoS Master.

Redis Monitor One primary node and one
backup node per entire
HyperStore system.

Crontab configuration and Monitoring Data Col-
lector

One primary node and one
backup node per service
region.

Local NTP server One local NTP server per
service region.

Puppet Master One primary node and one
backup node per entire
HyperStore system.

1.4.1. S3 Service
The HyperStore system provides a high-performance S3 proxy service. The S3 Service processes S3 REST
requests incoming from client applications (including the Cloudian Management Console). On the back side,
the S3 Service interfaces with:

l The HyperStore Service, Cassandra "UserData_<policyid>" keyspaces, and Cassandra "ECKeyspace"
keyspace in order to store, retrieve, and delete users' S3 data objects.

l The Cassandra "AccountInfo" keyspace to update and retrieve user account information.

l The Cassandra "Reports" keyspace to update users' transaction history.

l The Redis "Credentials" DB to implement user authentication, S3 bucket validation, and other functions
in support of S3 request processing.

l The Redis "QoS" DB to enforce group and user level quality of service restrictions.

The S3 Service is built on Jetty server technology.

22

http://www.eclipse.org/jetty/

1.4. HyperStore Services

1.4.2. HyperStore Service and the HSFS
As an object store, Cassandra provides a wealth of valuable built-in functionality including data partitioning,
automatic replication, easy cluster expansion, quorum calculation, and so on. For storing small data items, Cas-
sandra also provides good performance. But as the data size increases, storing data on the Linux file system
becomes more efficient than storing it in Cassandra.

The HyperStore system uses a hybrid storage solution where Cassandra is used for storing metadata while the
Linux filesystem on Cassandra nodes is used for storing object data. The area of the Linux file system where
S3 object data is stored is called the HyperStore File System (HSFS).

The general strategy is that Cassandra capabilities are used to determine the distributed data management
information such as the nodes that a specific object's metadata should be written to and the nodes that the
object's data should be written to. Then at the storage layer, the metadata is stored in Cassandra and the
object data is stored in the HSFS.

Within the HSFS, objects can be stored and protected in either of two ways:

l Replicated storage

l Erasure coded storage

For more information on data storage and protection options, see "Storage Policies Feature Overview" (page
76).

When the system stores S3 objects, the full path to the objects will be as indicated below:

l For S3 object replicas:

<mountpoint>/hsfs/<base62-encoded-vNode-token>/<policyid>/<000-255>/<000-255>/<filename>

l For S3 object erasure coded fragments:

<mountpoint>/ec/<base62-encoded-vNode-token>/<policyid>/<000-255>/<000-255>/<filename>

l The path segments are:

o The <mountpoint> is one of your HyperStore data mount points as configured by the "hyper-
store_data_directory" (page 517) setting in common.csv.

o The hsfs or ec segment distinguishes replicated data (designated here as "hsfs") from erasure-
coded data (designated as "ec).

o The <base62-encoded-vNode-token> is a base-62 encoding of the token belonging to the
vNode to which the object replica or erasure coded fragment is assigned.

o The <policyid> segment indicates the storage policy used by the S3 storage bucket with which
the object is associated.

o The two <000-255> segments of the path are based on a hash of the <filename>, normalized to
a 255*255 number.

o The <filename> is a dot-separated concatenation of the object’s system-assigned token and a
timestamp based on the object's Last Modified Time. The token is an MD5 hash (in decimal
format) of the bucket name and object name. The timestamp is formatted as <UnixTimeMil-
lis><6digitAtomicCounter>-<nodeIPaddrHex>. The last element of the timestamp is the IP
address (in hexadecimal format) of the S3 Service node that processed the object upload
request.

23

Chapter 1. Introduction

Note For objects last modified prior to HyperStore version 6.1, the timestamp is simply
Unix time in milliseconds. This was the timestamp format used in HyperStore versions
6.0.x and older.

l Example, for a replicated object named "HyperStoreAdminGuide.pdf":

/hyperstore1/hsfs/1L1tEZZCCQwdQBdGel4yNk/c4a276180b0c99346e2285946f60e59c/109/154/

55898779481268535726200574916609372181.1487608689783689800-0A320A15

In the above example:

o "hyperstore1" is one of the HyperStore data mount points configured for the system (as specified
by the configuration setting common.csv: hyperstore_data_directory)

o "hsfs" indicates that the object is a replicated object (not an erasure-coded object)

o "1L1tEZZCCQwdQBdGel4yNk" is the Base-62 encoding of the token belonging to the vNode to
which the object instance is assigned

o "c4a276180b0c99346e2285946f60e59c" is the system-generated identifier of the storage policy
used by the S3 storage bucket with which the object is associated.

o "109/154" is a hash of the file name, normalized to a 255*255 number.

o "55898779481268535726200574916609372181.1487608689783689800-0A320A15" is the
file name. The "55898779481268535726200574916609372181" segment is the object’s sys-
tem-assigned token, in decimal format. The "1487608689783689800-0A320A15" segment is the
object's Last Modified Time timestamp, in format <UnixTimeMillis><6digitAtomicCounter>-
<nodeIPaddrHex>.

Note Presuming that versioning is disabled (as it is by default), when an S3 client
uploads an updated version of an object the system will overwrite the existing replica file
with the new version. The token segment of the file name will remain constant (the object
keeps the same token) and the timestamp segment of the file name will change.

1.4.2.1. File Digests

Each replica file and each erasure coded fragment file has a corresponding digest containing the hexadecimal
MD5 hash of the file as well as a small amount of metadata including the object name (the name of the object
for which the file is a replica or an erasure coded fragment) and a last modified timestamp. These digests are
used by the HyperStore Service when reading and writing objects and are also used by "hsstool " (page 643)
operations such as repair and cleanup. The digests are stored in high-performance RocksDB databases (per-
sistent key-value stores) on the same mount point as the corresponding file. On each mount point, there is one
RocksDB database for storing digests for replica data files, and one RocksDB database for storing digests for
erasure coded data files.

For replica data files, the digest database is stored under:

<mountpoint>/digest/hsfs/

For erasure coded data files, the digest database is stored under:

<mountpoint>/digest/ec/

Within each database, the key is a byte array consisting of the object's token and the file timestamp in binary
format, and the value is the digest itself.

24

http://rocksdb.org/

1.4. HyperStore Services

Note
• When an existing object is updated by an S3 client, the object’s token (a decimal formatted MD5
hash of the object key) remains the same but the object’s digest (including a hexidecimal formatted
MD5 hash of the object data) changes.
• For an erasure coded S3 object, each fragment has the same token (based on object key) but a dif-
ferent digest (based on fragment content).
• For multipart S3 objects — uploaded to the system through the S3 API methods for Multipart Uploads
— each part has a different token (since each part has a distinct object key incorporating a part num-
ber) and a different digest (based on part content).

1.4.2.1.1. Retrieving a Digest

The HyperStore system supports a JMX command for retrieving a digest from a particular node:

l HyperStore Service listener port = 19082

l MBean = com.gemini.cloudian.hybrid.server.digest:type=RocksDBDigestStore

l Operation and arguments = getDigestString=<bucketName>/<objectName>

For example, using the command line JMX tool cmdline-jmxclient that comes bundled with your HyperStore
system:

[root]# java -jar /opt/cloudian/tools/cmdline-jmxclient-*.jar -:- localhost:19082

com.gemini.cloudian.hybrid.server.digest:type=RocksDBDigestStore

getDigestString=bucket1/LocalInstallProcedure.docx

10/25/2016 06:27:30 -0700 org.archive.jmx.Client

getDigestString=bucket1/LocalInstallProcedure.docx:

68855684469431950092982403183202182439.1477401010696032189-0A0A1608

9c741e3e7bbe03e05510071055151a6e

bucket1/LocalInstallProcedure.docx

2016-10-25T13:10:10.696Z

/var/lib/cloudian/hsfs/1mDFFH13tL1DIsYhNKDX3d/a7a28896654319cc7af4c39748a27e3d/243/187/

68855684469431950092982403183202182439.1477401010696032189-0A0A1608

13164

For clarity, in the example above an empty line has been inserted between the JMX command and the
response. This example is for a replicated object named LocalInstallProcedure.docx from the bucket named
bucket1. In the response, 68855684469431950092982403183202182439.1477401010696032189-
0A0A1608 is the Rocks DB database key for this entry (in format <objectToken>.<timestamp>). The sub-
sequent lines are the digest contents. 9c741e3e7bbe03e05510071055151a6e is the replica's MD5 hash in
hexadecimal; the /var/lib/cloudian/hsfs/... line is the replica file path and name; and 13164 is the replica's file
size in bytes.

Note In the command line example above, -:- is the USER:PASS value (indicating that the system is
not configured to require a userId and password for JMX access). For cmdline-jmxclient usage inform-
ation, enter the following command:

[root]# java -jar /opt/cloudian/tools/cmdline-jmxclient-*.jar

To check the current cmdline-jmxclient version number (replaced by the wildcard character in the

25

Chapter 1. Introduction

command above), change to the /opt/cloudian/tools directory and list the directory contents. Look for
the cmdline-jmxclient-<version>.jar file.

1.4.3. Cassandra Service
The HyperStore system uses the Apache open source storage platform Cassandra to store several types of
data. The HyperStore system creates and uses several distinct "keyspaces" (approximately equivalent to data-
bases) within Cassandra:

l The UserData_<policyid> keyspaces store:

o User bucket information

o Object metadata. For an overview of the HyperStore system’s support for object metadata, see
"Object Metadata Feature Overview" (page 164).

Note There is one UserData_<policyid> keyspace for each storage policy in the system. For
information about storage policies see "Storage Policies Feature Overview" (page 76).

l The AccountInfo keyspace stores information about HyperStore S3 user accounts and group accounts
(including IAM user and group accounts)

l The Reports keyspace stores system-wide, per-group, and per-user S3 usage data, in support of the
HyperStore usage reporting functionality. It will also store per-bucket usage data if you enable per-
bucket usage tracking.

l The Monitoring keyspace stores system monitoring statistics in support of HyperStore’s system mon-
itoring functionality. It also stores status information for node operations such as repairs and cleanups;
and stores token range maps that are used by the system when you add nodes to your cluster.

l The ECKeyspace keyspace does not actually store any erasure coded object data; rather, the Hyper-
Store system creates this keyspace so that the HyperStore erasure coding feature can leverage Cas-
sandra functions for token-based mapping of objects (erasure coded object fragments, in this case) to
nodes within the storage cluster.

l The Notification keyspace stores bucket notification messages. For more information see "HyperStore
Support for the AWS SQS API" (page 1041).

S3 client applications do not access Cassandra databases directly; all S3 client access is to the S3 Service,
which in turn accesses Cassandra in support of S3 operations. The HyperStore Service and Admin Service
also access Cassandra.

1.4.4. Redis Credentials and Redis QoSServices
The HyperStore system uses the lightweight, open source Redis key-value data store to store a variety of data
that supports HyperStore S3 service features. There are two types of Redis DBs in a HyperStore deployment:

l The Redis Credentials DB stores user credentials and additional S3 operation supporting data such
as multi-part upload session information and public URL access counters.

26

http://cassandra.apache.org/
http://redis.io/

1.4. HyperStore Services

l The Redis QoS DB stores user-level and group-level Quality of Service settings that have been estab-
lished by system administrators. The DB is also used to keep count of user requests, so that Quality of
Service limits can be enforced by the system.

The S3 Service, Admin Service, and HyperStore Service are the clients to these two Redis DBs. Com-
munication is through a protocol called Redis Serialization Protocol (RESP).

Note for multi-region systems

In a multi-region HyperStore deployment there will be:

l Just one, universal Redis Credentials DB which serves the entire HyperStore deployment.

l A separate, independent Redis QoS DB in each service region

1.4.4.1. Redis Node Roles

Each Redis DB is implemented across two or more nodes, with the nodes playing different roles. These roles
are:

l master— All write requests from Redis clients are implemented on the master node. There is only one
master node for each Redis DB.

Note for multi-region systems

In a multi-region HyperStore deployment, the universal Redis Credentials DB has one master node and
each regional Redis QoS DB has its own master node.

l slave— In each Redis DB, data from the Redis master node is asynchronously replicated on to one or
more slave nodes (at least one slave node per data center). The slave nodes support doing reads for
Redis clients but not writes. If a master node fails, the master role is automatically failed over to a slave
node. This fail-over process is managed by the "Redis Monitor Service" (page 27).

Redis roles are assigned to your HyperStore nodes automatically during installation.

1.4.5. Redis Monitor Service
The Redis Monitor monitors Redis Credentials DB and Redis QoS DB cluster health and implements automatic
failover of the Redis master node role within each of the two Redis DBs. For redundancy, the Redis Monitor
runs on two HyperStore nodes, configured as primary on one node and as backup on the other node.

If the Redis Monitor detects that a Redis master node has gone down, it promotes an available slave node to
the master node role; and informs the Redis cluster’s clients (the S3 Service, IAM Service, Admin Service,
HyperStore Service) of the identity of the new master.

Note In a multi-DC system the HyperStore installer puts the Redis Monitor backup in the same DC as
the Redis Monitor primary. Keep them in the same DC -- do not migrate them such that the primary and
backup are in different DCs.

In a multi-region HyperStore deployment, a single Redis Monitor instance will monitor multiple regional
Redis QoS DBs as well as the one universal Redis Credentials DB. Each regional Redis QoS DB will have its
own configured cluster membership list that the Redis Monitor will refer to if a slave needs to be promoted to
master.

27

Chapter 1. Introduction

1.4.6. Admin Service
The HyperStore Admin Service implements a RESTful HTTP API through which you can perform administrative
operations such as:

l Provisioning groups and users.

l Managing quality of service (QoS) controls.

l Creating and managing rating plans.

l Generating usage data reports.

l Generating bills.

For information on the Admin API see "HyperStore Admin API Introduction" (page 741).

The "Cloudian Management Console (CMC) Service" (page 28) is a client to the Admin Service. You also
have the option of building your own Admin Service client.

The Admin Service is closely integrated with the "S3 Service" (page 22). Both leverage Jetty technology; both
are installed together; and both are started and stopped together by the same commands.

1.4.7. IAM, STS, and SQSServices
The HyperStore IAM, STS, and SQS services provide limited support for the AWS Identity and Access Man-
agement API, the AWS Security Token Service API, and the AWS Simple Queue Service API, respectively.

For the IAM Service you can use the CMC as an IAM client, or use a third party or custom IAM client applic-
ation. For the STS and SQS services, the CMC does not provide client access and so you must use third party
or custom client applications to access these services.

For more information about HyperStore's implement of these services see

l "HyperStore Support for the AWS IAM API" (page 991)

l "HyperStore Support for the AWS STS API" (page 1037)

l "HyperStore Support for the AWS SQS API" (page 1041)

1.4.8. CloudianManagement Console (CMC) Service
The Cloudian Management Console (CMC) is a web-based user interface for Cloudian HyperStore system
administrators, group administrators, and end users. The functionality available through the CMC depends on
the user type associated with a user’s login ID (system admin, group admin, or regular user).

As a HyperStore system administrator, you can use the CMC to perform tasks such as:

l Provisioning groups and users.

l Managing quality of service (QoS) controls.

l Creating and managing rating plans.

l Generating usage data reports.

l Generating bills.

28

http://www.eclipse.org/jetty/

1.4. HyperStore Services

l Viewing and managing users' stored data objects.

l Setting access control rights on users' buckets and stored objects.

Group administrators can perform a more limited range of admin tasks pertaining to their own group. Regular
users can perform S3 operations such as uploading and downloading S3 objects.

The CMC acts as a client to the "Admin Service" (page 28) and the "S3 Service" (page 22).

1.4.9. Supporting Services
Services that play a supporting role for the HyperStore system include:

l Cloudian Monitoring Agent— The Cloudian Monitoring Agent runs on each HyperStore node and mon-
itors node health and performance statistics. The Agent also plays a role in the triggering of event noti-
fication emails to system administrators. System and node statistics are viewable through the CMC; and
you can configure event notification rules through the CMC as well.

l Cloudian Monitoring Data Collector— The Cloudian Monitoring Data Collector runs (together with the
system maintenance cron jobs) on one node in each of your service regions, and regularly collects data
from the Monitoring Agents. The Monitoring Collector writes its collected node health statistics to Cas-
sandra’s "Monitoring" keyspace. The Monitoring Collector is also configured (together with the cron
jobs) on a backup node, and automatic failover to the backup occurs if the primary node goes offline or
if crond goes down on the primary.

l Puppet— As part of the HyperStore software installation, the HyperStore installer installs the open
source version of Puppet and uses it to implement initial HyperStore system configuration. HyperStore
also uses Puppet for support of ongoing configuration management. For more information see "Push-
ing Configuration File Edits to the Cluster and Restarting Services" (page 506). Puppet agents run
on every node. The Puppet Master runs on one node and is also configured on a backup node. Manual
failover to the backup is supported if the primary Puppet Master instance goes down.

l Pre-Configured ntpd— Accurate, synchronized time across the cluster is vital to HyperStore service.
When you install your HyperStore cluster, the installation script automatically configures a robust NTP
set-up using ntpd. In each HyperStore data center four of your HyperStore nodes are automatically con-
figured to act as internal NTP servers, which synchronize with external NTP servers (by default the serv-
ers from the pool.ntp.org project). Other HyperStore hosts in each data center are configured as clients
of the internal NTP servers. For more information see "NTP Automatic Set-Up" (page 598).

To see which of your HyperStore nodes are internal NTP servers and which external NTP servers they
are synchronizing with, log into the CMC and go to the Cluster Information page.

Note If a HyperStore data center has only four or fewer nodes, then all the nodes in the data
center are configured as internal NTP servers.

l Dnsmasq— Dnsmasq is a lightweight domain resolution utility. This utility is bundled with Cloudian
HyperStore software. The HyperStore interactive installation wizard gives you the option to have dns-
masq installed and configured to resolve HyperStore service domains (specifically the S3 service
domain, the S3 website endpoint domain, and the CMC domain). The dnsmasq utility may be helpful if
you are evaluating a small HyperStore system but it is not appropriate for production use.

29

https://puppet.com/product/how-puppet-works
http://www.thekelleys.org.uk/dnsmasq/doc.html

Chapter 1. Introduction

1.5. System Diagrams

1.5.1. System Levels
The diagram below shows the conceptual and functional distinctions between the "levels" within a HyperStore
system. From broadest to most granular the levels are:

l System

l Region (also known as a "Cluster")

l Data Center

l Node

l vNode

1.5.2. Service Interconnections
The diagram below shows the major service components that comprise a HyperStore system, the connections
between those services, the direction of the connections, and the default listening ports to which connections
are made.

30

1.5. System Diagrams

Note With the exception of the Redis DBs and the IAM/STS Services, each of the services shown in the
diagram run on every HyperStore node. The diagram excludes certain supporting services such as the
Redis Monitor, the Monitoring Data Collector, and Puppet. For a complete list of HyperStore services
and the listening ports they use, see "HyperStore Listening Ports" in the Reference section of the
HyperStore Installation Guide.

1.5.3. Services Distribution -- 3 Nodes, Single DC
Proper distribution of HyperStore service components across multiple physical nodes is handled automatically
by the HyperStore installer. The diagram below shows a typical HyperStore services distribution in a three-
node cluster within a single data center (DC). Things to note:

l On every node in your cluster are the S3 Service, Admin Service, HyperStore Service, Cassandra,
CMC, Puppet Agent, and Monitoring Agent. These collectively are labeled as "COMMON SERVICES" in
the diagram.

l For each specialized service that has a primary instance and a backup instance (such as Puppet
Master or Redis Monitor), the backup resides on a different node than the primary. Likewise the Redis
QoS slave will reside on a different node than the Redis QoS master, and the two Redis Credentials
slaves will reside on different nodes than the Redis Credentials master.

l If you have a larger cluster in a single DC, you will still have the same number of specialized service
instances as shown in the diagram (for example, one primary Cronjob instance and one backup

31

Chapter 1. Introduction

instance) — the only difference is that this fixed set of specialized service instances will be spread
across your cluster rather than concentrated among three nodes as shown in the diagram.

Note For information about the exact location of services in your HyperStore system, log into the CMC
and go to the Cluster Information page. The system allows you to move services from one host to
another, if you wish to do so. For instructions see "Change Node Role Assignments" (page 457).

Note If you have a very large cluster (25 nodes or more in a data center), consult with Cloudian Sup-
port about whether you should add more Redis Credentials slaves. For instructions on adding Cre-
dentials slaves, see "Move or Add a Redis Credentials Slave or Redis QoS Slave" (page 461).

Note Starting with HyperStore 7.2, the Salt master is located with the Puppet master.

1.5.4. Services Distribution -- Multi-DC, Single Region
Proper distribution of HyperStore service components across multiple physical nodes is handled automatically
by the HyperStore installer. The diagram below shows a typical HyperStore services distribution across a six-
node system that spans two data centers. The system is configured as a single service region. Things to note:

l The "COMMON SERVICES" (S3 Service, Admin Service, HyperStore Service, Cassandra, CMC, Pup-
pet Agent, and Monitoring Agent) run on every node in your multi-DC system.

l Each data center has its own Redis QoS slave and its own two Redis Credentials slaves, for Redis read
performance optimization.

l The Puppet Master backup is placed in a different DC than the Puppet Master primary; and the same is
true for the Cronjobs backup and primary.

32

1.5. System Diagrams

Note The Redis Monitor backup must remain in the same data center as the Redis Monitor primary,
and this should be the same data center as where the Redis Credentials master is located.

Note To check the current location of specialized services within your multi-DC HyperStore system, go
to the CMC's Cluster Information page.

Note Starting with HyperStore 7.2, the Salt master is located with the Puppet master.

1.5.5. Services Distribution -- Multi-Region
Proper distribution of HyperStore service components across multiple physical nodes is handled automatically
by the HyperStore installer. This diagram shows a six-node system that spans two data centers, and this time
the system is configured as two different service regions. Things to note:

l The "COMMON SERVICES" (S3 Service, Admin Service, HyperStore Service, Cassandra, CMC, Pup-
pet Agent, and Monitoring Agent) run on every node in your multi-region system.

l The whole multi-region system is served by a single active Puppet master and a single Redis Cre-
dentials master.

l Each region has its own Redis QoS master and its own active Cronjob host.

33

Chapter 1. Introduction

Note Starting with HyperStore 7.2, the Salt master is located with the Puppet master.

1.5.6. Specialized Services Availability
Along with the services that are common to every HyperStore node (such as the S3 Service, HyperStore Ser-
vice, Cassandra, and so on) your HyperStore system includes several specialized services that run only on cer-
tain nodes. The HyperStore installer automatically distributes these services across your cluster. Each
specialized service has a primary instance and a backup instance, and the installer ensures that for each spe-
cialized service the primary instance and backup instance are deployed on different nodes.

The diagram below illustrates how the system ensures high availability of these specialized services by sup-
porting failover of each service type, from the primary instance to the backup instance. For nearly all service
types, the system automatically detects a failure of the primary instance and automatically fails over to the
backup instance. The one exception is the Puppet Master role (for managing system configuration) — in the
case of the Puppet Master you can manually implement failover if there’s a problem with the primary instance.

The diagram shows six nodes, but the principles are the same regardless of how many nodes you have: spe-
cialized services are dispersed across the cluster, and the backup instance of any given service is deployed on
a different node than the primary instance.

34

1.5. System Diagrams

Note The automatic failover of the Cronjobs and Monitoring Data Collector roles from the primary to
the backup instance invokes the cloudianInstall.sh script and will fail if cloudianInstall.sh is already run-
ning. When you occasionally use cloudianInstall.sh for system configuration tasks, remember to exit the
installer when you are done — do not leave it running.

Also, the automatic failover of the Cronjobs and Monitoring Data Collector roles from the primary to the
backup instance will not occur until the primary instance has been down for 10 minutes.

Note Starting with HyperStore 7.2, the Salt master is located together with the Puppet master, and if
you manually fail over the Puppet master role to the backup node, the Salt master role moves to that
backup node as well.

1.5.7. S3 PUTProcessing Flow
The diagram below shows the main aspects of how the HyperStore system processes an S3 PUT Object
request. The flow is presented from the perspective of the S3 Service, which handles incoming S3 requests.
The S3 Service runs on all of the nodes in your cluster.

35

Chapter 1. Introduction

36

1.5. System Diagrams

1.5.8. S3GETProcessing Flow
This diagram shows the main aspects of how the HyperStore system processes an S3 GET Object request,
from the perspective of the S3 Service.

37

Chapter 1. Introduction

1.5.9. Data Freshness for ReplicatedObject Reads
Typically all the replicas of a given object, and all the replicas of that object’s metadata, will be consistent —
that is, all the replicas will be equally current. However, because HyperStore allows you to configure storage
policies that utilize eventual consistency for writes, there may be times when an object’s data replicas and/or
metadata replicas are temporarily inconsistent. If a read request on the object comes into the system during
such a time, by default HyperStore either returns the freshest data or — if no fresh replica is available — fails
the request.

Consider a 3X replication scenario where QUORUM has been used as the write consistency level (which is the
default configuration for replication storage policies). Suppose an S3 PUT of an updated version of an object
has succeeded even though only two of three object data replica writes and only two of three object metadata
replica writes succeeded. We then can temporarily have a condition like that shown in the following diagram,
where "T2" indicates the timestamp of the new version of the data and metadata and "T1" indicates the out-
dated version. (For example, perhaps node5 was momentarily offline when the S3 write request came in; and
now it’s back online but proactive repair has not yet completed.)

If an S3 read request on the object comes into the system during this temporary period of data inconsistency,
the system works as follows:

l As long as the read consistency level is set to at least QUORUM (the default for replication storage
policies), the system will read at least two of the metadata replicas. Consequently it will read at least
one of the fresh metadata replicas, with timestamp T2. If it reads one T1 metadata replica and one T2
metadata replica, it works with the metadata that has the freshest timestamp. The system then tries to
retrieve an object data replica that has this same fresh timestamp.

l If object data replicas with the fresh timestamp are available, that object data is returned to the S3 client.
If nodes are down in such a way that the only available object data replica is the outdated one, then the
system fails the S3 request.

38

1.5. System Diagrams

Note HyperStore allows you to configure storage policies that use a read CL of ONE rather than
QUORUM. This non-default configuration maximizes read availability and speed, but also increases
the chances of returning a stale replica to the client. This is because -- if your write CL is QUORUM (the
default) and your read CL is ONE (non-default) -- there is a chance of reading a stale metadata replica
and returning a stale object replica to the client.

For more information on S3 write and read availability under various consistency level configurations, see
"Storage Policy Resilience to Downed Nodes" (page 84).

1.5.10. Dynamic Consistency Levels
When you "Add a Storage Policy" (page 353) to your HyperStore system one of the policy dimensions that
you configure is consistency requirements for writes and reads of object data and metadata. When doing so,
you have the option of configuring "dynamic" consistency level requirements. With dynamic CLs, you specify
two or more consistency levels that differ in strictness. If the stricter consistency level (the "primary" consistency
level) cannot be met for a given S3 request because there are not enough qualified endpoints, then the system
tries to meet the less strict level (the "fallback" consistency level).

Note Although HyperStore applies dynamic consistency level logic only to the writing and reading of
object metadata (and not object data), this still has the effect of controlling overall S3 request success
or failure logic -- since for an S3 write or read operation to succeed it must succeed for the object
metadata as well as the object data.

The first flow chart below illustrates the standard consistency level logic when only one consistency level (CL)
is used per operation type. The second flow chart illustrates the logic for a two-tier dynamic consistency level
configuration. Following the flow charts is a detailed text description of how the dynamic consistency level fea-
ture works, which includes discussion of what constitutes a "qualified endpoint".

39

Chapter 1. Introduction

1.5.10.1. Standard Consistency Level Logic

40

1.5. System Diagrams

1.5.10.2. Dynamic Consistency Levels Logic

1.5.10.3. Dynamic Consistency Levels Logic Described

When the S3 Service processes an S3 request such as a PUT or a GET of an object, it checks the system for a
list of "endpoints" for that particular object — the nodes that the object data and object metadata should be writ-
ten to or read from. The system determines the endpoint node list based on the object token and the applicable
storage policy (such as 3X replication or 4+2 erasure coding). The system then checks each of the endpoint
nodes for any of these disqualifying conditions:

l Cassandra Service is down or unreachable

l HyperStore Service has been marked as down by the S3 Service (see "Node Status Configuration"
(page 578))

l Node has been put into Maintenance Mode by operator (see "Start Maintenance Mode" (page 329))

l Node is in a StopWrite condition due to all data disks being 90% full or more (disqualifying only for write
requests, not read requests; see Automatic Stop of Writes to a Node)

l Disk on which requested data resides is disabled (relevant only for read requests)

If the number of qualified endpoint nodes -- endpoint nodes free of any of these disqualifying conditions --
is enough to achieve the primary CL, the system proceeds with trying to achieve the primary CL. If enough
endpoint writes or reads succeed to achieve the primary CL, a success response is returned to the S3 client. If
not -- such as if an error is encountered at one of the endpoints during the attempted write or read of object
metadata -- then the S3 request fails and an error is returned to the S3 client. The system will not try to achieve
the fallback CL in this scenario.

If the number of qualified endpoint nodes is too few to achieve the primary CL but enough to achieve the
fallback CL, the system proceeds with trying to achieve the fallback CL. If enough endpoint writes or reads suc-
ceed to achieve the fallback CL, a success response is returned to the S3 client. If not then the S3 request fails
and an error is returned to the S3 client.

41

Chapter 1. Introduction

If the number of qualified endpoint nodes is too few to achieve the fallback CL, then the S3 request fails and
an error is returned to the S3 client.

As an example, with a Replication Within Single Data Center storage policy, for the object Write CL con-
figuration you could select the "ALL" CL and also the (less stringent) "QUORUM" CL. With this configuration, for
a given request to write an S3 object, if the number of qualified endpoints is enough to achieve the ALL level,
the system will try to achieve the ALL level for the operation. If the number of qualified endpoints is not enough
to achieve ALL but is enough to achieve QUORUM, the system will try to achieve QUORUM for the operation. If
the number of qualified endpoints is not enough to achieve even the QUORUM level, the operation will fail.

It's important to note that once the system determines that enough qualified endpoints are available to try to
meet the stricter of the configured CLs, the system is then committed to that path in terms of the object metadata
writes or reads. If there is a subsequent failure on that path — such as a metadata write failure on one or more
of the endpoints — then the request fails and an error is returned to the client. The system does not go back
and try to achieve the less-strict CL in this scenario.

1.5.11. How vNodesWork
Following is an in-depth look at HyperStore vNodes, including diagrams to illustrate the role that vNodes play
in supporting high-availability object storage in a HyperStore cluster.

S3 object placement and replication within a HyperStore cluster is based on a consistent hashing scheme that
utilizes an integer token space ranging from 0 to 2127-1. Traditionally, in a storage cluster based on consistent
hashing, each physical node is assigned an integer token from the token space. A given node is then respons-
ible for a token range that extends from the next-lower token assigned to a different node (excluding the token
number itself), up to and including the given node's own token. Then, an integer hash value is calculated for
each S3 object as it is being uploaded to storage. The object is stored to the node responsible for the token
range in which the object’s hash value falls. Replication is implemented by also storing the object to the nodes
responsible for the next-higher token ranges.

Advancing beyond traditional consistent hash based storage, the HyperStore system utilizes and extends the
"virtual node" (vNode) functionality originally introduced in Cassandra version 1.2. This optimized design
assigns multiple tokens to each physical node. In essence, the storage cluster is composed of very many "vir-
tual nodes", with multiple virtual nodes residing on each physical node. Each virtual node is assigned its own
token and has its own token range for which it is responsible.

The HyperStore system goes a significant step further by assigning a different set of tokens (virtual nodes) to
each HyperStore data disk on each host. With this implementation, each data disk on a host is responsible for
a set of different token ranges and -- consequently -- a different inventory of object data. If a disk fails it affects
only the object data on that one disk. The other disks on the host can continue operating and supporting their
own data storage responsibilities.

The number of tokens that the system assigns to each host is based on the total combined storage capacity of
the host's HyperStore data disks. Specifically, the system determines the number of tokens to assign to a host
by taking the total number of terabytes of HyperStore data storage capacity on the host, multiplying by .7, and
then rounding down to the nearest integer. Further, the system applies a lower bound of one token per Hyper-
Store data disk and an upper bound of 512 tokens per host.

For example:

Number of Data Disks
on Host Size of Data Disks Total TBs of Data

Disk on Host
Number of Tokens Assigned To

Host

2 500GB 1TB 2

42

1.5. System Diagrams

Number of Data Disks
on Host Size of Data Disks Total TBs of Data

Disk on Host
Number of Tokens Assigned To

Host

(1TB X .7 = .7, but minimum is 1
token per data disk)

4 8TB 32TB

22

(32TB X .7 = 22.4, rounded down =
22)

8
4 X 8TB

4 X 10TB
72TB

50

(72TB X .7 = 50.4, rounded down =
50)

12 10TB 120TB
84

(120TB X .7 = 84)

24 16TB 384TB

268

(384TB X 0.7 = 268.8, rounded
down = 268)

Note The data disk sizes in the table above are only for simple illustration of how the algorithm works.
In calculations for actual hosts, the system uses not the disk raw size (the decimal-based size stated by
the disk manufacturer) but rather the disk usable size after the disks are formatted and the file system is
mounted (the binary-based size the operating system reports if you run the lsblk command on the host).

On each host, the host's assigned tokens -- and associated token ranges -- are automatically allocated to each
HyperStore data disk in a manner such that storage capacity utilization should be approximately balanced
among the disks on a given host.

In the HyperStore File System mounted to each HyperStore data disk there are sub-directories that demarc-
ate each vNode's data.

For illustration of how vNodes work to guide the distribution of data across a cluster, consider a cluster of six
HyperStore hosts each of which has four disks designated for S3 object storage. Suppose that each physical
host is assigned 32 tokens. And suppose for illustration that there is a simplified token space ranging from 0 to
960, and the values of the 192 tokens in this system (six hosts times 32 tokens each) are 0, 5, 10, 15, 20, and
so on up through 955.

The diagram below shows one possible allocation of tokens across the cluster. Each host’s 32 tokens are
divided evenly across the four disks (eight tokens per disk), and that token assignment is randomized across
the cluster.

43

Chapter 1. Introduction

Now further suppose that you’ve configured your HyperStore system for 3X replication of S3 objects. And say
that an S3 object is uploaded to the system and the hashing algorithm applied to the unique <buck-
etname>/<objectname> combination gives us a hash value of 322 (for this simplified example; in reality the sys-
tem uses MD5 hashing). The diagram below shows how three instances or "replicas" of the object will be
stored across the cluster:

l With its object name hash value of 322, the "primary replica" of the object is stored on the vNode
responsible for the token range that includes the value 322. This is the vNode assigned token 325 (high-
lighted in red in the diagram below) -- this vNode has responsibility for a token range spanning from
320 (exclusive) up to 325 (inclusive). A simple way of identifying where the primary replica will go is
that it's the vNode with the lowest token that's higher than the object's hash value. Note that the
"primary replica" has no functional primacy compared to other replicas; it’s called that only because its
placement is based simply on identifying the disk that’s responsible for the token range into which the
object hash falls.

l The secondary replica is stored to the vNode that’s assigned the next-higher token (330, highlighted in
orange), which is located at hyperstore4:Disk2.

l The tertiary replica is stored to the vNode that’s assigned the next-higher token after that (335, in yel-
low), which is at hyperstore3:Disk3.

44

1.5. System Diagrams

Working with the same cluster and simplified token space, we can next consider a second object replication
example that illustrates an important HyperStore vNode principle: no more than one of an object’s replicas will
be stored on the same physical host. Suppose that an S3 object is uploaded to the system and the object name
hash is 38. The next diagram shows how the object’s three replicas are placed:

l The primary replica is stored to the vNode that's assigned token 40 — at hyperstore1:Disk3 (red high-
light in the diagram below).

l The vNode with the next-higher token — 45 (with white label) — is on a different disk (Disk1) on the
same physical host as token 40, where the HyperStore system is placing the primary replica. Because
it’s on the same physical host, the system skips over the vNode with token 45 and places the object’s
secondary replica where the vNode with token 50 is — at hyperstore5:Disk3 (orange highlight).

l The tertiary replica is stored to the vNode with token 55, at hyperstore2:Disk1 (yellow highlight).

45

Chapter 1. Introduction

The Disk Perspective
Now let’s change perspective and see how things look for a particular disk from within the cluster. Recall that
we’ve supposed a simplified token space with a total of 192 tokens (0, 5, 10, 15, and so on up to 955), ran-
domly distributed across the cluster so that each host has 32 tokens and each host’s tokens are evenly divided
among its disks. We can zero in on hyperstore2:Disk2 – highlighted in the diagram below — and see that this
disk has been assigned tokens 325, 425, 370, and so on.

Assuming the cluster is configured for 3X replication, on hyperstore2:Disk2 will be stored the following:

l In association with the disk’s assigned token 325:

o Primary replicas of objects for which the hash values are from 320 (exclusive) to 325 (inclusive)

o Secondary replicas of objects for which the hash values are from 315 (exclusive) to 320 (inclus-
ive)

o Tertiary replicas of objects for which the hash values are from 310 (exclusive) to 315 (inclusive)

46

1.5. System Diagrams

l In association with the disk’s assigned token 425:

o Primary replicas of objects for which the hash values are from 420 (exclusive) to 425 (inclusive)

o Secondary replicas of objects for which the hash values are from 415 (exclusive) to 420 (inclus-
ive)

o Tertiary replicas of objects for which the hash values are from 410 (exclusive) to 415 (inclusive)

l And so on.

As noted previously, the HyperStore system when placing secondary and tertiary replicas may in some cases
skip over tokens so as not to store more than one replica of an object on the same physical host. So this
dynamic could result in additional responsibilities for hyperstore2:disk2 as a possible endpoint for secondary
or tertiary replicas.

In the event that Disk 2 fails, Disks 1, 3, and 4 will continue fulfilling their storage responsibilities. Meanwhile,
objects that are on Disk 2 persist within the cluster because they’ve been replicated on other hosts. (Whether
those objects will still be readable by S3 clients will depend on how you have configured consistency level
requirements.)

Multi-Data Center Deployments
If you deploy your HyperStore cluster across multiple data centers within the same service region, your multiple
data centers will be integrated in one unified token space.

Consider an example of a HyperStore deployment that spans two data centers — DC1 and DC2 — each of
which has three physical nodes. As in our previous examples, each physical node has four disks; each host is
assigned 32 tokens (vNodes); and we’re supposing a simplified token space that ranges from 0 to 960. In this
multi-DC scenario, the token space is divided into 192 tokens — 32 for each of the six physical hosts — which
are randomly distributed across the six hosts.

Suppose also that S3 object replication in this deployment is configured at two replicas in each data center.

47

Chapter 1. Introduction

We can then see how a hypothetical S3 object with a hash value of 942 would be replicated across the two
data centers:

l The first replica is stored to the vNode that's assigned token 945 (in red in the diagram below) — which
is located in DC2, on hyperstore5:Disk3.

l The second replica is stored to vNode 950 (orange) — DC2, hyperstore6:Disk4.

l The next-higher vNode (955, with high-contrast label) is in DC2, where we’ve already met the con-
figured replication level of two replicas — so we skip that vNode.

l The third replica is stored to vNode 0 (yellow) — DC1, hyperstore2:Disk3. Note that after the highest-
numbered token (955) the token "ring" circles around to the lowest token (0). (In a more realistic token
space there would be a token range spanning from the highest vNode token [exclusive] through the top
of the token space and around to the lowest vNode token (inclusive]).

l The next-higher vNode (5, high-contrast label) is in DC2, where we’ve already met the configured rep-
lication level — so we skip that vNode.

l The fourth and final replica is stored to vNode 10 (green) — DC1, hyperstore3:Disk3.

Multi-Region Deployments
If you deploy a HyperStore system across multiple service regions, each region has its own independent

48

1.5. System Diagrams

storage cluster -- with each cluster having its own 0 to 2127-1 token space, its own set of vNodes, and its own
independent inventory of stored S3 objects. There is no per-object replication across regions.

Erasure Coded Data
When the HyperStore erasure coding feature is used, vNodes are the basis for distribution of encoded object
fragments. Each of an object's k+m erasure coded fragments is assigned a hash value (token) by the system,
and then each fragment is stored to the vNode responsible for the token range that contains the fragment's
token.

Cassandra Data
In a HyperStore system, Cassandra is used for storing object metadata and system metadata. In a typical
deployment, on each HyperStore node Cassandra data is stored on the same RAID-mirrored disks as the OS.
Cassandra data is not stored on the HyperStore data disks (the disks whose mount points are specified by the
configuration setting common.csv: hyperstore_data_directory).

When vNodes are assigned to a host machine, they are allocated across only the host’s HyperStore data
mount points. vNodes are not allocated to the mirrored disks on which Cassandra data is stored.

Within a cluster, metadata in Cassandra is replicated in accordance with your storage policies. Cassandra data
replication leverages vNodes in this manner:

l When a new Cassandra object -- a row key and its associated column values -- is created, the row key
is hashed and the hash (token) is used to associate the object with a particular vNode (the vNode
responsible for the token range that contains the Cassandra object's token). The system checks to see
which host machine that vNode is located on, and the "primary" replica of the Cassandra object is then
stored on the Cassandra disk(s) on that host.

l For example, suppose a host machine is assigned 96 vNodes, allocated across its multiple HyperStore
data disks. Cassandra objects whose hash values fall into the token ranges of any of those 96 vNodes
will get written to the Cassandra disk(s) on that host.

l Additional replicas of the Cassandra object (the number of replicas depends on your configuration set-
tings) are then associated with next-higher-up vNodes and stored to whichever hosts those vNodes are
located on — with the condition that if necessary vNodes will be "skipped" in order to ensure that each
replica of the Cassandra object is stored on a different host machine.

vNode Benefits
vNodes provide several advantages over conventional one-token-per-host schemes, including:

l Token assignment is performed automatically by the system — there is no need to manually assign
tokens when you first set up a storage cluster, or when you resize a cluster.

l For cluster operations that involve transferring data across nodes — such as data repair operations or
replacing a failed disk or host machine — the operations complete faster because data is transferred in
small ranges from a large number of other hosts.

l The allocation of different vNodes to each disk means that failure of a disk affects only a known portion
of the data on the host machine. Other vNodes assigned to the host’s other disks are not impacted.

l The allocation of different vNodes to each disk, coupled with storage policies for replication or eras-
ure coding, enable you to efficiently and safely store S3 object data without the overhead of RAID.

49

This page left intentionally blank

Chapter 2. Getting Startedwith a New
HyperStore System
Once a newly installed HyperStore system is up and running, you can use the Cloudian Management Console
(CMC) to take the system for a test drive. Follow these steps:

1. Point a browser to https://<CMC_host>:8443/Cloudian

Since the CMC runs on all of your HyperStore nodes, for <CMC_host> you can use the fully qualified
domain name (FQDN) or IP address of any node.

2. You will get an SSL certificate warning. Follow the prompts to add an exception for the certificate. You
should then see the CMC’s login screen.

3. Enter the system administrator user ID admin and the default password public. When you do so, the
login screen will display additional fields in which you must create a new password for the admin user.
After you create the new password and click Save you will be logged into the CMC.

51

Chapter 2. Getting Started with a New HyperStore System

Note The first time you try to log into the CMC the system requires you to create a new pass-
word for the admin user. On subsequent logins to the CMC as the admin user, use the password
that you created.

4. Once you've logged into the CMC, select Cluster → Storage Policies. Then click Create Storage
Policy to open the Create New Policy interface. Create a default storage policy for your system. A stor-
age policy is a method of storing and protecting S3 object data and object metadata. Leave the "Group
Visibility" unspecified so that this policy is visible to all groups. (At a later time you can edit this policy;
create additional policies; and assign a different policy to be the system default policy if you wish).

52

For detail about the available options when you configure a new storage policy see "Add a Storage
Policy" (page 353).

5. Create a regular S3 service user account that will enable you to test the system’s S3 object storage ser-
vices.

Note The system administrator role cannot have its own S3 storage service account.

a. Select Users & Groups → Manage Groups → NewGroup to open the Add New Group inter-
face. Create a new user group.

b. Select Users & Groups → Manage Users → New User to open the Add New User interface.
Create a new regular user, assigned to the user group that you created in the previous step.
Make a note of the group name, user ID, and the password that you assign to the user so that
you will be able to log in as that user.

6. Log out of the CMC, and then log back in as the new user that you created. The CMC now displays only
the functions that are available to regular service users, including the Buckets & Objects interface.

7. Experiment with the CMC Buckets & Objects interface. For example:

53

Chapter 2. Getting Started with a New HyperStore System

a. Add a new storage bucket by entering a bucket name and clicking Create. (You must create a
bucket before you can upload any objects.)

b. Use the Objects tab to create a folder in the bucket by entering a folder name and clicking
Create Folder.

c. Open the folder then upload a file into it by using the Upload File function.

d. Verify that the uploaded file appears in the folder contents list, then verify that you can download
the file by clicking on the file name.

54

Chapter 3. Upgrading Your HyperStore
Software Version
Subjects covered in this section:

l Introduction (immediately below)

l "Preparing to Upgrade Your System" (page 55)

l "Upgrading Your System" (page 58)

l "Verifying Your System Upgrade" (page 61)

l "Installing a Patch" (page 62)

The instructions that follow are for upgrading to HyperStore version 7.2.3 from HyperStore version 7.1 or
newer. This upgrade procedure does not require S3 service interruption.

If you are already running HyperStore version 7.2.3 and are installing a patch release (such as 7.2.3.1 or
7.2.3.2), you can jump directly to "Installing a Patch" (page 62).

IMPORTANT !
* To upgrade to HyperStore version 7.2.3, all of your HyperStore host machines must have at least
128GB RAM. If any of your existing HyperStore hosts have less than 128GB RAM, contact Cloudian
Support.
* If you are currently on a HyperStore version older than 7.1, do not use the procedure described here.
Instead contact Cloudian Support to request instructions for your particular upgrade path.
* If you are using Xen, Amazon EC2, or Logical Volume Manager (LVM), contact Cloudian Support
before upgrading your system.

3.1. Preparing to Upgrade Your System
Before upgrading your HyperStore system, log into the CMC and under the Cluster tab use the system status
display pages to make sure that your system is in a fully healthy, unrestricted state and that no major oper-
ations are in progress.

l In the Operation Status page, check whether there are any operations currently in progress in any
of your service regions.

55

Chapter 3. Upgrading Your HyperStore Software Version

o If any repair is in progress when you launch the upgrade script, the script will fail in the pre-
check stage and will not make any changes to your system. So before launching the upgrade
you must wait for any in-progress repair to complete (or alternatively you can stop the repair by
using the "stop" option that is supported by the "hsstool repair" (page 686) and "hsstool
repairec" (page 697) commands).

o If any cleanup, decommission, or rebalance operation is in progress, Cloudian recommends
that you wait until the operation completes before you perform the upgrade (or in the case of
cleanup you can stop the cleanup by using the "stop" option that is supported by the "hsstool
cleanup" (page 644) and "hsstool cleanupec" (page 651) commands).

l In the Repair Status page,make sure there are no proactive repairs currently in progress in any of
your service regions. Note that in-progress proactive repairs will not display in the Operation Status
page but will display in the Repair Status page.

If a proactive repair is in progress, either wait until it completes or alternatively you can stop the pro-
active repair by using the Maintenance command proactiverepair with the "stop" option selected. If a
proactive repair is in progress, the upgrade script will fail in the pre-check stage and will not make any
changes to your system.

l In the Data Centers page,make sure that all services are up and that no node is in a restricted
status. If a service is down or a node is in one of the restricted statuses noted below, the upgrade script
will fail in the pre-check stage and will not make any changes to your system..

56

3.1. Preparing to Upgrade Your System

o If any services are stopped, start them. For instructions see "Starting and Stopping Services"
(page 415).

o If any node is in Maintenance Mode, take it out of Maintenance Mode. For instructions see "Stop-
ping Maintenance Mode" (page 330).

o If any node is in "stop-write" condition, contact Cloudian Support.

Note If the Data Centers page indicates that any node has alerts, go to the "Node Status"
(page 313) page and then select that node and review its alerts. Resolve any serious issues
before proceeding with the upgrade.

Note The upgrade script will automatically disable the auto-repair and proactive repair features -- so
that no new repairs kick off during the upgrade -- and then after the upgrade completes the script will
automatically re-enable the auto-repair and proactive repair features.

57

Chapter 3. Upgrading Your HyperStore Software Version

3.1.1. Additional Upgrade Preparation If Your System Currently Has Failed
Disks
By default the HyperStore upgrade script will abort if it detects that any disks on your HyperStore nodes are
failed or disabled. If you want to perform a HyperStore version upgrade while there are failed or disabled disks
in your current system, take the following preparation steps before doing the upgrade:

1. On your Puppet master node, in the staging directory for your current HyperStore system, open this file
in a text editor:

CloudianInstallConfiguration.txt

2. In that file, change INSTALL_SKIP_DRIVES_CHECK=false to INSTALL_SKIP_DRIVES_CHECK=true.
Then save and close the file.

3.1.2. Additional Upgrade Preparation If You Are Using Elasticsearch
If you have been using an Elasticsearch cluster together with HyperStore (for search or analysis of object
metadata or logging data), then before upgrading to HyperStore 7.2.3 you must upgrade your Elastic-
search cluster to version 6.6 or newer. The Elasticsearch client included in HyperStore 7.2.3 is compatible
only with Elasticsearch server version 6.6 or newer. To avoid integration errors between HyperStore and your
Elasticsearch cluster, perform the Elasticsearch upgrade before the HyperStore upgrade.

3.2. Upgrading Your System
To perform the upgrade to HyperStore version 7.2.3:

1. Download the HyperStore product package (CloudianHyperStore-7.2.3.bin file) from the Cloudian Sup-
port portal into a working directory on your Puppet master node (such as /tmp or your home directory).
You can also download from the Support portal the signature file (.sig file) corresponding to the product
package file -- you will need the signature file if you are using the HyperStore Shell to perform the
upgrade.

2. Copy your current Cloudian license file into the same working directory as the product package and
signature file. Your current license file is located in the /opt/cloudian/conf directory ends with suffix .lic.
If there are multiple .lic files in this directory, use the most recent one. Copy this file to the working dir-
ectory in which you've placed the new HyperStore product package.

3. In the working directory run the commands below to unpack the HyperStore package:

chmod +x CloudianHyperStore-7.2.3.bin
./CloudianHyperStore-7.2.3.bin <license-file-name>

This creates a new installation staging directory named /opt/cloudian-staging/7.2.3, and extracts the
HyperStore package contents into the staging directory.

If you are using the HyperStore Shell to perform the upgrade

If you are using the HyperStore Shell (HSH) to perform the upgrade, make sure you have in your work-
ing directory the signature file (.sig file) corresponding to the product package file, as well as the product
package file and your current Cloudian license file. Then from the shell, run these commands to unpack
the HyperStore package (rather than the commands stated above):

58

3.2. Upgrading Your System

$ chmod +x CloudianHyperStore-7.2.3.bin
$ hsrun --root CloudianHyperStore-7.2.3.bin <license-file-name>

Note To perform the upgrade using the HSH you must be an HSH Trusted user.

4. Change into the new installation staging directory and then launch the installer:

cd /opt/cloudian-staging/7.2.3
./cloudianInstall.sh

If you are using the HyperStore Shell to perform the upgrade

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

5. From the installer main menu enter "3" for "Upgrade from <your version number> to 7.2.3". Then at the
prompt, confirm that you wish to continue with the automated upgrade.

The upgrade script will first check your Puppet configuration template files (*.erb files) from your existing Hyper-
Store system to determine whether you made any customizations to those settings (changes from the default
values):

l If you have not made any such changes, the upgrade proceeds.

l If you have made such changes, then in the new installation staging directory the installer creates a text
file that lists those changes -- a "diff" file -- and prompts you to review the file, before the upgrade pro-
ceeds. Open a second terminal instance and in that terminal go to the new installation staging directory
and view the "diff" file that the installer created (while the upgrade process remains paused in the first
terminal instance). Then to carry forward your existing *.erb file customizations that are identified in the
diff file, in the second terminal instance manually make those same customizations to the new Hyper-
Store version's *.erb files (under /etc/cloudian-<new-version-#>-puppet/modules). For example, if in

59

Chapter 3. Upgrading Your HyperStore Software Version

your existing HyperStore system you had set a custom value for a hyperstore-server.properties.erb set-
ting, edit that same setting in /etc/cloudian-7.2.3-puppet/modules/cloudians3/templates/hyperstore-serv-
er.properties.erb. After saving your change -- and doing likewise for any of your other customizations to
*.erb settings -- return to the original terminal instance in which you are running the upgrade, and at the
installer prompt continue with the upgrade. Note that you do not need to do a Puppet push, since the
upgrade will apply your configuration edits.

If you are using the HyperStore Shell to perform the upgrade

If you are using the HyperStore Shell (HSH) as a Trusted user, you can view the diff file using cat and
then use the following command to edit HyperStore *.erb configuration files as needed:

$ hspkg config -e <filename>

In the background this invokes the Linux text editor vi to display and modify the configuration file.

Note Customizations that you may have made to the configuration file common.csv are handled
differently. The installer detects such customizations and automatically applies the same cus-
tomizations to the new version's common.csv file, without you having to do anything.

When the upgrade process proceeds it upgrades one node at a time -- by shutting down the node, updating
the packages on the node, and then restarting the node and the services on the node -- until all nodes are
upgraded. Messages in the terminal will indicate the progress. If you have a multi-region HyperStore system,
the region that hosts the Redis Credentials master node will be upgraded last.

After the upgrade successfully completes, proceed to "Verifying Your System Upgrade" (page 61).

Note
* Once you've started the upgrade, you cannot <ctrl>-c out of it.
* If you have initiated the upgrade through a remote terminal, and the connection between the terminal
and the Puppet master node is subsequently lost, the upgrade will continue.

IMPORTANT ! After the upgrade, do not delete the staging directory that was created when you
unpacked the product package file (/opt/cloudian-staging/7.2.3). HyperStore will continue to require cer-
tain files in this directory throughout the time that you are using this HyperStore version.

3.2.1. Upgrade Failure and Roll-Back
If the upgrade fails for certain nodes, those nodes are automatically rolled back to your previously existing
HyperStore software version. The terminal will display basic information about the failure, and you can get
more details from the cloudian-installation.log and the cloudian-upgrade.log, both of which are generated in
the installation staging directory. Try to resolve the problems on the node(s) that failed to upgrade, and then
run the upgrade process again (action number 3 from the installer's main menu).

The upgrade process also generates an upgrade-logNconfig*.tgz "S.O.S" tar file (which packages together mul-
tiple upgrade-related files) that you can provide to Cloudian Support in the event that you need assistance in
resolving any upgrade problems.

60

3.3. Verifying Your System Upgrade

3.3. Verifying Your System Upgrade
After all HyperStore nodes have been upgraded, verify that all services are running and that the HyperStore
version is now 7.2.3:

1. After the automated upgraded completes, you should be taken back to the main menu of the Hyper-
Store installer. The first post-upgrade step is to confirm that all your HyperStore services are up and run-
ning:

a. From the installer’s main menu select "Cluster Management".

b. From the Service Management sub-menu that displays select "Manage Services".

c. At the “Select a service to manage:” prompt, select All Services.

d. At the “Enter command” prompt, type status.

All services on all nodes should then indicate that they are running.

2. Next, confirm that the HyperStore software version is correct:

a. Still on the Service Management menu, at the “Select a service to manage:” prompt select the S3
Service.

b. At the “Enter command” prompt, type version.

On all nodes the S3 version should indicate version 7.2.3.

After confirming the version you can exit the installer.

3. Use the CMC to check on your upgraded cluster:

l On the Node Advanced page, select command type Info then execute the "repairqueue" com-
mand to verify that auto-repair is enabled for replica, EC, and Cassandra data. (Although you
disabled auto-repair prior to doing the upgrade, the system automatically re-enables auto-repair
at the end of the upgrade process).

l On the Manage Users page, confirm that you can retrieve users.

l Log out of the CMC as system admin and log back in as a regular user, and then confirm that
you can successfully download and upload objects.

4. If prior to the upgrade you had made any customizations to the branding of the CMC interface, only your
customized logos and customized application name will be retained after the upgrade. You will need to
re-implement any changes that you had made to the browser tab title and/or the color scheme, by again
following the instructions for "Rebranding the CMC UI" (page 404).

5. If you have been using ElasticSearch for search of HyperStore object metadata, you should have
upgraded your ES cluster to version 6.6 or new before upgrading HyperStore to version 7.2.3 (as noted
in "Preparing to Upgrade Your System" (page 55)). Now, after having upgraded HyperStore, run this
command from any HyperStore node to verify that a sync-up of the object metadata in your ES cluster
against the object metadata in HyperStore can still be performed without error:

/opt/cloudian/bin/elasticsearchSync all

If you are using the HyperStore Shell to perform the upgrade

If you are using the HyperStore Shell, you can run the ES sync tool as follows (with no path):

$ elasticsearchSync all

You are now done with upgrading to HyperStore 7.2.3.

61

Chapter 3. Upgrading Your HyperStore Software Version

Note If you disabled the failed disk check before performing your upgrade (as described in "Additional
Upgrade Preparation If Your System Currently Has Failed Disks" (page 58)), note that after you've
completed the upgrade, in the new instance of CloudianInstallConfiguration.txt in the staging directory
for your new HyperStore version the INSTALL_SKIP_DRIVES_CHECK setting is set back to its default
of false. So the next time you upgrade your HyperStore version the check for failed drives will be
executed, unless you once again disable the check by changing that setting to true.

3.4. Installing a Patch
On occasion Cloudian may release a "patch" that enables customers to benefit from a recent HyperStore bug
fix or fixes without having to wait for the next full release. A HyperStore patch release has a 4-digit release num-
ber, and can only be installed on systems running the preceding 3-digit release. For example:

Hypothetical Patch Release Number Can Only Be Installed On Systems Running

7.1.7.1 7.1.7

7.1.7.2 7.1.7 (or a 7.1.7 system that's been patched to 7.1.7.1)

7.2.0.1 7.2.0 (7.2)

7.2.0.2 7.2.0 (or a 7.2.0 system that's been patched to 7.2.0.1)

7.2.1.1 7.2.1

It may happen that there are multiple patches in between full releases -- for example, if you are running 7.2.3 it
may be that there is a 7.2.3.1 patch release and then later there is a 7.2.3.2 patch release. In this case you can
install each patch when it comes out, or alternatively if you miss the first patch for some reason, you can install
just the second patch and the second patch will include the fixes from the first patch.

Cloudian Support will announce patch releases when they come out, and you can download the patch from
the Support portal. A patch is released as a self-extracting binary file, named as S3Patch-<version>.bin (for
example S3Patch-7.2.3.1.bin). You can also download from the Support portal the signature file (.sig file) cor-
responding to the patch -- you will need the signature file if you are using the HyperStore Shell to apply the
patch.

Before installing a patch, check to confirm that:

l All services are up in your system

l No repair, cleanup, or rebalance operations are currently running in your system.

For more information on performing these checks, see "Preparing to Upgrade Your System" (page 55).

To install a patch:

1. Place the patch binary file in a working directory on your Puppet master node (such as /tmp or your
home directory).

2. Change into that directory, and then run the following commands to run the patch file:

chmod +x S3Patch-<version>.bin
./S3Patch-<version>.bin

If you are using the HyperStore Shell to apply the patch

If you are using the HyperStore Shell (HSH) to apply the patch, make sure you have in your working dir-
ectory the signature file (.sig file) corresponding to the patch file. Then from the shell, run these

62

3.4. Installing a Patch

commands (rather than the commands stated above):

$ chmod +x S3Patch-<version>.bin

$ hsrun --root S3Patch-<version>.bin

When you run the patch file, you will be prompted to confirm that you want to install the patch -- enter y
to do so. Then it automatically takes all the actions necessary to apply the patch to each of your Hyper-
Store nodes. Specifically, the following actions are automatically executed:

l The S3Patch-<version>.bin file content -- including a patch installation script -- is extracted into a
/s3patch/<patch-version>/ sub-directory under your HyperStore system's current installation sta-
ging directory

l The patch installation script is automatically launched. The script performs a non-disruptive,
rolling install of the patch to each of your HyperStore nodes one at a time -- including auto-
matically restarting the affected services on one node at a time.

l The status of the patch installation process is written to the console, and log messages per-
taining to the patch installation are written to <current-staging-directory>/installs3patch.log. Also,
a backup copy of the original, unpatched version of the main .jar file (Java archive file) from your
existing HyperStore version is written to <current-staging-directory>/s3patch/backup/.

After a successful patch upgrade of all nodes, you can launch the main HyperStore installer (./cloud-
ianInstall.sh in your current staging directory), go to the Manage Services menu, and for the S3 Service check
the version. The results should show that on all nodes, the S3 Service now has the version number of the patch
that you installed. You should also log into the CMC and check some of the main status reporting pages -- such
as the Data Centers page and the Alerts page -- to confirm that your patched HyperStore system is healthy.
You may also want to exercise the system by, for instance, uploading some objects into a bucket.

Note Do not delete the S3Patch-<version>.bin file from the working directory in which you placed it.
You may need to use the file again, as described in the sections below.

3.4.1. Reapplying the Patch in the Case of Installation Errors
In some cases the patch installation script may write messages to the console indicating that the patch did not
successfully install on a certain node or nodes. An example is if a node is down at the time that the patch install-
ation script runs -- the script will not be able to install the patch to that node. In this scenario, first correct the
underlying condition -- for example, bring a down node back up. Then on the Puppet master node change into
the working directory where the S3Patch-<version>.bin file is located and run the file again:

./S3Patch-<version>.bin

You will again be prompted to confirm that you want to install the patch -- enter y to do so. The patch script will
then check each HyperStore node and install the patch only on nodes on which it has not already been suc-
cessfully installed. The status will be written to the console, and also logged to <current-staging-dir-
ectory>/installs3patch.log.

3.4.2. Reverting a Patch
In the unlikely event that you need to revert a patch, the patch binary file supports doing so. You might need to
revert a patch if, for example:

63

Chapter 3. Upgrading Your HyperStore Software Version

l You are unable to successfully install the patch to all nodes -- that is, you are in a condition where some
nodes were successfully patched while errors prevented patching of the other nodes, and you are
unable to correct the errors.

l You successfully patch all nodes, but subsequently you encounter negative behavior in your system
that you had not encountered prior to the installation of the patch.

If you are reverting a patch, contact Cloudian Support (either before or after reverting the patch).

To revert a patch:

1. On the Puppet master node, change into the working directory in which the S3Patch-<version>.bin file
is located.

2. Run the patch bin file using the -r option:

./S3Patch-<version>.bin -r

You will be prompted to confirm that you want to revert the patch -- enter y to do so. The patch script will then
revert your HyperStore system to the preceding 3-digit release version. For example, reverting a 7.2.3.1 patch
will revert your system to 7.2.3; and reverting a 7.2.3.2 patch will also revert your system to 7.2.3 (not to
7.2.3.1).

3.4.3. Adding Nodes to a Patched System
If you patch your system and then you add nodes (or a new data center or new region) to your system before
you have upgraded to a later full release version, you will need to run the patch installer again to patch the
newly added nodes. For example, if you are running a 7.2.3 system, and you install a 7.2.3.1 patch, and then
you add more nodes to your system, you will need to run the 7.2.3.1 patch installer to patch the new nodes.
Subsequently, when you've upgraded your system to a later 3-digit or 2-digit release (a full release rather than
a patch release), there is no longer any need to run the 7.2.3.1 patch installer if you add more nodes.

To patch nodes that you've added to your system:

1. On the Puppet master node, change into the working directory in which the S3Patch-<version>.bin file
is located.

2. Run the patch bin file:

./S3Patch-<version>.bin

You will be prompted to confirm that you want to install the patch -- enter y to do so. The patch script will then
check each HyperStore node and install the patch only on nodes on which it has not already been successfully
installed. The status will be written to the console, and also logged to <current-staging-dir-
ectory>/installs3patch.log.

64

65

Chapter 4. Working with HyperStore Major Features

Chapter 4. Working with HyperStoreMajor
Features

4.1. Management Interfaces and Tools

4.1.1. HyperStoreManagement Interfaces and Tools -- Feature Overview
Your HyperStore system includes several interfaces and tools through which you can monitor, manage, and
use the system:

Interface or Tool Purpose More Information

Cloudian Management Con-
sole (CMC)

The CMC is the GUI for the HyperStore sys-
tem. It supports monitoring, managing, and
expanding the system, and also includes an
S3 client interface.

See "Cloudian Management
Console (CMC)" (page 196)
and the rest of Section 5. Also,
while using the CMC you can
click the Help button in the
upper right of the interface to
view information about the par-
ticular CMC page that you're
on.

Installer

You can use the HyperStore installer (cloud-
ianInstall.sh) not only to install the system but
also to perform certain types of system cus-
tomizations, to push configuration file edits
out to the system, and to stop or restart ser-
vices.

l "Installer Advanced
Configuration
Options" (page 501)

l "Pushing Con-
figuration File Edits to
the Cluster and
Restarting Services"
(page 506)

l "Starting and Stopping
Services" (page 415)

hsstool

With the hsstool utility you can retrieve inform-
ation about, and perform management oper-
ations on, the object data and metadata that
is stored in your HyperStore system.

"hsstool " (page 643)

HyperStore Shell (HSH)

The HyperStore Shell is a restrictive com-
mand-line interface that allows admin-
istrators to log into and administer
HyperStore nodes without having or needing
root access to the nodes.

"Security Features" (page
89)

Configuration files

While you can perform most common system
configuration tasks by using the CMC or the
installer, many additional configuration
options are available to you in configuration
files that you can edit.

"HyperStore Configuration
Files" (page 511)

66

4.2. Support for AWS APIs

Interface or Tool Purpose More Information

Admin API

The HyperStore Admin API is a RESTful
HTTP API through which you can provision
users and groups, manage rating plans and
quality of service (QoS) controls, retrieve
monitoring data, and perform other admin-
istrative tasks.

"HyperStore Admin API Intro-
duction" (page 741) and the
rest of Section 12.

In addition to the above-listed tools that are included as part of HyperStore, other helpful tools are:

l HyperIQ -- HyperIQ is a separate Cloudian product that provides advanced real-time system monitoring
and analytics for a HyperStore system. Contact your Cloudian representative about obtaining HyperIQ.

l Cloudian Support tools -- The Cloudian Support team has a variety of special-purpose tools that they
may use, or provide for you to use, if they are working with you to troubleshoot or rectify system issues.

4.2. Support for AWS APIs

4.2.1. Support for AWSAPIs -- Feature Overview
HyperStore supports several Amazon Web Services (AWS) APIs -- most importantly the S3 API, but also some
related APIs:

API API Purpose and Degree of HyperStore Cover-
age More Information

Simple Storage Service
(S3)

Create and manage storage buckets. Write, read,
and manage objects in those buckets.

HyperStore provides comprehensive support for
the AWS S3 API. HyperStore supports most
AWS S3 API actions, and typically the unsup-
ported actions are specific to AWS services and
not applicable outside of AWS.

"HyperStore Support for the
AWS S3 API" (page 931) and
the rest of Section 13

Identity and Access
Management service
(IAM)

Under HyperStore regular user accounts, create
and manage IAM groups and IAM users who have
S3 permissions restricted by configurable
IAM policies.

HyperStore provides limited support for the
AWS IAM API, supporting those IAM actions that
are most relevant to HyperStore's S3-compatible
object storage service.

"HyperStore Support for the
AWS IAM API" (page 991) and
the rest of Section 14

Security Token Service
(STS)

Request temporary, limited-privilege credentials
for IAM users or federated users authenticated by
SAML.

HyperStore provides limited support for the
AWS STS API, as a means of allowing SAML-
based authentication of users.

"HyperStore Support for the
AWS STS API" (page 1037)
and the rest of Section 15

Simple Queue Service
(SQS)

Create, populate, and manage message queues.
"HyperStore Support for the
AWS SQS API" (page 1041)

67

Chapter 4. Working with HyperStore Major Features

API API Purpose and Degree of HyperStore Cover-
age More Information

HyperStore provides limited support for the
AWS SQS API, as a means of implementing the
S3 bucket notification feature.

and the rest of Section 16

4.2.1.1. HyperStore Service Endpoints for AWS APIs

API Default Service Endpoint(s)

Simple Storage Service
(S3)

s3-<regionname>.<your-domain>:80 (HTTP)

s3-<regionname>.<your-domain>:443 (HTTPS, disabled by default)

Identity and Access Man-
agement service (IAM)

iam.<your-domain>:16080 (HTTP)

iam.<your-domain>:16443 (HTTPS)

Security Token Service
(STS)

sts.<your-domain>:16080 (HTTP)

sts.<your-domain>:16443 (HTTPS)

Note STS requests are serviced through the IAM listening ports.

Simple Queue Service
(SQS)

s3-sqs.<your-domain>:18090 (HTTP)

Note HTTPS is not currently supported for the SQS Service.

4.3. Nodes, Data Centers, and Regions

4.3.1. Nodes, Data Centers, and Regions Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Storage Policies in Multi-DC or Multi-Region Systems" (page 69)

l "Service Architecture in Multi-DC or Multi-Region Systems" (page 69)

l "Deploying HyperStore to Multiple DCs or Regions" (page 70)

The basic units of a HyperStore system are:

l Node -- HyperStore software running on a host machine.

l Data center -- A physical data center (DC) in which multiple HyperStore nodes are running.

l Service region -- Also known as a cluster, a region is a unified set of HyperStore nodes deployed in
one or multiple data centers across a particular geographic area. A region has its own unique S3 ser-
vice endpoint, its own unique inventory of stored objects, and a unified Cassandra database for storing
metadata.

The common deployment topologies for a HyperStore system are:

68

4.3. Nodes, Data Centers, and Regions

l Single data center constituting a single region. This is the simplest deployment topology, where the
whole HyperStore system consists of a single data center in which multiple HyperStore nodes are run-
ning. The one DC constitutes its own region. The number of nodes can scale from a minimum of three --
the smallest viable size of a HyperStore system -- up to dozens of nodes, all running in one DC. Adding
more nodes within a DC is the most common way to add capacity to the system. For more information
see "Capacity Monitoring and Expansion" (page 71).

l Multiple data centers in a single region. With this topology, HyperStore nodes running in multiple data
centers comprise one unified storage cluster. Typically the motivation for this type of deployment is rep-
lication of data across DCs, for the purposes of data protection, service resilience, and/or disaster recov-
ery. This cross-DC replication is configurable through the use of HyperStore storage policies.

l Multiple service regions. With this topology the HyperStore system spans multiple service regions,
each of which consists of one or more data centers. Each region has its own separate S3 service end-
point (to which S3 clients submit requests), its own independent storage cluster, and its own separate
inventory of stored objects. In a multi-region HyperStore system, the regions are in most respects sep-
arate S3-compatible object storage systems -- with the significant exceptions that the same population
of authorized end users has access to all the service regions, and that HyperStore affords a substantial
degree of unified administration across the multiple regions. Typically the motivation for having multiple
service regions is to allow users to choose one geographic region or another for storing their data, for
reasons of proximity or regulatory compliance.

For a diagram showing the relation between nodes, data centers, and service regions see "System Levels"
(page 30).

4.3.1.1. Storage Policies in Multi-DC or Multi-Region Systems

In a multi-DC, single-region HyperStore system, configurable storage policies determine whether and how
data is replicated across DCs. You can have multiple storage policies -- for example you could have one stor-
age policy that stores data only in one particular DC, and another storage policy that replicates data so that cop-
ies of each object are stored in each of your DCs. Users when they create a bucket choose which storage
policy will apply to data uploaded to that bucket.

In a multi-region system, each region has its own set of storage policies, and each region's storage policies
operate only within that region. As noted previously, each region is essentially an independent storage cluster
with its own inventory of objects -- and its own storage policies for distributing data within the region.

For more information about storage policies, including details about multi-DC storage policies, see "Storage
Policies Feature Overview" (page 76).

For information about a supported option for asynchronously replicating data from a bucket in one region to a
different bucket in a different region, see "Cross-Region Replication Feature Overview" (page 186).

4.3.1.2. Service Architecture in Multi-DC or Multi-Region Systems

4.3.1.2.1. Multi-DC, Single Region System

Along with common services that run on every node in a cluster (such as the S3 Service, the HyperStore Ser-
vice, and Cassandra), the HyperStore system also includes specialized services that run on only one or a few
nodes. If you deploy HyperStore across multiple DCs in a service region, the system automatically allocates
the specialized services appropriately. For example, each DC will have two nodes acting as Redis Credentials
slave nodes and each DC will have one node acting as a Redis QoS slave node.

For a summary of services and how they are allocated, see "HyperStore Services" (page 21).

69

Chapter 4. Working with HyperStore Major Features

For a diagram showing typical services distribution in a multi-DC region, see "Services Distribution -- Multi-
DC, Single Region" (page 32).

Also, in a multi-DC region each DC has its own sub-set of HyperStore nodes that are automatically configured
to act as internal NTP servers. For more information see "NTP Automatic Set-Up" (page 598).

4.3.1.2.2. Multi-Region System

A multi-region HyperStore system has the following characteristics:

l One of the regions serves as the default region. The default region plays several roles in a multi-region
system. For example:

o If service users do not specify a region when they create a new S3 storage bucket, the system
will create the bucket in the default region.

o Only the Admin Service instances in the default service region support the full Admin API.

l Each region has its own S3 service endpoint (URI used by client applications for HTTP access).

l Each region has its own independent object storage cluster and by default there is no object replication
across regions (although there is an option for cross-region replication on a bucket-to-bucket basis).

l When users create a new bucket they choose which region the bucket will be created in.

l User access credentials are valid across the system as a whole. In support of user authentication, a
single, uniform Redis Credentials database serves the entire multi-region system. There is just one
Redis Credentials master node for the whole system, and that node is located in your default region.
Within each region, there are two Redis Credentials slave nodes per data center.

l Quality of service (QoS) controls are implemented separately in each region. The QoS limits that you
establish for a service region will be applied only to user activity in that particular region. In support of
QoS implementation, each region has its own independent Redis QoS database. Each regional Redis
QoS database has its own master node. In each region there is also one Redis QoS slave node per
data center.

l The Redis Monitor application will monitor all the Redis databases in all the regions (and if necessary
trigger failover of the Redis master role within each database). One primary Redis Monitor application
instance serves the whole multi-region system, and if the primary Redis Monitor instance goes down
the backup instance takes over. The primary Redis Monitor instance and backup Redis Monitor
instance are on separate nodes in your default region.

l Group and user profile information is stored only in the default region, and is accessed there by ser-
vices in the other regions. Group and user information is stored only in the Cassandra database in the
default region. HyperStore services in non-default regions access Cassandra in the default region to
retrieve this group and user information as needed.

l Just one Puppet master node is used to propagate system configuration settings throughout the whole
multi-region system, during system installation and for ongoing system configuration management.

For a diagram showing typical services distribution in a multi-region system, see "Services Distribution --
Multi-Region" (page 33).

4.3.1.3. Deploying HyperStore to Multiple DCs or Regions

A common way to arrive at a multi-DC or multi-region HyperStore system is to initially install and use Hyper-
Store in a single DC constituting a single region; and then later in the life of the system, to expand the system
by adding a DC or a region. The CMC supports adding a new DC to an existing region (installing HyperStore
software on host machines in a new data center and updating the system configuration to reflect the addition of

70

4.3. Nodes, Data Centers, and Regions

the new DC) or adding a new region to the system (installing HyperStore software on host machines in one or
more new data centers and updating the system configuration to reflect the addition of the new service region
and data center[s]). For instructions see:

l "Adding a Data Center" (page 430)

l "Adding a Region" (page 437)

HyperStore also supports the option of installing HyperStore software to multiple DCs or regions from the out-
set, upon the initial system installation. From a HyperStore system configuration perspective the key here is the
"survey file", which the HyperStore system_setup.sh tool helps you to create. By responding to that tool's inter-
active prompts, you create a survey file that identifies (among other things) the name of the data center and
region that each node resides in. Subsequently the installer tool (cloudianInstall.sh) installs HyperStore soft-
ware to each of those nodes and configures the system to be a single-DC, multi-DC, or multi-DC / multi-region
system, in accordance with your survey file.

Below is an example of an installation survey file for a 3-node HyperStore system that will be configured as just
a single service region with just a single data center. Note that you must provide a data center name and a
region name even if you will have just one DC constituting just one region. Here the region name is "tokyo" and
the data center name is "DC1".

tokyo,cloudian-vm7,66.10.1.33,DC1,RAC1

tokyo,cloudian-vm8,66.10.1.34,DC1,RAC1

tokyo,cloudian-vm9,66.10.1.35,DC1,RAC1

Here is a second example, this time for a system that will be installed as a single-region system with two data
centers:

tokyo,cloudian1,66.1.1.11,DC1,RAC1

tokyo,cloudian2,66.1.1.12,DC1,RAC1

tokyo,cloudian3,66.1.1.13,DC1,RAC1

tokyo,cloudian4,67.2.2.17,DC2,RAC1

tokyo,cloudian5,67.2.2.18,DC2,RAC1

tokyo,cloudian6,67.2.2.19,DC2,RAC1

Below is a third example, this time for a system that will be installed as a two-region system. Note that in this
example, the "tokyo" region encompasses two data centers while the "osaka" region consists of just one data
center.

tokyo,cloudian1,66.1.1.11,DC1,RAC1

tokyo,cloudian2,66.1.1.12,DC1,RAC1

tokyo,cloudian3,66.1.1.13,DC1,RAC1

tokyo,cloudian4,67.2.2.17,DC2,RAC1

tokyo,cloudian5,67.2.2.18,DC2,RAC1

tokyo,cloudian6,67.2.2.19,DC2,RAC1

osaka,cloudian7,68.10.3.24,DC3,RAC1

osaka,cloudian8,68.10.3.25,DC3,RAC1

osaka,cloudian9,68.10.3.26,DC3,RAC1

For more information about installation including node preparation, DNS, and load balancer requirements, see
the HyperStore Installation Guide.

4.3.2. Capacity Monitoring and Expansion
Subjects covered in this section:

71

Chapter 4. Working with HyperStore Major Features

l Introduction (immediately below)

l "Monitoring Cluster Storage Capacity Utilization" (page 72)

l "Adding Nodes to Your System" (page 74)

HyperStore is horizontally scalable, allowing you to gain additional storage and request processing capacity
by adding more nodes to your cluster. When you add new nodes to your cluster, the storage capacity asso-
ciated with the new nodes becomes immediately available to the system. However, the automated processes
that re-distribute data from existing nodes to newly added ones -- thereby reducing storage capacity usage on
the existing nodes -- may take up to several days or more to complete, depending on factors such as data
volume and network bandwidth. Therefore it's important to closely monitor your current and projected system
capacity usage, plan ahead for needed cluster expansions, and implement such expansions well before
you've filled your current capacity.

Use the CMC Dashboard to monitor your system's current and projected storage utilization level (for more
information see "Monitoring Cluster Storage Capacity Utilization" (page 72), further below). As best prac-
tices for cluster expansion timing, Cloudian recommends the following:

l Start expansion planning and preparation when either of the following occur (whichever occurs
first):

o The Dashboard shows your utilization of system storage capacity has reached 70%.

o The Dashboard shows your utilization of system storage capacity is projected to reach 90%
within 120 days. If your system has a high rate of ingest relative to capacity, this projection may
occur even if your current usage has not yet reached 70%.

When planning your expansion keep in mind that:

o The minimum unit of expansion is a node. HyperStore does not support adding disks to existing
nodes.

o You need to allow time to acquire host machines and prepare them for being added to your
cluster.

o Preferably, cluster expansions should be substantial enough that the expanded cluster will
allow you to meet your projected storage needs for at least an additional six months after the
expansion. In this way you can avoid having to frequently add nodes to your system.

o Cloudian Support is available to review and provide feedback on your expansion plan.

l Execute your expansion when either of the following occur (whichever occurs first):

o The Dashboard shows your utilization of system storage capacity has reached 80%.

o The Dashboard displays a Warning that your utilization of system storage capacity is pro-
jected to reach 90% within 90 days. If your system has a high rate of ingest relative to capacity,
this projection may occur even if your current usage has not yet reached 80%.

IMPORTANT ! Each HyperStore node is designed to reject new writes if it reaches 90% storage
capacity utilization. Allowing your system to surpass 80% capacity utilization poses the risk of having
to rush into an urgent cluster expansion operation.

4.3.2.1. Monitoring Cluster Storage Capacity Utilization

HyperStore makes it easy to regularly monitor your system storage capacity utilization. In the CMC Dashboard
you can view:

72

4.3. Nodes, Data Centers, and Regions

l Current storage capacity utilization.

l Projected storage capacity utilization over the next 120 days.

In both the current capacity utilization graphic and the projected utilization graphic, color-coding is used to high-
light utilization levels of 70% or higher and 90% or higher.

The Dashboard also displays:

l A Warning message if the cluster is projected to reach 90% storage utilization in 90 days or less

l A Critical message if the cluster has reached 90% storage utilization

For more detail on Dashboard functionality and metrics see Dashboard.

In the CMC's Capacity Explorer you can view your system's remaining free storage capacity broken down by
service region (cluster), data center, and node. If less than 30% storage space remains at any one of these
levels -- that is, if more than 70% of capacity is utilized in a given node, data center, or region -- this is high-
lighted in the interface.

In the CMC's Node Status page you view each node's storage capacity utilization as well as the utilization
level for each disk on each node.

73

Chapter 4. Working with HyperStore Major Features

4.3.2.2. Adding Nodes to Your System

To add nodes to an existing HyperStore data center, follow the documented procedure "Adding Nodes" (page
420).

To add a new data center (with new nodes) to an existing HyperStore service region, follow the documented
procedure "Adding a Data Center" (page 430).

To add a new service region (with new nodes) to an existing HyperStore system, follow the documented pro-
cedure "Adding a Region" (page 437).

IMPORTANT ! With the addition of a new DC or service region you will need to create new storage
policies that utilize the new DC or region. Adding a new DC or region does not create additional stor-
age capacity for existing buckets that use existing storage policies. Only new buckets that utilize
the new storage policies will make use of the additional storage capacity created by adding a new DC
or region. In the current HyperStore version, you cannot revise an existing storage policy or reassign a
new storage policy to an existing bucket.

To create additional storage capacity for your existing storage policies you must add nodes to your
existing data center(s).

4.3.3. Using the CMCwithMultiple DCs or Regions
The Cloudian Management Console (CMC) facilitates unified administration of a multi-DC or multi-region
HyperStore system.

4.3.3.1. Multi-DC, Single Region System

In the CMC, in most respects a multi-DC deployment within a service region is presented as one integrated
cluster. For example, performance statistics such as S3 transactions per second and S3 bytes throughput per
second are reported for the cluster (the service region) as a whole. However the CMC also is data center
aware and provides visibility into the individual DCs within a service region. For example:

l The Capacity Explorer page lets you see how much free storage capacity remains in each DC (as well
as in each node, and also in the service region as a whole).

l The Data Centers page shows you your node inventory in each DC and provides summary status
information for each node. From this page you can also add nodes to your cluster on a per-DC basis.

l The Object Locator feature lets you see exactly where all of a specified object's replicas or erasure
coded fragments are located (on which nodes, in which DC)

4.3.3.2. Multi-Region System

If your HyperStore deployment is set up as a multi-region system, that will be reflected in these aspects of the
CMC interface:

74

4.3. Nodes, Data Centers, and Regions

l User Provisioning and Administration

o When you "Add a User" (page 263), you will assign the user a rating plan (for billing purposes)
for each region. You can assign the same rating plan in each region, or different rating plans in
each region. The same is true when you "Add a Group" (page 271): when you set a group-level
rating plan (which serves as the default rating plan for users within the group), you choose a rat-
ing plan for each region.

o When you "Set Quality of Service (QoS) Controls" (page 285), you will assign a different set of
limits for each region. QoS limits are applied on a per-region basis.

l S3 Data Storage and Access

o When service users "Add a Bucket" (page 218), they choose which region to create the bucket
in.

l Usage Reporting and Billing

o When you "Create a Usage Report" (page 211) for a user, a user group, or the system, you
can choose the region for which to report usage. You can also generate reports that includes
usage from all regions.

o When you use the Account Activity page to generate a statement for billing a user, you gen-
erate a separate bill for each region.

l HyperStore System Monitoring

o When you use the Data Centers page to get a high level view of each data center's status, you
choose which region's data centers you want to check on before choosing the data center.

o When you use the Node Status page to check the status detail for individual nodes, you start by
selecting a region, and then select a node within that region.

l HyperStore System Management

o When you perform management operations on individual nodes (such as cleanup or repair),
you first select a region, then select a node from within that region, then select the operation to
perform on that node.

o When you are "Adding Nodes" (page 420) to the system, you specify the region and data cen-
ter in which to add it.

4.3.3.2.1. Using the Admin API in a Multi-Region System

If your HyperStore system has multiple regions, then:

l For some Admin API calls you can optionally use a "region" URI parameter to indicate that you want the
operation applied to a particular region. For example, the syntax for retrieving a user’s rating plan is:

GET /user/ratingPlan?userId=xxx&groupId=xxx[®ion=xxx] HTTP/1.1

For such API calls, if you do not specify a region then the default region is presumed.

l Certain Admin API calls are only supported by the Admin Service in the default region. If you submit
these calls to the Admin Service in a non-default region, you will receive a 403: Forbidden response.
For more information see "Admin API Behavior in Multi-Region Systems" (page 741).

75

Chapter 4. Working with HyperStore Major Features

4.4. Storage Policies

4.4.1. Storage Policies Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Supported Erasure Coding Configurations for a Single DC" (page 77)

l "Multi- Data Center Storage Policies" (page 77)

Storage policies are ways of protecting data so that it’s durable and highly available to users. The HyperStore
system lets you pre-configure one or more storage policies. Users when they create a new storage bucket can
then choose which pre-configured storage policy to use to protect data in that bucket. Users cannot create
buckets until you have created at least one storage policy.

For each storage policy that you create you can choose from either of two data protection methods:

l Replication—With replication, a configurable number of copies of each data object are maintained in
the system, and each copy is stored on a different node. For example, with 3X replication 3 copies of
each object are stored, with each copy on a different node.

l Erasure coding—With erasure coding, each object is encoded into a configurable number (known as
the "k" value) of data fragments plus a configurable number (the "m" value) of redundant parity frag-
ments. Each of an object’s "k" plus "m" fragments is unique, and each fragment is stored on a different
node. The object can be decoded from any "k" number of fragments. To put it another way: the object
remains readable even if "m" number of nodes are unavailable. For example, in a 4+2 erasure coding
configuration (4 data fragments plus 2 parity fragments), each object is encoded into a total of 6 unique
fragments which are stored on 6 different nodes, and the object can be decoded and read so long as
any 4 of those 6 fragments are available.

In general, erasure coding requires less storage overhead -- the amount of storage consumption above and
beyond the original size of the stored objects, in order to ensure data persistence and availability -- than rep-
lication. Put differently, erasure coding is more efficient in utilizing raw storage capacity than is replication.

For example, while 3X replication incurs a 200% storage overhead, 4+2 erasure coding incurs only a 50% stor-
age overhead. Or stated in terms of storage capacity utilization efficiency, 3X replication is 33% efficient (for
instance with 12TB of available storage capacity you can store 4TB of net object data) whereas 4+2 erasure
coding is 67% efficient (with 12TB of available storage capacity you can store 8TB of net object data). On the
other hand, erasure coding results in somewhat longer request processing latency than replication, due to the
need for encoding/decoding.

In light of its benefits and drawbacks, erasure coding is best suited to long-term storage of large objects that
are infrequently accessed.

Regardless of whether you use replication or erasure coding, if your HyperStore system spans multiple data
centers, for each storage policy you can also choose how data is allocated across your data centers — for
example, you could have a storage policy that for each S3 object stores 3 replicas of the object in each of your
data centers; and a second storage policy that erasure codes objects and stores them in just one particular
data center (for more information see "Multi- Data Center Storage Policies" (page 77)).

Also as part of the configuration options for each storage policy, you can choose whether to compress and/or
encrypt stored objects.

76

4.4. Storage Policies

Individual storage policies are not confined to dedicated nodes or disks. Instead, all policies utilize all the
resources of your cluster, and data stored in association with a particular policy will tend to be spread fairly
evenly across the cluster (with the exception that you can limit a policy to a particular data center as noted
above). This helps to ensure that regardless of how many or what types of storage policies you configure, and
regardless of how much data is stored in association with particular policies, the physical resources of your
entire cluster — disks, CPU, RAM— will be used in an approximately even manner.

4.4.1.1. Supported Erasure Coding Configurations for a Single DC

HyperStore supports several erasure coding configurations, in terms of "k" value (number of data fragments)
and "m" value (number of parity fragments):

l 4+2

l 6+2

l 8+2

l 9+3

l 12+4

The choice among these supported EC configurations is largely a matter of how many HyperStore nodes you
have in the data center. For example, compared to a 4+2 configuration, 6+2 EC provides the same degree of
data availability assurance (objects can be read even if 2 of the involved nodes are unavailable), while deliv-
ering a higher level of storage efficiency (4+2 is 67% efficient whereas 6+2 is 75% efficient). So 6+2 may be
preferable to 4+2 if you have at least 8 HyperStore nodes in the data center.

Likewise, 9+3 EC provides a higher degree of protection and availability than 6+2 EC (since with 9+3 EC,
objects can be read even if 3 of the involved nodes are unavailable) while delivering the same level of storage
efficiency (both 6+2 and 9+3 are 75% efficient). So 9+3 may be preferable to 6+2 if you have at least 12 Hyper-
Store nodes in the data center.

Note If you want to use a k+m configuration other than those mentioned above, contact Cloudian Sup-
port or your Cloudian Sales representative to see whether your desired configuration can be sup-
ported.

Note For detailed information on S3 write and read availability under various combinations of cluster
size and storage policy configuration, see "Storage Policy Resilience to Downed Nodes" (page 84).

4.4.1.2. Multi- Data Center Storage Policies

If your HyperStore system is deployed across multiple data centers, for each storage policy that you create you
can configure a data center assignment scheme for the policy. This determines which of your data centers to
use for storing data, for each storage policy.

For storage policies that use replication only, in a multiple data center environment you can choose how
many replicas to store in each data center -- for example, for each object store 3 replicas in DC1 and 2 replicas
in DC2.

For erasure coding storage policies, you have the option of replicating the k+m fragments in each of the par-
ticipating DCs (so that each participating DC stores k+m fragments), or distributing the k+m fragments across
the participating DCs (so that there are a combined total of k+m fragments across the participating DCs).

77

Chapter 4. Working with HyperStore Major Features

For replicated erasure coding, by default your k+m options are:

l 4+2

l 6+2

l 8+2

l 9+3

l 12+4

In each of the above configurations the k+m fragments can be replicated across multiple DCs.

For distributed erasure coding, the supported options depend on how many data centers you are using in the
storage policy. You must use at least 3 DCs for this type of policy, and by default your k+m options are as indic-
ated in the table below:

of Participating DCs Supported "k"+"m" How Fragments Will Be Dis-
tributed

3
5+4 3 fragments per DC

7+5 4 fragments per DC

4 8+4 3 fragments per DC

5 6+4 2 fragments per DC

6
8+4 2 fragments per DC

7+5 2 fragments per DC

7 10+4 2 fragments per DC

8 10+6 2 fragments per DC

9 10+8 2 fragments per DC

Note If you want to use a k+m configuration other than those mentioned above, contact Cloudian Sup-
port or your Cloudian Sales representative to see whether your desired configuration can be sup-
ported.

Note For any type of storage policy in a multiple data center environment, you have the option of con-
figuring the policy such that data is stored in some of your data centers and not others — for example,
you can create a policy that stores data in DC1 and DC2 but not in DC3. Note, however, that DC3 may
be involved in processing S3 requests associated with buckets that use this policy. By default there is
only one S3 service endpoint per region, and incoming S3 requests may resolve to any DC within the
region. If the S3 Service in DC3 receives an S3 PUT request in association with a policy that stores
data only in DC1 and DC2, it will transmit the uploaded object on to DC1 and D2 (it will not be stored in
DC3). Likewise, if DC3 receives an S3 GET request in association with a policy that stores data only in
DC1 and DC2, then DC3’s S3 Service will get the object from DC1 or DC2 and pass it on to the client. If
you want more absolute barriers so that for example DC3 never touches DC2’s data and vice-versa,
you need to set up your system so those DCs are in different service regions.

78

4.4. Storage Policies

4.4.2. Consistency Levels
To boost data durability and availability, HyperStore implements replication or erasure coding for object data
and replication for object metadata. This entails distributing each object's data and metadata to multiple end-
point nodes across the cluster. When you create storage policies, along with configuring a replication or eras-
ure coding scheme you will also configure consistency levels for writes and reads. Consistency levels impose
requirements as to what portion of the data and metadata writes or reads associated with each S3 request
must be successfully completed before the system can return a success response to the S3 client. If the
consistency requirements cannot be met for a given S3 request at a given time -- due to one or more endpoint
nodes being unavailable -- an HTTP 503 error response is returned to the client. An endpoint node could be
unavailable for example because the node is down, or is unreachable on the network, or (in the case of writes
of object data) is in "stop-write" condition.

Below is the list of consistency levels supported by the HyperStore system. Your consistency level options
when configuring a storage policy will be limited by the data distribution scheme (replication or erasure coding,
single DC or multi-DC) that you have selected for that policy.

l "Consistency Level "ALL"" (page 369)

l "Consistency Level "QUORUM"" (page 374)

l "Consistency Level "EACH QUORUM"" (page 371)

l "Consistency Level "LOCAL QUORUM"" (page 372)

l "Consistency Level "ANY QUORUM"" (page 370)

l "Consistency Level "ONE"" (page 373)

For detailed information on S3 write and read availability under various combinations of cluster size, data dis-
tribution scheme, and consistency level settings, see "Storage Policy Resilience to Downed Nodes" (page
84).

Note In the case of writes, if the consistency requirement is met by something less than completing
writes of all replicas (or all erasure coded fragments), then after returning a success response to the cli-
ent the system continues to try to complete the remaining writes. If any of these writes fail they will later
be recreated by automatic data repair.

Note As an advanced option you can also configure "dynamic" consistency levels, whereby the system
will try to achieve a "fallback" consistency level if the primary consistency level cannot be achieved. For
more information see "Dynamic Consistency Levels" (page 39).

4.4.2.1. Note About Object Data Replica Reads

For replication based storage policies, the descriptions and examples in this documentation state that part of
the read consistency requirement is being able to read X number of object data replicas. This is a sim-
plification. Technically, what needs to be readable in order to satisfy a read consistency requirement is the file
digests of X number of object data replicas. A file digest is an object data file "header" -- a small bit of file-
identifying information including file name, size, timestamp, and MD5 hash -- which is stored in RocksDB on
the same disk as the corresponding object data replica file. To determine whether or not an object data replica
file is present on a given endpoint, the system tries to read that object data replica's file digest. This is much
faster than reading the object data file itself.

79

Chapter 4. Working with HyperStore Major Features

If the read consistency requirements are met for an S3 GET operation -- for reading the required number of
object metadata replicas (in Cassandra) and the digests for the required number of object data replicas -- the
system then retrieves just one object data replica file in order to return the object data to the S3 client. For
example to meet a read consistency requirement of ALL, the system must be able to read all the object's
metadata replicas in Cassandra, and all the object's data replicas' file digests in RocksDB -- and then it
retrieves one object data replica and returns it to the client.

4.4.2.2. Note About Bucket Content List Reads

In the documentation of the supported consistency levels such as "ALL", "QUORUM", and so on (see the cross
references above), when read consistency requirements are discussed the focus is on reads of individual
objects -- that is, the consistency requirements for successfully implementing S3 GET Object requests. It's worth
noting however that your configured read consistency requirements also apply to bucket content list reads --
that is, implementing S3 GET Bucket (List Objects) requests.

Metadata for objects is stored in two different types of record in Cassandra: object-level records (with one such
record for each object) and bucket-level records that identify the objects in a bucket (along with some metadata
for each of those objects). Both types of object metadata are replicated to the same degree. So for example, in
a 3X replication storage policy, for each object the object-level metadata record is replicated three times in the
cluster and for each bucket the bucket-level object metadata records are replicated three times in the cluster.

A GET Object request requires reading the object's object-level metadata record and a GET Bucket (List
Objects) request requires reading the bucket's bucket-level object metadata records. Whatever read con-
sistency requirements you set for a storage policy apply not only to reads of individual objects but also to reads
of buckets content lists. So for example if you use a QUORUM read consistency requirement, then in order to
successfully execute a GET Bucket (List Objects) request the system must be able to read a QUORUM of the
bucket-level object metadata records for the bucket.

For more on the meaning of QUORUM and the other supported consistency levels, see the cross references
above.

4.4.3. Object Metadata Replication
Subjects covered in this section:

l Introduction (immediately below)

l "Object Metadata in Replication Storage Policies" (page 80)

l "Object Metadata in Erasure Coding Storage Policies" (page 81)

l "Two Types of Object Metadata Record" (page 81)

HyperStore object metadata is stored in Cassandra, and is protected by replication. The degree to which
object metadata is replicated depends on the type of storage policy being used.

4.4.3.1. Object Metadata in Replication Storage Policies

In the case of storage policies that protect object data by replication, the corresponding object metadata is rep-
licated to the same degree as the object data. For example with a 3X replication storage policy, the system
stores three replicas of each object (with each replica stored on a different node, in the HyperStore file system)
and three replicas of each object's metadata (with each replica stored on a different node, in Cassandra). In a
multi-DC replication storage policy that retains two replicas of each object in DC1 and one replica of each

80

4.4. Storage Policies

object in DC2, the object metadata will also be replicated in this same manner -- two replicas in DC1 and one
replica in DC2.

4.4.3.2. Object Metadata in Erasure Coding Storage Policies

In the case of storage policies that protect object data by erasure coding, the object metadata is protected by
replication -- not erasure coding. This is because the object metadata associated with a given object is small in
size, and therefore not appropriate for erasure coding.

Specifically, for erasure coding storage policies the system will store 2m-1 replicas of object metadata. For
example, with a 4+2 erasure coding storage policy, the object metadata is protected by 3X replication.

Additional examples of 2m-1 object metadata replication:

l Single-DC, k+m = 6+2 --> 3 replicas of object metadata

l Single-DC, k+m = 9+3 --> 5 replicas of object metadata

l Replicated multi-DC, k+m = 4+2 --> 3 replicas of object metadata in each DC

l Distributed multi-DC, k+m = 5+4 --> 7 replicas of object metadata distributed across the DCs

4.4.3.3. Two Types of Object Metadata Record

Metadata for an object is stored in two different types of record in Cassandra: one record specific to the object
(called "skinny row" object metadata) and one or more bucket-level records that get updated with metadata for
the object (called "wide row" object metadata). The latter are used for listing the contents of a bucket, among
other purposes. For more detail see "Object Metadata Structure in Cassandra" (page 167).

Both types of object metadata are replicated to the same degree. So for example, in a 3X replication storage
policy, for each object the "skinny row" object metadata is replicated three times in the cluster and the "wide
row" object metadata is replicated three times in the cluster.

The skinny row metadata has the same key format as the object data (bucketname/objectname) and so has the
same hash token and will be written to the same nodes as the object data -- or a subset of those nodes in the
case of an erasure coding storage policy. The wide row metadata has a different key format and hash token
and so may be written to different nodes than the object data if the cluster exceeds the minimize size required
for the storage policy.

Within Cassandra, both types of object metadata record are part of the UserData_<policyid> keyspaces.

4.4.4. System Metadata Replication
HyperStore stores system metadata in several Cassandra keyspaces: the AccountInfo keyspace (for user
account information), the Reports keyspace (for usage reporting data), and the Monitoring keyspace (for sys-
tem monitoring data). The initial replication level for this system metadata is set by the operator during Hyper-
Store system installation (with a default of 3 replicas per service region). Subsequently, the system
automatically adjusts the system metadata replication level in response to your creation of storage policies.
The system uses whichever of these criteria yields the highest replication level:

l The system metadata replication level set during installation

l Matching the replication factor of any replication storage policies created in the system

81

Chapter 4. Working with HyperStore Major Features

l Having 2m-1 replicas in each DC for any regular erasure coding or replicated erasure coding policies
created in the system

l Having 2m+1 replicas distributed across DCs for any distributed erasure coding policies created in the
system

The table below shows examples of what the automatic system metadata replication level would be in different
system configuration scenarios.

System Configuration System Metadata
Replication Level Comment

l Single data center

l System metadata replication level configured dur-
ing install = 2

l Just one storage policy created in system: a 3X
replication policy

3

The highest replication
level is yielded by match-
ing the level of the 3X
replication storage policy

l Single data center

l System metadata replication level configured dur-
ing install = 5

l Just one storage policy created in system: a 3X
replication policy

5

The highest replication
level is yielded by using
the level configured by
the operator during sys-
tem installation

l Single data center

l System metadata replication level configured dur-
ing install = 3 (the default)

l Two storage policies created in system: a 3X rep-
lication policy and a 9+3 erasure coding policy

5

The highest replication
level is yielded by using
2m-1 from the 9+3 eras-
ure coding policy

l Two data centers in a single service region

l System metadata replication level configured dur-
ing install = 3 (the default; implemented as 1 rep-
lica in one DC and 2 in the other)

l One storage policy created in system: a replicated
4+2 erasure coding policy

3 in each DC

The highest replication
level is yielded by using
2m-1 per DC from the
replicated 4+2 erasure
coding policy

l Three data centers in a single service region

l System metadata replication level configured dur-
ing install = 3 (the default; implemented as 1 in
each DC)

l Two storage policies created in system: a rep-
lication policy at 2X per DC; and a 5+4 distributed
erasure coding policy

3 in each DC

The highest replication
level is yielded by using
2m+1 (distributed across
DCs) from the distributed
5+4 erasure coding
policy

The general logic behind this automated adjustment of system metadata replication level is that the greater
the resilience of your configured storage policies -- in terms of ability to read and write object data and
object metadata when a node or nodes are unavailable -- the greater will be the resilience built into the sys-
tem metadata storage configuration.

82

4.4. Storage Policies

4.4.4.1. Consistency Requirements for System Metadata Reads and Writes

Consistency requirements for object data and object metadata reads and writes are set per storage policy,
when you create storage policies. By contrast consistency requirements for reads and writes of system
metadata are set at the system level, by these configuration properties in mts.properties.erb:

l "cloudian.cassandra.default.ConsistencyLevel.Read" (page 558) (default = LOCAL_
QUORUM,ONE)

l "cloudian.cassandra.default.ConsistencyLevel.Write" (page 559) (default = QUORUM,LOCAL_
QUORUM)

4.4.5. Creating andManaging Storage Policies
In the CMC's Storage Policies page you can do everything you need to do in regard to creating and managing
storage policies:

l "Add a Storage Policy" (page 353)

l "Edit a Storage Policy" (page 377)

l "Designate a Default Storage Policy" (page 377)

l "Disable a Storage Policy" (page 378)

l "Delete a Storage Policy" (page 379)

At all times you must have one and only one default storage policy defined in in each of your HyperStore ser-
vice regions. The default policy is the one that will be applied when users create new buckets without spe-
cifying a policy.

Note The system supports a configurable maximum number of storage policies (mts.properties: "cloud-
ian.protection.policy.max" (page 576), default = 25). After you have created this many storage
policies, you cannot create additional new policies until you either delete unused policies or increase
the configurable maximum.

4.4.5.0.1. Retrieving Storage Policy Usage Through the Admin API

You cannot create or modify storage policies through the Admin API. However, you can use the API to retrieve
a list of buckets that use each storage policy, with the GET /bppolicy/bucketsperpolicy method.

4.4.6. Assigning a Storage Policy to a Bucket
When users create a new bucket they can select a storage policy to apply to the data that they will store in that
bucket. This can be done either through the CMC or through other S3 applications that invoke HyperStore
extensions to the standard S3 API.

IMPORTANT ! After a bucket is created, it cannot be assigned a different storage policy. The storage
policy assigned to the bucket at bucket creation time will continue to be bucket’s storage policy for the
life of the bucket.

83

Chapter 4. Working with HyperStore Major Features

Assigning a Storage Policy to a Bucket (CMC)
CMC users can select a storage policy when they create a new bucket in the CMC’s Buckets page:

l "Add a Bucket" (page 218)

If a user does not explicitly select a policy when creating a new bucket, the system’s current default storage
policy is automatically applied to the bucket.

Assigning a Storage Policy to a Bucket (S3 API)
To select a storage policy for a new bucket, S3 client applications use an "x-gmt-policyid" request header when
submitting a PUT Bucket request:

l PUT Bucket

4.4.7. Finding anObject's Replicas or EC Fragments
HyperStore lets you quickly determine which nodes are storing the replicas or erasure coded fragments of a
specified S3 object. You can do this through either the CMC or the command line.

Finding an Object’s Replicas or EC Fragments (CMC)
To find an object’s replicas or fragments locations using the CMC:

l Object Locator

Finding an Object’s Replicas or EC Fragments (Command Line)
To find an object’s replicas or erasure coded fragments locations using hsstool on the command line:

l hsstool whereis

4.4.8. Storage Policy Resilience to DownedNodes
When nodes are down in your cluster, HyperStore S3 service availability for object writes and reads is a func-
tion of several factors including:

l The storage policy applied to the objects -- particularly the data distribution scheme (such as 3X rep-
lication or 4+2 erasure coding) and the configured consistency level requirements.

l The number of nodes in the cluster.

l The number of nodes that are down.

The tables that follow below indicate HyperStore S3 write and read availability for common single-DC storage
policy configurations, in scenarios where either one or two nodes are down. For simplicity the tables refer to
nodes as being "down", but the same logic applies if nodes are unavailable for other reasons such as being
inaccessible on the network, or in a stop-write condition, or in maintenance mode.

Single DC, 3X Replication
With a 3X replication storage policy, the system's ability to support writes and reads when 1 or 2 nodes are

84

4.4. Storage Policies

down depends on your consistency level configuration and on whether you have 3, 4, or 5 or more nodes in
the cluster.

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down 3 Nodes in Cluster 4 Nodes in Cluster

5 or More Nodes In
Cluster

Writes ALL 1 All writes fail Writes succeed for
some objects and
fail for others.

Writes succeed for
some objects and
fail for others.

2 All writes fail All writes fail Writes succeed for
some objects and
fail for others

QUORUM
(default)

1 All writes succeed All writes succeed All writes succeed

2 All writes fail Writes succeed for
some objects and
fail for others

Writes succeed for
some objects and
fail for others

Reads ALL 1 All reads fail Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

2 All reads fail All reads fail Reads succeed for
some objects and
fail for others

QUORUM
(default)

1 All reads succeed All reads succeed All reads succeed

2 All reads fail Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

ONE 1 or 2 All reads succeed All reads succeed All reads succeed

Single DC, k+2 Erasure Coding
By default HyperStore supports several k+2 erasure coding schemes: 4+2, 6+2, and 8+2. With a storage policy
based on k+2 erasure coding, the system's ability to support writes and reads when 1 or 2 nodes are down
depends on your consistency level configuration and on whether you have k+2, k+3, or k+4 or more nodes in
the cluster. For example with a 4+2 policy (k = 4), write and read resilience depends in part on whether you
have 6, 7, or 8 or more nodes in the cluster; and with a 6+2 policy (k = 6), resilience depends in part on
whether you have 8, 9, or 10 or more nodes in the cluster.

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down

k+2 Nodes in
Cluster

k+3 Nodes in
Cluster

k+4 or More Nodes
in Cluster

Writes ALL 1 All writes fail Writes succeed for
some objects and

Writes succeed for
some objects and

85

Chapter 4. Working with HyperStore Major Features

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down

k+2 Nodes in
Cluster

k+3 Nodes in
Cluster

k+4 or More Nodes
in Cluster

fail for others fail for others

2 All writes fail All writes fail Writes succeed for
some objects and
fail for others

QUORUM
(default)

1 All writes succeed All writes succeed All writes succeed

2 All writes fail Writes succeed for
some objects and
fail for others

Writes succeed for
some objects and
fail for others

Reads ALL 1 or 2 Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

QUORUM
(default)

1 All reads succeed All reads succeed All reads succeed

2 Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

Single DC, k+3 Erasure Coding
By default HyperStore supports one k+3 erasure coding scheme: 9+3. With a storage policy based on k+3 eras-
ure coding, the system's ability to support writes and reads when 1 or 2 nodes are down depends on your con-
sistency level configuration and on whether you have k+3, k+4, or k+5 or more nodes in the cluster. For
example with a 9+3 policy (k = 9), write and read resilience depends in part on whether you have 12, 13, or 14
or more nodes in the cluster.

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down

k+3 Nodes in
Cluster

k+4 Nodes in
Cluster

k+5 or More Nodes
in Cluster

Writes ALL 1 All writes fail Writes succeed for
some objects and
fail for others

Writes succeed for
some objects and
fail for others

2 All writes fail All writes fail Writes succeed for
some objects and
fail for others

QUORUM
(default)

1 or 2 All writes succeed All writes succeed All writes succeed

Reads ALL 1 or 2 Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

86

4.4. Storage Policies

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down

k+3 Nodes in
Cluster

k+4 Nodes in
Cluster

k+5 or More Nodes
in Cluster

QUORUM
(default)

1 or 2 All reads succeed All reads succeed All reads succeed

Single DC, k+4 Erasure Coding
By default HyperStore supports one k+4 erasure coding scheme: 12+4. With a storage policy based on k+4
erasure coding, the system's ability to support writes and reads when 1 or 2 nodes are down depends on your
consistency level configuration and on whether you have k+4, k+5, or k+6 or more nodes in the cluster. For
example with a 12+4 policy (k = 12), write and read resilience depends in part on whether you have 16, 17, or
18 or more nodes in the cluster.

S3 Oper-
ation Type

Configured
Consistency
Level (CL)

Number of
Nodes Down

k+4 Nodes in
Cluster

k+5 Nodes in
Cluster

k+6 or More Nodes
in Cluster

Writes ALL 1 All writes fail Writes succeed for
some objects and
fail for others

Writes succeed for
some objects and
fail for others

2 All writes fail All writes fail Writes succeed for
some objects and
fail for others

QUORUM
(default)

1 or 2 All writes succeed All writes succeed All writes succeed

Reads ALL 1 or 2 Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

Reads succeed for
some objects and
fail for others

QUORUM
(default)

1 or 2 All reads succeed All reads succeed All reads succeed

Additional Considerations for S3 Availability
S3 Availability for Large Objects

For uploading larger objects, S3 client applications typically use Multipart Upload -- which breaks the object
data into contiguous parts and uploads each part separately. Amazon recommends that client applications use
Multipart Upload for objects 100MB and larger. Within HyperStore, each part is assigned its own hash value
and is separately replicated or erasure coded within the cluster.

Also, for each object larger than 10MB -- or for Multipart Uploads, for each object part larger than 10MB -- the
HyperStore system breaks the object or part into multiple "chunks" of 10MB or smaller (for more detail on this

87

Chapter 4. Working with HyperStore Major Features

configurable feature see "System Settings" (page 342)). Each chunk is assigned its own hash value and is
separately replicated or erasure coded within the cluster.

For S3 write and read availability for large objects, within HyperStore the write or read of each part and/or
chunk must satisfy the object data consistency level requirement in order for the S3 object upload or object
read operation as a whole to succeed. (The metadata requirements are not impacted by object size since the
metadata records are for the object as a whole and not for each part or chunk.)

In terms of the Result categories in the tables above, the consequences of an object being large are as follows:

l "All writes/reads succeed" -- No effect. Just as writes or reads of all individual small objects succeed,
so too do writes or reads of all large object parts and chunks.

l "All writes/reads fail" -- No effect. Large objects fail just as small ones do.

l "Writes/Reads succeed for some objects and fail for others." -- Here, the object data consistency cri-
teria that determine which objects succeed (as displayed when you click the Result text in the tables)
must be met by each part and/or chunk in order for the S3 object upload or object read operation as a
whole to succeed. Consequently, in these scenarios, the write or read of a large object with multiple
parts and/or chunks has a greater chance of failing than the write or read of a small object.

Writes of Object Metadata Per Bucket

For an S3 write operation to succeed, your configured write consistency requirement must be met for the object
data and also for the object metadata. The system actually writes two types of object metadata record -- a
record specific to the object and a bucket-level record that gets updated with metadata for each object in the
bucket (the bucket-level record is used for listing the contents of a bucket, among other things).

For a given object, the per-object metadata record has the same key format as the object data (buck-
etname/objectname) and therefore is assigned the same hash token as the object data and will be written to
the same endpoint nodes as the object data -- or a subset of those nodes, in the case of erasure coding stor-
age policies. By contrast, the per-bucket object metadata record has a different key format and therefore a dif-
ferent hash token, and so may be written to different endpoint nodes than the object data. The per-bucket
object metadata record is replicated to the same degree as the per-object metadata record -- for example,
three times in a 3X replication storage policy -- and must meet the same configured write consistency require-
ments.

To limit the complexity of the tables above, in the Result descriptions the references to object metadata are
referring only to the per-object metadata record. In terms of the Result categories in the tables, the con-
sequences of the system's need to also write per-bucket object metadata -- potentially to different endpoint
nodes than the object data and per-object metadata -- are as follows:

l "All writes succeed" -- No effect. In these scenarios writes succeed for the per-bucket object metadata
also.

l "All writes fail" -- No effect. In these scenarios S3 writes fail regardless of the per-bucket object
metadata considerations.

l "Writes succeed for some objects and fail for others." -- In these scenarios, writes succeed for
objects for which the consistency requirement can be met for object data, per-object metadata, and per-
bucket object metadata. Writes fail for objects for which the consistency requirement cannot be met for
either the object data, or the per-object metadata, or the per-bucket metadata. In such down node scen-
arios where writes succeed for some objects and fail for others, whether the write of a given object suc-
ceeds or fails is determined not only by the hash token assigned to the object's data and per-object
metadata record but also by the hash token assigned to the per-bucket object metadata record.

88

4.5. Security Features

Note Per-bucket object metadata is not used for S3 object reads and has no impact on any of the
read availability scenarios in the tables above. Only the per-object metadata record is relevant to
object reads.

Redis DB Access

The HyperStore system's S3 Service needs information from the Redis Credentials database and the Redis
QoS database in order to process S3 write and read requests. In most cases -- particularly in larger clusters -- 1
or 2 nodes being down in your system will not impact the availability of these databases (which are imple-
mented across multiple nodes in master-slave relationships). If problems within your system were to lead to
either of these databases being completely offline -- such as if all the nodes running Redis Credentials are
down, or all the nodes running Redis QoS are down -- the S3 layer can use cached Redis data for a while. But
if the cached data expires and a Redis database is still completely offline, then S3 requests will start to fail.

4.5. Security Features

4.5.1. HyperStore Shell (HSH)

4.5.1.1. HyperStore Shell (HSH) Feature Overview

The HyperStore shell (HSH) is a restrictive command-line interface that allows administrators to log into and
administer HyperStore nodes without having or needing root access to the nodes. A user logged into the Hyper-
Store shell can run common HyperStore commands and tools such as hsstool or cloudianInstall.sh as well as
being able to run a limited range of Linux OS commands. But the HSH is more restrictive, and therefore more
secure, than having administrators log into HyperStore nodes as root and use a standard Linux shell. With the
HSH each administrator has their own unique login ID and password; the commands that administrators can
execute are limited by the shell; and each administrator's actions are recorded to an audit log.

The HSH is present on every HyperStore node but by default the HSH is disabled. For information on
enabling the HSH, and provisioning HSH users, see "Enabling the HSH and Managing HSH Users" (page
90). That section also describes an option to disable root password access to HyperStore nodes, so that admin-
istration of the nodes is performed exclusively by way of the HSH.

For information on the HyperStore commands and Linux OS commands supported by the HSH, see "Using the
HSH" (page 94).

4.5.1.1.1. HSH Logging

Every user login to the HSH, and every command that an HSH user runs while logged in, is recorded to a ded-
icated HSH log. Also recorded are commands that an authenticated HSH user runs remotely, without initiating
a login session.

Each HyperStore node has its own HSH log, recording HSH logins and commands run on that node. The log is
configured as append only, and HSH users cannot modify this configuration.

For more information on HSH logging, see "HyperStore Shell Log" (page 613).

89

Chapter 4. Working with HyperStore Major Features

4.5.1.1.2. The HSH and Object Lock

If you want to use the HyperStore Object Lock feature (for WORM protection of object data in designated buck-
ets), you must first enable the HSH and disable the root password. The system will not allow the creation of
Object Lock enabled buckets until after the HSH is enabled and the root password is disabled.

For information about Object Lock, see "WORM (Object Lock)" (page 121).

For information about enabling HSH and disabling the root password, see "Enabling the HSH and Managing
HSH Users" (page 90).

4.5.1.2. Enabling the HSH and Managing HSH Users

Subjects covered in this section:

l "Enabling the HSH" (page 90)

l "Adding HSH Users" (page 91)

l "Elevating a Regular HSH User to the "Trusted" Role" (page 92)

l "Deleting an HSH User" (page 93)

l "Disabling the root Password" (page 93)

4.5.1.2.1. Enabling the HSH

By default, after you have completed a fresh installation of HyperStore 7.2 or an upgrade to HyperStore 7.2, the
HyperStore shell (HSH) is installed but disabled.

Note The exception is that HyperStore 7.2 appliances delivered for new deployments in certain
industry sectors with stringent security requirements may arrive on site with HSH already enabled (and
the root password already disabled). If you're unsure whether this applies to you, consult with your
Cloudian representative.

To enable the HSH on all of your HyperStore nodes do the following:

1. Log into the Puppet Master node as the root user.

2. Check to confirm that the HSH is currently disabled. (Here and in the steps that follow you will use hsctl,
a new node management tool that remains mostly behind the scenes in HyperStore 7.2 but will be
more prominent in future HyperStore releases. You can run the hsctl commands in this procedure from
any directory.)

hsctl config get hsh.enabled
False

3. Set hsh.enabled to true.

hsctl config set hsh.enabled=true

4. Push the configuration change out to the cluster.

hsctl config apply hsh

5. Confirm that the HSH is now enabled.

90

4.5. Security Features

hsctl config get hsh.enabled
True

The HSH is now enabled in your system, but by default no users are able to log into the HSH and use it. To
provision users who can use the HSH, see "Adding HSH Users" (page 91) below.

4.5.1.2.2. Adding HSH Users

HSH users map to your System Admin users in the CMC. For each System Admin user in the CMC, HyperStore
will automatically create a corresponding HSH user account if triggered to do so as described below.

CMC System Admin User Type How to Trigger Creation of Corresponding HSH
User

The CMC default System Admin user, with user name
"admin".

After installing or upgrading to HyperStore 7.2, log
into the CMC as the "admin" user and change the
"admin" user's password. (Alternatively, the pass-
word can be changed through the Admin API.) This
password change causes the system to create a cor-
responding HSH user.

Additional CMC System Admin users, created in
HyperStore 7.1.x or earlier.

After the system has been upgraded to HyperStore
7.2, a legacy CMC System Admin User can log into
the CMC and change their password. (Alternatively,
the password can be changed through the Admin
API.) This password change causes the system to cre-
ate a corresponding HSH user.

Additional CMC System Admin users, created in
HyperStore 7.2 or later.

When an additional CMC System Admin user is cre-
ated in HyperStore 7.2 or later (either in the CMC or
through the Admin API), the system automatically cre-
ates a corresponding HSH user.

When HyperStore creates an HSH user corresponding to a CMC System Admin user:

l The HSH user name is the CMC user name prefixed by "sa_". For example, for CMC user "admin"
the HSH login name is "sa_admin"; and for CMC user "tom" the HSH login name is "sa_tom".

l The HSH user login password is the same as the CMC user login password. The HSH user login
password cannot be managed separately from -- or differ from -- the corresponding CMC user login
password. If an HSH user wants to change their password they should change their CMC password,
and their HSH password will automatically change to match their new CMC password.

Note If you have LDAP authentication enabled for the System Admin group, then when Hyper-
Store creates an HSH user corresponding to a CMC System Admin user the HSH user name
will not have an "sa_" prefix (instead it will be the same as the CMC user name); and when the
user logs into the HSH they will use their LDAP credentials and the system will verify those cre-
dentials against your LDAP service. Note that if a local Unix user account with that same user
name already exists, a new HSH user account will not be created (the existing local user
account will not be overwritten). For more information on LDAP authentication see "LDAP Integ-
ration" (page 131) and especially the sub-section "Special Considerations for LDAP
Authentication of System Administrators" (page 134).

91

Chapter 4. Working with HyperStore Major Features

Once an HSH user has been created, that user can use SSH to log into any HyperStore node. Upon login, the
user's shell will be the HyperStore shell. The prompt will appear as follows:

<username>@<hostname>$

For example:

sa_admin@hyperstore1$

You can confirm that you are in the HyperStore shell by typing help:

sa_admin@hyperstore1$ help
HyperStore Shell
Version: 1.0.1-2, d6b3c8d46ecaaaa69b62af25c4e7d4270f8b4d7e(otp protocol: 1)

Commands:
...

For information on using the HyperStore shell see "Using the HSH" (page 94).

Note HyperStore does not create corresponding HSH users for CMC Group Admin level users (or for
regular users). Only System Admin level users are allowed HSH access.

4.5.1.2.3. Elevating a Regular HSH User to the "Trusted" Role

The HSH supports two types of HSH users:

l Regular HSH users

l Trusted HSH users (HSH users who have been granted the "Trusted" role)

While regular HSH users can run most of the commands that the HSH supports, Trusted HSH users can run all
of the commands that the HSH supports. Put differently, there are some commands that only Trusted HSH
users can run. For information about supported commands and which ones are available only to Trusted users,
see "Using the HSH" (page 94).

The HSH user sa_admin -- the HSH user corresponding to the CMC default System Admin user -- is auto-
matically a Trusted HSH user. By contrast, HSH users corresponding to additional System Admin users that
have been created in the CMC are by default regular HSH users who do not have the Trusted role.

As a Trusted user the sa_admin user can elevate one or more regular HSH users so that they too are Trusted:

1. Log into the Puppet Master node as the sa_admin user. Upon login you will be in the HyperStore shell.

2. Run this command to add a regular HSH user to the Trusted role:

$ hspkg role -a <username> trusted

Be sure to specify the HSH user name (including the sa_ prefix), not the CMC user name.

For example:

$ hspkg role -a sa_admin2 trusted
hsh.roles.trusted.users=sa_admin2

92

4.5. Security Features

Note The response shows the current list of users who have been explicitly granted the Trusted
role (which is just one user in the example above). The sa_admin user, who is automatically
Trusted, will not appear in this list.

3. If you want to elevate any other regular HSH users to the Trusted role at this time, run the command
from Step 2 again, with another HSH user name.

4. Push the configuration change out to the cluster. (Here you are again using the hsctl tool that was men-
tioned previously).

$ hsctl config apply hsh

Once additional HSH users have been elevated to the Trusted role, then those Trusted users are also able to
elevate regular HSH users to the Trusted role. That is, any Trusted HSH user has the ability to elevate regular
HSH users to the Trusted role.

To see the current list of HSH users who have been explicitly granted the Trusted role, any Trusted user
can run this command:

$ hspkg role trusted
hsh.roles.trusted.users=sa_admin2

Note again that the response will exclude the sa_admin user, who is automatically Trusted.

To remove an HSH user from the list of Trusted users, a Trusted user can run these commands:

$ hspkg role -d <username> trusted
$ hsctl config apply hsh

This does not delete the HSH user; it only demotes them to being a regular HSH user rather than a Trusted
user.

Note If an HSH user that you elevate to the Trusted role (or remove from the Trusted role) is logged in
to the HSH when you make the change, the change in their role status will not take effect until after the
user logs out and then logs back in again.

4.5.1.2.4. Deleting an HSH User

If a System Admin user is deleted or suspended (made inactive) in the CMC or through the Admin API, the sys-
tem automatically deletes that user's HSH user account.

In the case of a System Admin user who is made inactive, and then subsequently made active again, after
being made active again that user must change their password in the CMC or through the Admin API in order
to trigger the system to recreate a corresponding HSH account for the user.

The system does not support deleting or disabling the HSH account of an active CMC System Admin user.

4.5.1.2.5. Disabling the root Password

Optionally, you can disable the root account password on all HyperStore nodes so that no user has root pass-
word access to those nodes. You can do this if for security reasons it's desirable to have all administrators use
only the restrictive HyperStore shell when logging into and administering HyperStore nodes.

Note Disabling the root password is required if you want to use the Object Lock feature.

93

Chapter 4. Working with HyperStore Major Features

Before you can disable the root account password:

l HSH must be enabled (see "Enabling the HSH" (page 90))

l An HSH user account must be created for the CMC default System Admin user (see "Adding HSH
Users" (page 91))

Also before you disable the root account password, it's important to be aware that:

l If you disable the root password, and then you subsequently want root password access to your Hyper-
Store nodes again, you will need to contact Cloudian Support for assistance. Once you disable root
password access to HyperStore nodes you cannot regain root password access without assistance
from Cloudian Support.

l Disabling the root password will prevent users from logging in to HyperStore nodes as root using a
password but it will not prevent a root user from accessing HyperStore nodes using an SSH key, if in
your environment SSH key access has been set up for the root user.

To disable root password access to all HyperStore nodes:

Note You will need to log in as root to perform this task -- you cannot do it while logged in as an
HSH user.

1. As root, log into the Puppet Master node and then change into the installation staging directory.

2. Launch the HyperStore installer.

./cloudianInstall.sh

3. In the installer main menu enter 4 for "Advanced Configuration Options", then at the next menu enterm
for "Disable the root password".

4. Follow the prompts to disable the root password.

After exiting the installer, log out from the node. Then try to log back in as root, using the root password -- the
login attempt should fail. Then log in as sa_admin or another HSH user, with that user's password. The login
should succeed, and you should be in the HyperStore shell.

Regaining root Password Access After Having Disabled It

If you disable root password access to your HyperStore nodes as described above, the only way to regain root
password access is to contact Cloudian Support for assistance.

4.5.1.3. Using the HSH

Subjects covered in this section:

l "Starting and Ending an HSH Session" (page 95)

l "HyperStore Commands and Utilities Supported by the HSH" (page 96)

l "Linux Commands and Utilities Supported by the HSH" (page 99)

l "General Restrictions On Command Usage" (page 100)

94

4.5. Security Features

4.5.1.3.1. Starting and Ending an HSH Session

Once the HyperStore shell (HSH) has been enabled and your HSH user account has been created (as
described in "Enabling the HSH and Managing HSH Users" (page 90),) you can SSH into any HyperStore
node using your HSH user name and password. Upon login to the node, your shell will be the HyperStore
shell. The prompt will appear as follows:

<username>@<hostname>$

For example:

sa_admin@hyperstore1$

To confirm that you are in the HyperStore shell and to view a list of HSH commands, type help:

$ help
HyperStore Shell
Version: 1.0.1-2, d6b3c8d46ecaaaa69b62af25c4e7d4270f8b4d7e(otp protocol: 1)

Commands:
...

To view HSH command inline help type <command> --help (or <command> -h):

$ hslog --help
View protected log files under the /var/log directory.
Usage:
hslog [flags] FILENAME
Flags:
-h, --help help for hslog

To end your HSH session and disconnect from the HyperStore node, type exit.

$ exit

Note On each node an HSH user's home directory is /home/<username> -- for example /home/sa_
admin.

Reattaching to an HSH Session

If you are logged into the HSH on a node and your SSH connection gets cut:

l Any long-running commands that were in-progress in that HSH session will continue to run

l You can log back into the HSH on that same node and you will be given the choice to reattach to the
existing session or to start a new session

You can also manually detach from a session by using the keystroke sequence ctrl-g d. Then when you log in
again you can choose whether to reattach to the existing session or to start a new session.

Note If an HSH user gets disconnected -- or intentionally detaches -- from a session, and then logs in
and starts a new session, the user can have multiple concurrent sessions on a node. The system sets a
limit of 9 concurrent sessions for a single HSH user on a node.

To end an existing session from which you are detached, reattach to it and then type exit on the command
line.

95

Chapter 4. Working with HyperStore Major Features

4.5.1.3.2. HyperStore Commands and Utilities Supported by the HSH

The HyperStore shell supports the use of these commands that are specific to HyperStore. Commands marked
as "(requires Trusted role)" are available only to HSH users who have been granted the Trusted role (for more
information on this role see "Elevating a Regular HSH User to the "Trusted" Role" (page 92)).

Note Do not precede these commands with a path -- for example, run hsstool as simply hsstool not as
./hsstool.

Command Purpose More Inform-
ation

hsrun
Run a binary file or script that is cyrp-
tographically signed by Cloudian (such as a
HyperStore release package file).

In shell, hsrun -
-help

hspkg

Sub-commands include those listed below.

Manage HyperStore installation and con-
figuration

In shell, hspkg -
-help

l hspkg setup (requires Trusted role)
Launch the HyperStore host setup tool (sys-
tem_setup.sh)

In shell, hspkg
setup --help

See also:

"Preparing
Your Nodes
For HyperStore
Installation" in
the HyperStore
Installation
Guide

l hspkg install (requires Trusted role)
Launch the HyperStore installer
(cloudianInstall.sh)

In shell, hspkg
install --help

See also:

"Upgrading
Your Hyper-
Store Software
Version" (page
55)

"Installer
Advanced Con-
figuration
Options" (page
501)

Note
You
cannot
perform

96

4.5. Security Features

Command Purpose More Inform-
ation

the "Dis-
able
the root
pass-
word"
task as
an HSH
user.
See
"Dis-
abling
the
root
Pass-
word"
(page
93).

"Pushing Con-
figuration File
Edits to the
Cluster and
Restarting Ser-
vices" (page
506)

l hspkg config (requires Trusted role) View or edit a HyperStore configuration file

In shell, hspkg
config --help

Or for more
detailed inform-
ation see:

"Using the
HSH to Man-
age Con-
figuration
Files" (page
510)

l hspkg role (requires Trusted role) Manage HSH "Trusted" role membership

In shell, hspkg
role --help

Or for more
detailed inform-
ation see:

"Elevating a
Regular HSH
User to the

97

Chapter 4. Working with HyperStore Major Features

Command Purpose More Inform-
ation

"Trusted"
Role" (page
92)

l hspkg version Check the HyperStore software version --

hslog View a HyperStore log file

In shell, hslog -
-help

Or for more
detailed inform-
ation see:

"Using the
HSH to View
Logs" (page
640)

hsctl (requires Trusted role)

hsctl is a new HyperStore node man-
agement tool that is of limited use in Hyper-
Store 7.2 but will be more prominent in
future releases

--

hsstool
The HSH supports running any hsstool com-
mand, such as hsstool repair, hsstool
cleanup, and so on

"hsstool "
(page 643)

Note
The
HSH
also
sup-
ports
running
Cas-
sandra
node-
tool
com-
mands,
althoug-
h you
would
typ-
ically
use
hsstool
and not
node-
tool.

elasticsearchSync Synchronize object metadata in your Elastic- "Elasticsearch

98

4.5. Security Features

Command Purpose More Inform-
ation

search cluster to object metadata currently
in your HyperStore cluster

Integration for
Object
Metadata"
(page 171)

install_jks.sh (requires Trusted role)

Copy keystore related files to or from the
Puppet configuration directory, in con-
nection with modifying TLS/SSL for Hyper-
Store services.

"HTTPS Sup-
port
(TLS/SSL)"
(page 114)

rebrand_cmc.sh (requires Trusted role)
Copy image and resource files to or from
the Puppet configuration directory, in con-
nection with rebranding the CMC interface.

"Rebranding
the CMC UI"
(page 404)

jetty_password.sh

Create a Jetty-obfuscated password, in con-
nection with modifying the HTTP/S Basic
Authentication password for the Admin Ser-
vice.

"HTTP/S Basic
Authentication
for Admin API
Access" (page
748)

Commands for HyperStore Appliances

The following commands pertain only to HyperStore appliances and would typically be used only on instruc-
tions from Cloudian Support. All of these commands require the Trusted role.

l disk_list_helper.py

l gem_utils.py

l isdct

l sas3ircu

l sbuapp

l slot_disk_map_1500.sh

l slot_disk_map_4000.sh

l slot_disk_map_hsx.sh

l slot_disk_map_x3650.sh

l sluapp

l standard_utils.py

l storcli64

l suuapp

4.5.1.3.3. Linux Commands and Utilities Supported by the HSH

The HyperStore shell allows the use of only the following Linux commands and utilities. No other Linux com-
mands or utilities can be run from within the shell. Commands marked as "(requires Trusted role)" are available
only to HSH users who have been granted the Trusted role (for more information on this role see "Elevating a
Regular HSH User to the "Trusted" Role" (page 92)).

blkid iostat pkill (requires Trusted role)

99

Chapter 4. Working with HyperStore Major Features

cat ip ps

cd ipmitool pwd

chmod keytool reset

cp kill (requires Trusted role) rm

curl less rmdir

date ls scp

df lsblk sfdisk (requires Trusted role)

diff lspci smartctl

dmesg lsscsi ssh

dmidecode md5sum systemctl

domainname mdadm (requires Trusted role) tail

du (requires Trusted role) mkdir tar

file mlnx_install (requires Trusted role) top

grep mv truncate

gzip nc (requires Trusted role) uname

grub2-install (requires Trusted role) netstat unzip

grub2-mkconfig (requires Trusted role) ntpq vi

head openssl (requires Trusted role) vmstat

host pgrep wget

hostname ping zgrep

4.5.1.3.4. General Restrictions On Command Usage

For security reasons, the HSH enforces the following general restrictions on command usage:

l PATH is fixed for each command; you cannot specify a path when running a command.

l sudo is not allowed. Instead, commands that need root privilege (such as systemctl) are automatically
given that privilege inside the shell.

l Entering more than one command on a line is not allowed. Characters such as ";", "&", and "|" are pro-
cessed as literal characters, not as special characters.

l Input and output redirection are not allowed.

l Job control commands such as ctrl-z are not allowed.

l When listing files, the use of the wildcard character "*" is not allowed.

l Tab completion for command names is supported but tab completion for file names is not.

4.5.2. HyperStore Firewall
Subjects covered in this section:

100

4.5. Security Features

l Introduction (immediately below)

l "Enabling or Disabling the HyperStore Firewall" (page 101)

l "Default Behavior of the HyperStore Firewall When Enabled" (page 102)

l "Customizing the HyperStore Firewall" (page 103)

l "HyperStore Firewall Logging" (page 105)

Each HyperStore node includes a built-in HyperStore Firewall that is pre-configured with settings appropriate
for a typical HyperStore deployment. The HyperStore Firewall is either enabled or disabled by default depend-
ing on whether your original HyperStore installation was older than version 7.2:

l In systems originally installed as version 7.2 or newer, the HyperStore Firewall is enabled by default.

l In systems originally installed as a version older than 7.2 and then later upgraded to 7.2 or newer, the
HyperStore Firewall is available but is disabled by default.

You can enable or disable the HyperStore Firewall using the installer's Advanced Configuration Options, as
described below in "Enabling or Disabling the HyperStore Firewall" (page 101). When the Firewall is
enabled, you can optionally customize certain aspects of the Firewall's behavior, as described further below in
"Customizing the HyperStore Firewall" (page 103).

Cloudian, Inc. strongly recommends using a firewall to protect sensitive internal services such as Cas-
sandra, Redis, and so on, while allowing access to public services -- particularly in environments where no
dedicated internal interface(s) have been specified during HyperStore installation; or the internal, back-end net-
work is not a closed network only available between HyperStore nodes. The pre-configured HyperStore Fire-
wall serves this purpose, if enabled. Alternatively, if you have upgraded to HyperStore 7.2 from an older
version and you already have a custom firewall in place that you have been successfully using with Hyper-
Store, you may prefer to keep using that firewall -- since in HyperStore 7.2 the HyperStore Firewall is limited as
to how much it can be customized.

If you have upgraded to HyperStore 7.2 from an older version and you do wish to enable the HyperStore Fire-
wall rather than continuing to use your own custom firewall, then before enabling the HyperStore Firewall do
the following:

l If you have created custom firewalld Zone and Service configuration files, make a backup copy of those
files for your own retention needs. When you enable the HyperStore Firewall your existing Zone and
Service configuration files will be deleted from the /etc/firewalld directory.

l Disable your existing firewall service on each node. For example, to disable firewalld do the following
on each node:

systemctl stop firewalld
systemctl disable firewalld

The HyperStore installer will not allow you to enable the HyperStore Firewall on your nodes if existing
firewall rules are in effect on any of the HyperStore nodes.

Note The HyperStore Firewall service is implemented as a custom version of the firewalld service,
named cloudian-firewalld.

4.5.2.1. Enabling or Disabling the HyperStore Firewall

To enable or disable the HyperStore Firewall on all your HyperStore nodes:

101

Chapter 4. Working with HyperStore Major Features

1. On the Puppet master node, change into your current HyperStore version installation staging dir-
ectory. Then launch the installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. At the installer main menu enter 4 for "Advanced Configuration Options".

3. At the Advanced Configuration Options menu enter s for "Configure Firewall".

4. At the Cloudian HyperStore Firewall Configuration menu enter a for "Enable/Disable Cloudian Hyper-
Store Firewall".

5. In the Enable/Disable Cloudian HyperStore Firewall interface, the Firewall's current status is displayed.
At the prompt enter enable to enable the Firewall or disable to disable the Firewall. After the interface
indicates that the Firewall is set as you specified, press any key to return to the Firewall Configuration
menu.

6. At the Firewall Configuration menu enter x for "Apply configuration changes and return to previous
menu". Then at the next prompt that displays enter yes to confirm that you want to apply your con-
figuration changes. This will apply your change to all nodes in your HyperStore system (all nodes in all
of your data centers and service regions).

The installer interface should then display a status message "result:OK" for each node, to indicate the
successful applying of your configuration change to each node.

Note If the installer displays a Warning about one or more nodes not responding you can try the
Firewall Configuration menu's x option again, and this retry may work for the node(s) if the prob-
lem the first time was a temporary network issue. If one of your nodes is down, the node will auto-
matically be updated with your configuration change when the node comes back online.

You are now done with enabling or disabling the HyperStore Firewall. You do not need to do a Puppet push
or restart any services.

4.5.2.2. Default Behavior of the HyperStore Firewall When Enabled

When the HyperStore Firewall is enabled, the default behavior on each HyperStore node is as follows:

l On all IP interfaces, all TCP ports will allow inbound traffic originating from other HyperStore nodes.
In a multi-DC or multi-region system, this includes inbound traffic originating from HyperStore nodes in
other DCs or regions.

l On all IP interfaces, only the following TCP ports will allow inbound traffic that originates from
sources other than HyperStore nodes:

o Admin HTTP service port (18081 by default)

o Admin HTTPS service port (19443 by default)

o CMC HTTP service port (8888 by default)

102

4.5. Security Features

o CMC HTTPS service port (8443 by default)

o IAM HTTP service port (16080 by default)

o IAM HTTPS service port (16443 by default)

o S3 HTTP service port (80 by default)

o S3 HTTPS service port (443 by default)

o S3 PROXY HTTP service port (81)

o S3 PROXY HTTPS service port (4431)

o SSH service port (22)

o SQS HTTP service port (18090 by default)

o SQS HTTPS service port (18443 by default)

Traffic originating from sources other than HyperStore nodes will be blocked (DROP'd) on all TCP ports
other than those listed above.

Note The Firewall also allows incoming ICMP traffic originating from sources other than Hyper-
Store nodes.

l On all IP interfaces, outbound traffic is allowed on all ports.

When the Firewall is enabled, the Firewall configuration will automatically adjust to system changes in the fol-
lowing ways:

l If you resize your cluster by adding or removing nodes, or by adding or removing a data center or ser-
vice region, the Firewall accommodates this change automatically. In the case of expanding your
cluster, the Firewall will be automatically enabled on new nodes, and the Firewall on the existing nodes
will allow inbound traffic from the new nodes, on any port. In the case of removing nodes, the Firewall
on the existing nodes will be updated such that the removed nodes are no longer part of the cluster and
can only access the cluster's public services.

Note If the Firewall is disabled when you add new nodes to your cluster, the Firewall will also be
disabled on the new nodes.

l If you change the port number that a particular HyperStore public service uses, the Firewall's con-
figuration is automatically adjusted accordingly. After you complete a port change you only need to
apply the updated Firewall configuration to the cluster. For instructions see "Changing S3, Admin, or
CMC Listening Ports" (page 599).

4.5.2.3. Customizing the HyperStore Firewall

The default behavior of the HyperStore Firewall (when enabled) is as described above. If you wish you can cus-
tomize the behavior by denying access to one of the services that the Firewall allows access to by default. For
example, you could deny access to the S3 HTTP service so that the S3 HTTPS service is used exclusively. Sub-
sequently, if there is a change in your preferences or circumstances, you could customize the Firewall to once
again allow access to that service.

To customize the HyperStore Firewall on all your HyperStore nodes:

1. On the Puppet master node, change into your current HyperStore version installation staging directory.
Then launch the installer.

103

Chapter 4. Working with HyperStore Major Features

./cloudianInstall.sh

2. At the installer main menu enter 4 for "Advanced Configuration Options".

3. At the Advanced Configuration Options menu enter s for "Configure Firewall".

4. At the Cloudian HyperStore Firewall Configuration menu enter the menu letter corresponding to the ser-
vice for which you want to deny or allow access (for example h for S3 HTTP).

5. In the Allow/Deny Access to Service <Service Type> interface, the service's current setting is displayed
("Allow" or "Deny"). At the prompt enter deny to deny access to the service or allow to allow access to
the service. After the interface indicates that the service is set as you specified, press any key to return
to the Firewall Configuration menu.

6. At the Firewall Configuration menu enter x to apply your configuration changes. Then at the next
prompt that displays enter yes to confirm that you want to apply your configuration changes. This will
apply your change to all nodes in your HyperStore system (all nodes in all of your data centers and ser-
vice regions).

The installer interface should then display a status message "result:OK" for each node, to indicate the
successful applying of your configuration change to each node.

Note If the installer displays a Warning about one or more nodes not responding you can try the
Firewall Configuration menu's x option again, and this retry may work for the node(s) if the prob-
lem the first time was a temporary network issue. If one of your nodes is down, the node will auto-
matically be updated with your configuration change when the node comes back online.

You are now done with customizing the HyperStore Firewall. You do not need to do a Puppet push or restart
any services.

104

4.5. Security Features

4.5.2.4. HyperStore Firewall Logging

On each node, requests blocked by the HyperStore Firewall are logged to /var/log/firewall.log. For more inform-
ation about this log including its rotation and retention behavior, see "HyperStore Firewall Log" (page 609).

4.5.3. Server-Side Encryption

4.5.3.1. Server-Side Encryption Feature Overview

Subjects covered in this section:

l Introduction (immediately below)

l "Encryption Configuration Changes Do Not Apply Retroactively" (page 106)

l "Encryption and Auto-Tiering" (page 106)

l "Encryption and Cross-Region Replication" (page 106)

The HyperStore system supports server-side encryption (SSE) to protect the confidentiality of data at rest.
Several different methods of server-side encryption are supported:

l Encryption using a HyperStore system-generated encryption key (regular SSE)

l Encryption using a customer-provided encryption key (SSE-C)

l Encryption using encryption keys managed by the AmazonWeb Services Key Management Service
(AWS KMS)

The selection of whether to use server-side encryption, and which method to use, can be made at the object
level (as specified by headers in the object upload request), or the bucket level (so that a default encryption
method is applied to all objects uploaded to the bucket), or the storage policy level (so that a default encryption
method is applied to all objects uploaded to any bucket that uses the storage policy). When the system is pro-
cessing a given object upload, the precedence ordering among these different configuration levels is as fol-
lows:

1. If a server-side encryption method is specified in the object upload request, the system uses that
method. If not, then...

2. If a default server-side encryption method is specified in the configuration of the bucket to which the
object is being uploaded, the system uses that method. If not, then...

3. If a default server-side encryption method is specified in the configuration of the storage policy used by
the bucket to which the object is being uploaded, the system uses that method.

Put differently, any encryption configuration specified by object upload request headers takes precedence over
the bucket default configuration; and the bucket default configuration takes precedence over the storage policy
configuration. If no encryption method is specified in either the object upload request, the configuration of the
bucket into which the object is being uploaded, or the configuration of the storage policy used by the bucket,
then no server-side encryption is applied to that object.

For more information about using the supported server-side encryption methods, see:

l "Using Regular SSE" (page 107)

l "Using SSE-C" (page 108)

l "Using AWS KMS" (page 110)

105

Chapter 4. Working with HyperStore Major Features

4.5.3.1.1. Encryption Configuration Changes Do Not Apply Retroactively

You cannot apply server-side encryption retroactively to objects that have already been uploaded to the sys-
tem. For example, if you modify a bucket's configuration so that it includes server-side encryption, this will apply
only to objects uploaded from that time forward -- not to objects that had been uploaded to the bucket pre-
viously. The same is true of adding server-side encryption to a storage policy's configuration: from that time for-
ward, objects that get uploaded into buckets that use that storage policy will be encrypted, but objects that had
already been uploaded previously will not be encrypted.

Conversely, if a bucket configuration or storage policy configuration uses server-side encryption and then you
subsequently disable encryption for that bucket or storage policy, then from that time forward newly uploaded
objects will not be encrypted -- but objects that had already been uploaded and encrypted prior to the con-
figuration change will remain encrypted.

4.5.3.1.2. Encryption and Auto-Tiering

How the HyperStore system handles auto-tiering of server-side encrypted objects depends on the encryption
method used and the tiering destination.

Encryption in HyperStore Tiering Destination Object Handling

Regular SSE

Amazon, Google, or
HyperStore

HyperStore decrypts the object, then tiers it
to the destination system and includes an x-
amz-server-side-encryption: AES256 header
in the upload request.

Azure or
Spectra BlackPearl

HyperStore decrypts the object, then tiers it
to the destination system in decrypted form.
These destinations do not support a server-
side encryption option in object upload
requests.

SSE-C Any

HyperStore tiers the encrypted object to the
destination system, where it remains encryp-
ted. To retrieve such a tiered object, client
applications must first Restore the object into
HyperStore, then GET the object (and
include the SSE-C headers in the GET
request). Streaming GETs of such tiered
objects directly from the destination are not
supported.

AWS KMS

Amazon, Google, or
HyperStore

HyperStore decrypts the object, then tiers it
to the destination system and includes an x-
amz-server-side-encryption: aws:kms
header in the upload request.

Azure or
Spectra BlackPearl

HyperStore decrypts the object, then tiers it
to the destination system in decrypted form.
These destinations do not support a server-
side encryption option in object upload
requests.

4.5.3.1.3. Encryption and Cross-Region Replication

When cross-region replication is configured for a source bucket:

106

4.5. Security Features

l Objects encrypted by the regular SSE method are replicated to the target replication bucket.

l Objects encrypted by the SSE-C method or the AWS KMS method are not replicated to the target rep-
lication bucket.

4.5.3.2. Using Regular SSE

Subjects covered in this section:

l Introduction (immediately below)

l "Recommended System Set-Up Before Using SSE" (page 107)

l "Requesting SSE for Specific Objects (CMC or S3 API)" (page 107)

l "Configuring SSE as the Default for a Bucket (S3 API Only)" (page 108)

l "Configuring SSE as the Default for a Storage Policy (CMC Only)" (page 108)

Regular server-side encryption (SSE) can be configured at the object level, the bucket level, or the storage
policy level. For information about the precedence ordering among these levels see "Server-Side Encryp-
tion" (page 105).

When regular SSE is used the HyperStore system generates a unique encryption key for each object that the
system encrypts, and the encryption key is stored as part of the object’s metadata.

4.5.3.2.1. Recommended System Set-Up Before Using SSE

With regular SSE, the HyperStore system generates the encryption keys using AES-128 by default. While AES-
128 will work for regular SSE, and may be acceptable in a testing or evaluation environment, for greater secur-
ity Cloudian, Inc. recommends using AES-256. You can enable AES-256 in your HyperStore system as
described in "Enabling AES-256" (page 112).

Note Amazon uses AES-256 for its regular SSE implementation, and AES-256 is called for in
Amazon's SSE specification.

4.5.3.2.2. Requesting SSE for Specific Objects (CMC or S3 API)

Regular SSE can be set for specific objects as those objects are uploaded to the HyperStore system. This can
be done either through the CMC or through a third party S3 client application that invokes the HyperStore
implementation of the S3 API.

Object-Level SSE Through the CMC

In the CMC’s Buckets & Objects page, where a user can upload objects into the HyperStore system, the inter-
face displays a "Store Encrypted" checkbox. If the user selects this checkbox, the HyperStore system applies
regular server-side encryption to the uploaded object(s). For more information see "Upload an Object" (page
246).

Object-Level SSE Through the S3 API

In compliance with the Amazon S3 REST API, the HyperStore system’s S3 API implementation supports reg-
ular server-side encryption by the inclusion of the x-amz-server-side-encryption: AES256 request header in
any of these operations on objects:

107

Chapter 4. Working with HyperStore Major Features

l PUT Object

l Initiate Multipart Upload

l Upload Part

l POST Object

l PUT Object - copy

Note If you have not enabled AES-256 in your HyperStore system, the system will use AES-128
encryption even though the x-amz-server-side-encryption request header specifies AES256.

4.5.3.2.3. Configuring SSE as the Default for a Bucket (S3 API Only)

In compliance with the Amazon S3 REST API, the HyperStore system’s S3 API supports setting and managing
a bucket default server-side encryption method by the use of these operations:

l PUT Bucket encryption

l GET Bucket encryption

l DELETE Bucket encryption

To configure a bucket for regular SSE, in the PUT Bucket encryption request body set the SSEAlgorithm ele-
ment to AES256.

Note If you have not enabled AES-256 in your HyperStore system, the system will use AES-128
encryption even though the SSEAlgorithm element specifies AES256.

Note The CMC does not support setting a bucket default server-side encryption method.

4.5.3.2.4. Configuring SSE as the Default for a Storage Policy (CMC Only)

When you use the CMC to create storage policies, one of the configurable policy attributes is server-side
encryption. To configure a storage policy to use regular SSE, in the "Server-Side Encryption" field of the stor-
age policy configuration interface, select "SSE".

For more information on storage policy configuration see:

l "Add a Storage Policy" (page 353)

l "Edit a Storage Policy" (page 377)

4.5.3.3. Using SSE-C

Subjects covered in this section:

l Introduction (immediately below)

l "Required System Set-Up Before Using SSE-C" (page 109)

l "Requesting SSE-C for Specific Objects (S3 API Only)" (page 109)

108

4.5. Security Features

Server-side encryption with customer-provided encryption keys (SSE-C) can only be set at the per-object
level, and only if you use a third party S3 client that supports requesting this type of encryption. Setting SSE-C
as the default encryption method for a bucket or a storage policy is not supported.

When SSE-C is used, the HyperStore system does not store the customer-provided encryption key itself but
rather stores a hash of the key (for purposes of verifying the key if it’s subsequently submitted in a GET Object
request). The key hash is stored with the object metadata.

IMPORTANT ! When SSE-C is used, the user is responsible for managing the encryption key. If an
object is uploaded to HyperStore system and encrypted with a user-provided key, the user will need to
provide that same key when later requesting to download the object. If the user loses the key, the
encrypted object will not be downloadable. This is consistent with Amazon's implementation of the
SSE-C feature. For more information on Amazon’s SSE-C feature see Protecting Data Using Server-
Side Encryption with Customer-Provided Encryption Keys (SSE-C).

4.5.3.3.1. Required System Set-Up Before Using SSE-C

Before using SSE-C you must first:

l Enable AES-256 in your HyperStore system. Like Amazon S3, HyperStore’s implementation of SSE-C
requires AES-256 encryption. For instructions see "Enabling AES-256" (page 112).

l Set up HTTPS for your S3 Service. Like Amazon S3, HyperStore’s implementation of SSE-C requires
that the relevant S3 API requests be transmitted over HTTPS rather than regular HTTP. For instructions
see "HTTPS Support (TLS/SSL)" (page 114).

Note HyperStore supports a configuration for allowing a regular HTTP connection between a
load balancer and your S3 servers for transmission of SSE-C requests over your internal net-
work, while client applications use HTTPS in the requests that come into the load balancer. See
the configuration parameter mts.properties.erb:"cloudian.s3.ssec.usessl" (page 577).

4.5.3.3.2. Requesting SSE-C for Specific Objects (S3 API Only)

In compliance with the Amazon S3 REST API, the HyperStore system’s S3 API supports server-side encryption
with user-provided keys by the inclusion of the x-amz-server-side-encryption-customer-* request headers in
any of these operations on objects:

l PUT Object

l Initiate Multipart Upload

l Upload Part

l POST Object

l PUT Object - copy (supporting also the x-amz-copy-source-server-side-encryption-customer-* request
headers)

l GET Object

l HEAD Object

For the full list of supported x-amz-server-side-encryption-customer-* request headers for each of these oper-
ations, follow the links above.

109

http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

Chapter 4. Working with HyperStore Major Features

Note The CMC does not support requesting SSE-C for objects as they are uploaded, and it does not
support downloading objects that have been encrypted by the SSE-C method.

4.5.3.4. Using AWS KMS

Subjects covered in this section:

l Introduction (immediately below)

l "Required System Set-Up Before Using AWS KMS Encryption" (page 110)

l "Requesting AWS KMS Encryption for Specific Objects (S3 API Only)" (page 111)

l "Configuring AWS KMS Encryption as the Default for a Bucket (S3 API Only)" (page 112)

l "Deleting a Bucket That Uses AWS KMS Encryption" (page 112)

Server-side encryption using encryption keys managed by the AmazonWeb Services Key Management
Service (AWS KMS) can be configured at the object level or the bucket default level, only if you use a third
party S3 client that supports requesting this type of encryption. Setting the AWS KMS method as the default for
a storage policy is not supported. For information about the precedence ordering between these levels see
"Server-Side Encryption" (page 105).

When AWS KMS based encryption is used the HyperStore system triggers in the remote AWS KMS the cre-
ation of one "customer master key" (CMK) per bucket. The CMK is stored exclusively in the AWS KMS. For
each such CMK, HyperStore stores (in Redis) a CMK ID that allows HyperStore to tell AWS KMS which CMK to
use for creating an encrypted "data key" for a given object (that is, the CMK for the bucket into which the object
is being uploaded). AWS KMS returns to HyperStore both the encrypted data key and plain text version of the
data key. After using the plain text data key to encrypt the object, HyperStore deletes the plain text data key,
while the encrypted version of the data key is stored within the encrypted object data.

Subsequently when a client downloads the object, HyperStore submits the encrypted data key to the
AWS KMS, which uses the CMK to decrypt the data key. AWS KMS returns the decrypted data key to Hyper-
Store, which uses it to decrypt the object and then deletes the decrypted data key from memory.

Note In compliance with Amazon's implementation, all S3 requests involving AWS KMS encryption
must use SSL and Signature Version 4. For example HyperStore will reject object upload requests that
specify AWS KMS encryption, or download requests for AWS KMS encrypted objects, if such requests
use Signature Version 2.

Note For more information on the AWS KMS, in the AWS online documentation see AWS Key Man-
agement Service (KMS).

4.5.3.4.1. Required System Set-Up Before Using AWS KMS Encryption

To use the AWS KMS for HyperStore server-side encryption, you must have either or a combination of:

l AWS account access credentials for each HyperStore user group that will use the
AWS KMS encryption feature. These group account credentials will be used by HyperStore to access
the AWS KMS whenever a user within the group requests AWS KMS encryption for their bucket or for

110

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/

4.5. Security Features

specific objects, or downloads AWS KMS encrypted objects.

l Default AWS account access credentials for your HyperStore service as a whole. These default AWS
credentials will be used by HyperStore to access the AWS KMS on behalf of users who are in groups
that do not have group account credentials for AWS.

To enable AWS KMS usage in your HyperStore system, complete the following system configuration steps:

1. On your Puppet master node, open the following file in a text editor:

/etc/cloudian-<version>-
puppet/modules/cloudians3/files/awscredentials.properties

2. Edit the file to specify the system default AWS access credentials, and (optionally) any group-specific
AWS access credentials. Create a separate block for each group that has its own AWS access cre-
dentials, using the formatting shown in the example below. In the example there are credentials for just
one group, "CloudianTest1". HyperStore will use the CloudianTest1 group's AWS credentials when
accessing the AWS KMS on behalf of users in that group. For users in any other group, HyperStore will
use the system default AWS credentials when accessing the AWS KMS.

[default]
aws_access_key_id = AKIAJKVELYABCCEIXXMA
aws_secret_access_key = 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

[CloudianTest1]
aws_access_key_id = ABCAJKVELY6YXCEIMAXX
aws_secret_access_key = abceikWvRR/7A8916x9vUDEhV+C+LIDmFCOE8MgC

Save your change and close the file.

3. Still on your Puppet master node, open the following file in a text editor:

/etc/cloudian-<version>-puppet/modules/cloudians3/templates/mts.properties.erb

4. Find the property util.awskmsutil.region and set it to the AWS service region of the AWS KMS that you
want HyperStore to use. The default is "us-east-1". Save your change and close the file.

5. Push your changes to the cluster and restart the S3 Service. If you need instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

4.5.3.4.2. Requesting AWS KMS Encryption for Specific Objects (S3 API Only)

In compliance with the Amazon S3 REST API, the HyperStore system’s S3 API supports AWS KMS based
server-side encryption by the inclusion of the x-amz-server-side-encryption: aws:kms request header in any of
these operations on objects:

l PUT Object

l Initiate Multipart Upload

l Upload Part

l POST Object

l PUT Object - copy

Note The HyperStore S3 Service does not support the x-amz-server-side-encryption-aws-kms-key-id
or x-amz-server-side-encryption-context request headers.

111

Chapter 4. Working with HyperStore Major Features

Note The CMC does not support requesting AWS KMS based encryption for objects as they are
uploaded. It does support downloading objects that have been encrypted by the AWS KMS method.

4.5.3.4.3. Configuring AWS KMS Encryption as the Default for a Bucket (S3 API Only)

In compliance with the Amazon S3 REST API, the HyperStore system’s S3 API supports setting and managing
a bucket default server-side encryption method by the use of these operations:

l PUT Bucket encryption

l GET Bucket encryption

l DELETE Bucket encryption

To configure a bucket for server-side encryption with AWS KMS, in the PUT Bucket encryption request body set
the SSEAlgorithm element to aws:kms.

Note The CMC does not support setting a bucket default server-side encryption method.

4.5.3.4.4. Deleting a Bucket That Uses AWS KMS Encryption

When you delete a HyperStore bucket that has used AWS KMS encryption -- either because AWS KMS encryp-
tion was the default encryption method for the bucket, or because certain objects within the bucket used
AWS KMS encryption -- the bucket's "customer master key" (CMK) is scheduled for deletion from the remote
AWS KMS system. The CMK deletion occurs 30 days after the deletion of the HyperStore bucket. During this 30
day period, if you do not wish the CMK to be deleted from the remote AWS KMS system you can execute a
CancelKeyDeletion operation using the AWS Console or the AWS CLI.

4.5.3.5. Enabling AES-256

By default the HyperStore system does not use AES-256, the most secure form of the Advanced Encryption
Standard. Instead it uses AES-128.

You must enable AES-256 in your HyperStore system if you want to do either of the following:

l Use regular SSE in a manner compliant with the Amazon SSE specification

l Use SSE-C

Note Enabling AES-256 is not necessary for -- and not relevant to -- server-side encryption using
AWS KMS.

To enable AES-256 in your HyperStore system, do the following:

1. On the Puppet master node, in the common.csv file, set cloudian_s3_aes256encryption_enabled to
true. (By default it is set to false.)

2. Push your changes out to the cluster and restart the S3 Service. For instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

AES-256 is now enabled in your HyperStore system.

112

4.5. Security Features

4.5.4. FIPS Support
Subjects covered in this section:

l Introduction (immediately below)

l "Enabling FIPS Compliance for SSH" (page 113)

l "Limitations to FIPS Compliance of Server-Side Encryption" (page 113)

l "HTTPS and HTTP" (page 114)

Federal Information Processing Standard (FIPS) Publication 140-2 defines security requirements for cryp-
tographic modules. Starting with HyperStore version 7.2, HyperStore cryptographic functions are designed and
implemented to meet the requirements of this standard. As of the time of the 7.2 Early Availability release, third
party certification of HyperStore's FIPS 140-2 compliance is in progress.

Starting with HyperStore version 7.2, HyperStore in most respects meets the FIPS 140-2 standard by default. In
particular, HyperStore by default meets FIPS 140-2 requirements for:

l AES encryption (used for HyperStore's server-side encryption feature)

l SHA-256 (used to hash request payloads for some types of S3 requests)

l HMAC (used for Signature version 4 validation of S3 requests)

HyperStore's cryptographic module meets FIPS 140-2 requirements for AES, SHA, and HMAC by utilizing the
OpenSSL FIPS Object Module 2.0 -- which is FIPS 140-2 certified -- enveloped by an OpenSSL4J JNI (Java
Native Interface) wrapper. Through this wrapper, the HyperStore S3 Service makes calls for AES, SHA, or
HMAC functions whenever they are needed.

Note For the full FIPS 140-2 standard see https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-
2.pdf.

4.5.4.1. Enabling FIPS Compliance for SSH

By default, the SSH service on HyperStore nodes -- OpenSSH -- is not FIPS 140-2 compliant because it sup-
ports ciphers that are not FIPS 140-2 approved as well as ciphers that are FIPS 140-2 approved. If you wish
you can configure HyperStore so that only FIPS 140-2 approved ciphers are used for SSH connections to
HyperStore nodes.

To make HyperStore's SSH implementation FIPS compliant, follow these steps:

1. On the Puppet master node, in the common.csv file, set fips_enabled to true. (By default it is set to
false.)

2. Push your configuration change out to the cluster and then restart the S3 Service and the CMC. If you
need instructions see "Pushing Configuration File Edits to the Cluster and Restarting Services"
(page 506).

4.5.4.2. Limitations to FIPS Compliance of Server-Side Encryption

As described in "Server-Side Encryption" (page 105), HyperStore supports several types of server-side
encryption. For Regular SSE, HyperStore generates the encryption keys and implements the encryption and
decryption of object data. This type of server-side encryption is fully FIPS 140-2 compliant, starting with Hyper-
Store version 7.2.

113

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

Chapter 4. Working with HyperStore Major Features

However, HyperStore also supports methods of server-side encryption for which the encryption keys come
from outside of HyperStore. With SSE-C, the keys are provided by the user. With server-side encryption using
AWS KMS, the keys are generated by an external key management system.

For these types of server-side encryption, although HyperStore executes the encryption and decryption of
object data using FIPS-compliant AES, the generation of the encryption keys is outside HyperStore control.
These types of server-side encryption are fully FIPS-compliant only if the keys are generated in a FIPS-com-
pliant manner.

4.5.4.3. HTTPS and HTTP

Starting with HyperStore version 7.2, HyperStore's HTTPS listeners support only TLS 1.2 and no older versions
of TLS. This is in keeping with the recommendations of most contemporary security standards.

By default several of HyperStore's services also support regular HTTP connections. To enhance system secur-
ity, you can configure HyperStore services to only support HTTPS connections and not regular HTTP con-
nections. For more information see "HTTPS Support (TLS/SSL)" (page 114).

4.5.5. HTTPSSupport (TLS/SSL)
Subjects covered in this section:

l Introduction (immediately below)

l "Managing HTTPS and Certificate Keystores for HyperStore Services" (page 115)

l "Disabling Regular HTTP for HyperStore Services" (page 119)

l "Configuring HTTP/S Basic Authentication for the Admin Service" (page 120)

The table below describes the default status of HyperStore services in respect to using HTTPS and HTTP for
incoming connections. These services differ as to whether HTTPS support is enabled by default; whether a
default TLS/SSL certificate keystore for the service is included in HyperStore; and whether the service accepts
regular (non-secure) HTTP connections by default.

Service Is HTTPS Enabled By
Default?

Is There a Default Key-
store?

Is Regular HTTP Allowed By
Default?

S3 No No Yes

IAM Yes Yes Yes

CMC Yes Yes No

Admin Yes Yes

No for systems originally installed
as

HyperStore version 6.0.2 or newer

Yes for systems originally installed
as

a version older than 6.0.2

Note All HyperStore HTTPS listeners use TLS v1.2 and will not accept client connections that use
TLS versions older than 1.2.

114

4.5. Security Features

Note In the current HyperStore release, the Simple Queue Service (SQS) does not support HTTPS.
Only regular HTTP access is supported for SQS.

4.5.5.1. Managing HTTPS and Certificate Keystores for HyperStore Services

The HyperStore installer's "Advanced Configuration Options" menu provides a simple and highly automated
way to manage HTTPS and the associated keystores (in which reside TLS/SSL certificates) for HyperStore ser-
vices. To access the "Advanced Configuration Options" menu:

1. Log into the Puppet master node and change into the installation staging directory.

2. Launch the installer:

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

3. At the installer's main menu enter 4 for "Advanced Configuration Options". This takes you to the
Advanced Configuration Options menu:

From the Advanced Configuration Options menu you can choose to configure SSL for either the S3 service, the
CMC service, or the IAM service.

115

Chapter 4. Working with HyperStore Major Features

Note Reconfiguration of the Admin Service's keystore and HTTPS listener is not supported.

If you are using the HyperStore Shell

In some of the procedures that follow, some steps call for you to copy SSL keystore related files into the Puppet
configuration directory, or copies files out from there. If you are using the HyperStore Shell (HSH), you will not
be allowed direct access to that directory (you will not be able to directly copy into it or from it). Instead, when
logged into the Puppet master node using the HSH, create or choose a working directory under your home dir-
ectory. Then change into the working directory. Then you can use the HSH's install_jks.sh tool to copy files
between the working directory and the Puppet configuration directory. You must be an HSH Trusted user to
run this tool. The syntax is as follows:

l install_jks.sh put <filename> [--cmc]

Copy the specified file from the current directory (the working directory) to the Puppet configuration dir-
ectory. Use the --cmc option only if you are configuring SSL for the CMC Service. Do not use the --cmc
option if you are configuring SSL for the S3 Service or the IAM Service.

For example, if you are following the procedure for having the S3 Service use a keystore that you
provide (as described further below), in the step where the procedure calls for copying the keystore file
into the Puppet configuration directory, instead of copying it there directly you can put the keystore file
into your working directory and use the install_jks.sh put <filename> command to copy the file to the
Puppet configuration directory.

l install_jks.sh get <filename> [--cmc]

Copy the specified file from the Puppet configuration directory to the current directory (the working dir-
ectory). Use the --cmc option only if you are configuring SSL for the CMC Service. Do not use the --cmc
option if you are configuring SSL for the S3 Service or the IAM Service.

For example, if you are following the procedure for having the S3 Service use a CA-signed certificate
(as described further below), in the step where the procedure calls for getting the CSR file from the Pup-
pet configuration directory and sending it to your CA, instead of getting it directly from the Puppet con-
figuration directory you can use the install_jks.sh get <filename> command to copy it from the Puppet
configuration directory into the working directory, and then from there you can send it to your CA.

4.5.5.1.1. S3 Service

For the S3 Service, HTTPS is disabled by default and there is no default keystore. To set up HTTPS for the S3
Service, from the installer's Advanced Configuration Options menu enter e for "Configure SSL for S3". Then
from the S3 SSL Configuration menu, the tasks to complete depend on what sort of certificate and keystore you
want to use for the S3 HTTPS listener.

To use a self-signed certificate in a keystore that HyperStore creates:

1. Enter a for "Generate keystore for S3" and then follow the prompts to complete that task. When gen-
erating the keystore you can accept the default configuration values (which are displayed at the
prompts) or customize those values.

2. Back at the S3 SSL Configuration menu, enter b for "Enable/Disable HTTPS for S3" and follow the
prompts to complete that task.

3. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the S3 Service. Then exit the installer.

116

4.5. Security Features

To use a CA-signed certificate in a keystore that HyperStore creates:

1. Enter a for "Generate keystore for S3" and then follow the prompts to complete that task. When gen-
erating the keystore you can accept the default configuration values (which are displayed at the
prompts) or customize those values. Make a note of the keystore name and password -- you will need
those later in this procedure. When you've completed this task exit the installer, but remain logged into
the Puppet master node.

2. Step 1 creates under the Puppet master node directory /etc/cloudian-7.2.3-pup-
pet/modules/baselayout/files both the keystore and a Certificate Signing Request (CSR) that by default
is named <regionname>_s3.csr. Submit the CSR file to your preferred Certificate Authority (CA), using
the submission instructions from the CA. When you get the certificate files back from the CA, continue to
Step 3 below.

Note HyperStore requires that the certificate files be in PEM format, which is the most common
format.

3. Copy the certificate files you received from the CA into the installation staging directory on the Puppet
master node. This typically includes root certificate file(s), intermediate certificate file(s), and the CA-
signed certificate file itself. You will need to provide the file names in the next step below.

4. Launch the installer again and navigate back to the S3 SSL Configuration menu. Then enter c for
"Import CA-signed certificate into keystore" and follow the prompts to complete that task. As part of this
you will need to provide the certificate file names.

5. Back at the S3 SSL Configuration menu, enter b for "Enable/Disable HTTPS for S3" and follow the
prompts to complete that task.

Note If you had already enabled HTTPS for S3 previously -- with a self-signed version of the cer-
tificate, or with a different certificate -- then menu item b will be labeled "Enable new keystore for
S3" (rather than "Enable/Disable HTTPS for S3"). Still you must complete task b here. Com-
pleting task b here is necessary to correctly apply your changes.

6. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the S3 Service. Then exit the installer.

To have the S3 Service use an existing keystore that you provide:

1. Copy the keystore file into the directory /etc/cloudian-7.2.3-puppet/modules/baselayout/files on the Pup-
pet master node.

2. At the installer's S3 SSL Configuration menu, enter d for "Import already existing keystore for S3" and
then follow the prompts to complete that task.

3. Back at the S3 SSL Configuration menu, enter b for "Enable/Disable HTTPS for S3" and follow the
prompts to complete that task.

Note If you had already enabled HTTPS for S3 previously -- with a different keystore -- then
menu item b will be labeled "Enable new keystore for S3" (rather than "Enable/Disable HTTPS
for S3"). Still you must complete task b here. Completing task b here is necessary to correctly
apply your changes.

117

Chapter 4. Working with HyperStore Major Features

4. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the S3 Service. Then exit the installer.

4.5.5.1.2. CMC or IAM Service

For the CMC and for the IAM Service, HTTPS is enabled by default and there are default keystores in place.
You do not need to take any action to use HTTPS for the CMC or the IAM Service. However, you can take any
of the optional actions described below, after navigating from the Advanced Configuration Options menu to
either the CMC SSL Configuration menu or the IAM SSL Configuration menu.

Note In the instructions that follow, "(CMC or IAM)" indicates that you will see either "CMC" or "IAM" in
the installer interface text depending on which service you're working with.

To create and use a new keystore and self-signed certificate, rather than the default keystore and cer-
tificate:

1. Enter a for "Generate keystore for (CMC or IAM)" and then follow the prompts to complete that task.
When generating the keystore you can accept the default configuration values (which are displayed at
the prompts) or customize those values.

2. Back at the (CMC or IAM) SSL Configuration menu, enter b for "Enable new keystore for (CMC or IAM)"
and follow the prompts to complete that task.

3. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the (CMC or IAM) Service. Then exit the installer.

To create and use a new keystore and CA-signed certificate, rather than the default keystore and cer-
tificate:

1. Enter a for "Generate keystore for (CMC or IAM)" and then follow the prompts to complete that task.
When generating the keystore you can accept the default configuration values (which are displayed at
the prompts) or customize those values. Make a note of the keystore name and password -- you will
need those later in this procedure. When you've completed this task exit the installer, but remain logged
into the Puppet master node.

2. Step 1 creates on the Puppet master node both the keystore and a Certificate Signing Request (CSR):

l For CMC the keystore and CSR are in directory /etc/cloudian-7.2.3-puppet/modules/cmc/files
and the CSR by default is named cmc.csr.

l For IAM the keystore and CSR are in directory /etc/cloudian-7.2.3-pup-
pet/modules/baselayout/files and the CSR by default is named iam-1.csr.

Submit the CSR file to your preferred Certificate Authority (CA), using the submission instructions from
the CA. When you get the certificate files back from the CA, continue to Step 3 below.

Note HyperStore requires that the certificate files be in PEM format, which is the most common
format.

3. Copy the certificate files you received from the CA into the installation staging directory on the Puppet
master node. This typically includes root certificate file(s), intermediate certificate file(s), and the CA-
signed certificate file itself. You will need to provide the file names in the next step below.

118

4.5. Security Features

4. Launch the installer again and navigate back to the (CMC or IAM) SSL Configuration menu. Then enter
c for "Import CA-signed certificate into keystore" and follow the prompts to complete that task. As part of
this you will need to provide the certificate file names.

5. Back at the (CMC or IAM) SSL Configuration menu, enter b for "Enable new keystore for (CMC or IAM)"
and follow the prompts to complete that task.

6. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the (CMC or IAM) Service. Then exit the installer.

(IAM Only) To have the IAM Service use an existing keystore that you provide:

1. Copy the keystore file into the directory /etc/cloudian-7.2.3-puppet/modules/baselayout/files on the Pup-
pet master node.

2. At the installer's IAM SSL Configuration menu, enter d for "Import already existing keystore for IAM" and
then follow the prompts to complete that task.

3. Back at the IAM SSL Configuration menu, enter b for "Enable new keystore for IAM" and then follow the
prompts to complete that task.

4. Go to the installer's main menu and use the b "Cluster Management" menu to first push the con-
figuration changes out to the cluster and then restart the IAM Service. Then exit the installer.

4.5.5.2. Disabling Regular HTTP for HyperStore Services

For security purposes you may wish to disable regular (non-secure) HTTP access to HyperStore public ser-
vices so that access to the services is exclusively through HTTPS. For best protection you can block regular
HTTP access in both of these ways:

l Configure a firewall to block S3 HTTP access (port 80), CMC HTTP access (port 8888), IAM HTTP
access (port 16080), and Admin Service HTTP access (port 18081). If are using the HyperStore firewall,
see "Customizing the HyperStore Firewall" (page 103) for instructions. (If you have not yet enabled
the HyperStore firewall, and want to do so, see "HyperStore Firewall" (page 100)).

l Set the HyperStore system configuration so that the regular HTTP listeners are disabled for the
Admin Service, for the IAM Service, and for the CMC.

Note The S3 Service does not have a system configuration setting for disabling the regular
HTTP listener. Use a firewall to block regular HTTP access to the S3 Service, as stated above.

On the Puppet master node, in the configuration file common.csv, there are settings that enable or dis-
able the regular HTTP listener for the Admin Service, for the IAM Service, and for the CMC:

o For the Admin Service, set admin_secure to true if it is not already set to true (it defaults to true if
your original HyperStore install was version 6.0.2 or newer, and defaults to false if your original
HyperStore install was older than 6.0.2)

o For the IAM Service, set iam_secure to true (it defaults to false)

o For the CMC, set cmc_web_secure to true if it is not already set to true (it defaults to true)

After making any edits to common.csv, launch the installer and use the b "Cluster Management" menu
to first push the configuration changes out to the cluster and then restart each of the services for which
you changed the configuration. (To restart the Admin Service, restart the S3 Service -- this has the effect
of restarting the Admin Service also.) Then exit the installer.

119

Chapter 4. Working with HyperStore Major Features

4.5.5.3. Configuring HTTP/S Basic Authentication for the Admin Service

The Admin Service is unique among HyperStore's HTTP/S-based services in that it requires that clients use
HTTP/S Basic Authentication. With HTTP/S Basic Authentication, the connecting client must provide the correct
user name and password in order for the Admin Service to accept the HTTP/S connection request. The user
name and password are part of the Admin Service configuration. By default the required user name for this pur-
pose is "sysadmin" and the default password is either a randomly generated password unique to your system
(if your original HyperStore install was version 7.2.2 or newer) or "public" (if your original HyperStore install
was older than version 7.2.2). If the Admin API HTTP/S Basic Authentication password in your system is
"public", you should change it to something more secure. For more information and instructions see "HTTP/S
Basic Authentication for Admin API Access" (page 748).

4.5.6. Secure Delete
Subjects covered in this section:

l Introduction (immediately below)

l "Enabling Secure Delete" (page 121)

l " Secure Delete Logging" (page 121)

HyperStore supports a "secure delete" methodology for implementing object delete requests. By default this
feature is disabled.

For background, note that object data is stored in an ext4 file system on each HyperStore node, and the pro-
cess of writing, reading, and deleting object data from the file system is managed by the HyperStore Service
(for more information see "HyperStore Service and the HSFS" (page 23)). Also note that, depending on your
storage policies, each object is either replicated or erasure coded, and the replicas or the erasure coded frag-
ments are distributed across multiple nodes. Larger objects are broken into chunks first, before those chunks
are then replicated or erasure coded.

When secure delete is enabled HyperStore implements the deletion of an object by first overwriting each byte
of the object data three times, and then deleting the object. The three passes at overwriting each of the object's
bytes are executed as:

l 1st pass: byte is overwritten as 00110101 (0x35)

l 2nd pass: byte is overwritten as 11001010 (0xCA)

l 3rd pass: byte is overwritten as 10010111 (0x97)

This overwriting occurs for every byte of every replica or fragment of the object, on every node on which
the object's data resides. After the three overwriting passes complete, the object data is then deleted.

If you enable secure delete, then all deletes -- for any bucket, by any user -- are implemented as secure
deletes. You cannot, for instance, apply this feature only to some buckets and not to others.

Using secure delete impacts system performance for delete operations. Consult with your Cloudian rep-
resentative if you are considering using secure delete.

Note In the case of buckets that use versioning, to delete all versions of an object the S3 client applic-
ation must explicitly delete each object version.

120

4.5. Security Features

Note Secure delete does not apply to object metadata stored in Cassandra. When objects are deleted,
the system deletes the corresponding object metadata in the normal way -- with no overwriting passes -
- regardless of whether or not you have the secure delete feature turned on. Therefore you should limit
any user-defined object metadata created by your S3 client application(s) to information that does not
require secure delete.

4.5.6.1. Enabling Secure Delete

To enable the secure delete feature:

1. On the Puppet Master node, in the hyperstore-server.properties.erb file, set secure.delete to true. (By
default it is set to false.)

2. Use the installer to push out your configuration change to the cluster and to restart the HyperStore Ser-
vice. If you need instructions see "Pushing Configuration File Edits to the Cluster and Restarting Ser-
vices" (page 506).

4.5.6.2. Secure Delete Logging

Secure delete activity is logged in cloudian-hyperstore-request-info.log on each node. The activity is logged
only after completion of the third and final overwrite pass. The log entry indicates SECURE-DELETE as the
operation type, and a 200 status code in the log entry indicates that the secure delete was successful. The log
entry also includes the object name and the corresponding ext4 file name.

For more information about cloudian-hyperstore-request-info.log see "HyperStore Service Logs" (page 609).

4.5.7. WORM (Object Lock)

4.5.7.1. WORM (Object Lock) Feature Overview

Subjects covered in this section:

l Introduction (immediately below)

l "Object Lock Audit Logging" (page 122)

l "Object Lock and Bucket Lifecycle Policies" (page 122)

l "Object Lock and Cross-Region Replication" (page 123)

l "Object Lock and S3 Notifications" (page 123)

l "Object Lock and User Deletion" (page 123)

HyperStore can implement WORM (Write Once Read Many) protection for stored objects by supporting the
standard AWS S3 "Object Lock" functionality. To use the Object Lock feature you must have a HyperStore
license that enables this feature. Also, to use the Object Lock feature you must enable the HyperStore Shell
(HSH) and disable the root account password on your HyperStore hosts. For more information see the "Pre-
requisites" section in "Setting Up Object Lock" (page 123).

If your license supports Object Lock and you have enabled the HSH and disabled the root account password,
then the HyperStore S3 Service supports all the standard AWS S3 API methods and headers associated with
the S3 Object Lock feature. Using these standard S3 API methods and headers, S3 client applications can:

121

Chapter 4. Working with HyperStore Major Features

1. Enable Object Lock on new buckets as those bucket are created. Note that:

o Object Lock can only be enabled on newly created buckets, as part of the operation that creates
the bucket. Object Lock cannot be enabled on buckets that already exist.

o Enabling Object Lock on a bucket as the bucket is created automatically enables Versioning on
the bucket. Object Lock can only be used in combination with Versioning.

o Enabling Object Lock on a bucket as the bucket is created does not by itself have the effect of
locking objects that are subsequently stored in that bucket. It only makes it possible to lock such
objects, using the methods described in points number 2 and 3 below.

2. For an Object Lock enabled bucket, optionally set a bucket default Object Lock configuration that will
apply to all objects that are subsequently created in the bucket. The default Object Lock configuration
specifies a Retention time period that will be applied to objects that are subsequently created in the
bucket. Each object's retention period starts when the object is created in the bucket (and for objects
with multiple versions, each object version's retention period starts when that object version is created).
The default Object Lock configuration also specifies which of two modes the Object Lock is imple-
mented in:

o Governance mode, which allows privileged users to change the retention period or delete
objects before their retention period completes.

o Compliance mode, which does not allow any user to change the retention period or delete
objects before their retention period completes.

3. For an Object Lock enabled bucket, optionally setObject Lock attributes on individual objects, either
as the objects are created in the bucket or after the objects have been created in the bucket. The Object
Lock set on an object can be either or both of:

o Retention, in Governance mode or Compliance mode

o Legal Hold, which applies for an indefinite period until explicitly released. While objects are in
Legal Hold, no user can delete them.

These per-object Object Lock attributes override the bucket's default Object Lock configuration, if a
default configuration has been set.

For more information on applying Object Lock to buckets and objects in HyperStore, see "Setting Up Object
Lock" (page 123).

For general information on the AWS S3 Object Lock feature, in the AWS documentation see:

l Amazon S3 Object Lock Overview

l Locking Objects Using Amazon S3 Object Lock

l Managing Amazon S3 Object Locks

4.5.7.1.1. Object Lock Audit Logging

All S3 client activity pertaining to setting Object Lock attributes on a bucket or on individual objects, and all S3
client attempts to delete locked objects, are logged in an audit log named s3-worm.log that resides on each
HyperStore node. For more information see "S3 Service Logs (including Auto-Tiering, CRR, andWORM)"
(page 619).

4.5.7.1.2. Object Lock and Bucket Lifecycle Policies

HyperStore does not support applying bucket lifecycle policies for auto-tiering on a source bucket that has
Object Lock enabled. However, the system does support auto-tiering to a destination bucket that has Object
Lock enabled.

122

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock-managing.html

4.5. Security Features

Also, the system does support applying bucket lifecycle policies for auto-expiration on a source bucket that
has Object Lock enabled:

l For a lifecycle policy that specifies an expiration schedule for current version of objects, Object Lock is
irrelevant because for any bucket with versioning this type of expiration action only results in creation of
a delete marker (and does not actually delete any object data from storage).

l For a lifecycle policy that specifies an expiration schedule non-current object versions, when a non-cur-
rent object version reaches its expiration date the system checks for Object Lock and does not delete
the non-current object version if it is still within its lock retention period. When the non-current object ver-
sion's lock retention period ends, then the system deletes it at the next running of the auto-expiration
job.

4.5.7.1.3. Object Lock and Cross-Region Replication

In the current release, HyperStore does not support applying cross-region replication on a source bucket that
has Object Lock enabled. However, an Object Lock enabled bucket is allowed to be the destination bucket in a
cross-region replication relationship.

4.5.7.1.4. Object Lock and S3 Notifications

In the current release, HyperStore does not support S3 Notifications in regard to Object Lock related events.

4.5.7.1.5. Object Lock and User Deletion

The system will reject (with an HTTP 412 error response) any attempt to delete a user who currently owns a
bucket that has Object Lock enabled:

l Before such a user can be deleted, the user's Object Lock enabled bucket(s) must be deleted.

l Before the user's Object Lock enabled bucket(s) can be deleted, all objects in those bucket(s) must be
deleted. Depending on the type of Object Lock configuration used on those buckets and objects, it may
be that the objects cannot be deleted until after the end of their retention period. For a summary of
restrictions on deletion of "locked" objects, see "Object Protection Under Governance Retention,
Compliance Retention, and Legal Hold" (page 128).

4.5.7.2. Setting Up Object Lock

Subjects covered in this section:

l "Prerequisites" (page 123)

l "Setting Up Object Lock on a Bucket (S3 API or CMC)" (page 124)

l "Setting Object Lock Attributes on Individual Objects (S3 API or CMC)" (page 126)

l "Object Protection Under Governance Retention, Compliance Retention, and Legal Hold" (page
128)

4.5.7.2.1. Prerequisites

Before Object Lock can be set up on buckets and objects your HyperStore system must meet these pre-
requisites:

123

Chapter 4. Working with HyperStore Major Features

l Youmust have a HyperStore license that supports the Object Lock feature. To check whether your
license supports this feature, in the CMC's Cluster Information page see the "Object Lock License"
field: it will indicate either "Enabled" or "Disabled". If you want to use the Object Lock feature but it is dis-
abled by your current license, contact your Cloudian representative to inquire about obtaining a dif-
ferent license.

l Youmust enable the HyperStore Shell and disable the root account password on your HyperStore
hosts. For instructions see "Enabling the HSH and Managing HSH Users" (page 90). This must be
completed before Object Lock enabled buckets can be created.

4.5.7.2.2. Setting Up Object Lock on a Bucket (S3 API or CMC)

With a third party S3 application that supports the S3 APIs for object locking, or with the CMC, HyperStore
users with appropriate permissions can:

1. Create a new bucket with Object Lock enabled.

2. Optionally, set a default Object Lock configuration for that bucket.

3. Check a bucket's Object Lock configuration status.

Note Object Lock can only be enabled on a new bucket, as the bucket is created.Object Lock cannot
be enabled on an already existing bucket.

Creating a New Bucket with Object Lock Enabled

To create a new bucket with Object Lock enabled:

l With a third party S3 client application, the client application submits a PUT Bucket request that
includes the request header x-amz-object-lock-enabled: true. For HyperStore support of the S3 PUT
Bucket operation, see PUT Bucket.

l With the CMC, as a user creates a new bucket she can choose to enable Object Lock for the bucket.
For more information see "Add a Bucket" (page 218).

Enabling Object Lock on a bucket does not by itself have the effect of locking objects that are sub-
sequently uploaded into that bucket. It only makes it possible to lock such objects, using the methods
described below.

Note Enabling Object Lock on a new bucket automatically enables Versioning on that bucket as well.
Object Lock can only be used in combination with Versioning (which protects objects from being over-
written).

Note If your HyperStore system does not meet the prerequisites for Object Lock, then if an S3 applic-
ation user submits a PUT Bucket request that includes the request header x-amz-object-lock-
enabled: true, the request will fail and a 403 error response will be returned to the client application. If
the CMC is the client application, the error that the CMC will display in this event is "Unable to perform
operation. Access is denied."

Setting a Default Object Lock Configuration for the Bucket (Optional)

Once a new bucket has been created with Object Lock enabled, a default Object Lock configuration can option-
ally be set on the bucket. This Object Lock configuration will then by default be applied to all objects that are

124

4.5. Security Features

subsequently added to the bucket (it does not apply to any objects that were already in the bucket at the time
that the default Object Lock configuration was set for the bucket). The default configuration can be overridden
on a per-object basis, as described in "Setting Object Lock Attributes on Individual Objects (S3 API or
CMC)" (page 126). If a default Object Lock configuration is not set on the bucket, then objects uploaded to the
bucket will not be locked unless they have Object Lock attributes set on them on a per-object basis.

To set a default Object Lock configuration on the bucket:

l With a third party S3 client application, the bucket owner (or a user with s3:PutBuck-
etObjectLockConfiguration permission on the bucket) submits a PUT Bucket object lock configuration
request to the HyperStore S3 Service. For HyperStore support of this S3 API operation see PUT Bucket
object lock configuration. Along with specifying a retention period in days or years, the request spe-
cifies whether the bucket's default Object Lock implementation is to be in Governance mode (which
allows privileged users to change the object retention period or delete objects before their retention
period completes) or Compliance mode (which does not allow any user to change the object retention
period or delete objects before their retention period completes).

l With the CMC, the bucket owner can use the Object Lock tab of the bucket Properties page to set a
default Object Lock configuration on the bucket. For more information see "Configure Object Lock
Properties for a Bucket" (page 242).

With a default Object Lock configuration set on the bucket, from that point forward whenever an object is
uploaded to the bucket -- and lacks object-specific lock attributes -- the default retention period is applied
to that object. For example with a 90 day default retention period, every object is locked for 90 days starting
from the time of object upload. For objects with multiple versions, in this example each object version is locked
for 90 days from time of object version upload.

When an object is locked, HyperStore rejects an S3 DELETE Object Version request for that object with an
HTTP 403 Forbidden response. The exception is if Governance mode is being used and the requesting user is
a privileged user; for more information see "Object Protection Under Governance Retention, Compliance
Retention, and Legal Hold" (page 128).

The PUT Bucket object lock configuration request can be used again to change or remove the default Object
Lock configuration on a bucket. However, the change applies only from that time forward, to objects that are
subsequently added to the bucket. Locks that are already in place on existing objects -- in accordance with the
prior default configuration on the bucket -- are not impacted.

Note
• Object Lock protects each version of an object individually and does not prevent the creation of new
versions of the object.
• For a locked object, an S3 DELETE Object request -- as opposed to an S3 DELETE Object Version
request -- is allowed and only results in the creation of a delete marker for that object. No object data is
actually deleted from storage.
• Once a bucket is assigned a default lock configuration, any S3 requests for uploading objects to that
bucket must use Signature Version 4 request authentication. This is consistent with Amazon's Object
Lock requirements.

Checking a Bucket's Object Lock Status

To check a bucket's current Object Lock status:

l With a third party S3 client application, the bucket owner (or a user with s3:GetBuck-
etObjectLockConfiguration permission on the bucket) can submit a GET Bucket object lock

125

Chapter 4. Working with HyperStore Major Features

configuration request to the HyperStore S3 Service. For HyperStore support of this S3 operation see
GET Bucket object lock configuration. The request response will indicate whether Object Lock is
enabled on the bucket, and what the default Object Lock configuration is for the bucket (if any).

l With the CMC, in the bucket owner can view the list of buckets she owns and any buckets for which
Object Lock is enabled will have a padlock icon beside the bucket name. The bucket owner can then
view the Properties page for the bucket and check the Object Lock tab to see what the default Object
Lock configuration is for the bucket (if any).

4.5.7.2.3. Setting Object Lock Attributes on Individual Objects (S3 API or CMC)

In a bucket that has Object Lock enabled, there is the option to set Object Lock attributes on individual objects.
If the bucket has a default Object Lock configuration, then setting Object Lock attributes on individual objects
will -- for those objects only -- override the bucket's default Object Lock configuration. If the bucket does not
have a default Object Lock configuration, then setting Object Lock attributes on individual objects is the only
way that objects will become locked.

With a third party S3 application that supports the S3 APIs for object locking, HyperStore users with appro-
priate permissions can:

l Set Object Lock attributes on objects as they are uploaded to the bucket.

l Set Object Lock attributes on existing objects that are already in the bucket.

l Check an object's lock status.

With the CMC, the bucket owner can:

l Set Object Lock attributes on existing objects that are already in the bucket.

l Check an object's lock status.

Note The CMC does not currently support setting Object Lock attributes on objects as they are
uploaded to the bucket. Instead the user can upload the object to the bucket, and then set
Object Lock attributes on the object.

Setting Object Lock Attributes on Objects as They Are Uploaded

With a third party S3 application, objects being uploaded to on Object Lock enabled bucket can be assigned
Object Lock attributes by the inclusion of the request headers x-amz-object-lock-mode, x-amz-object-lock-
retain-until-date, and/or x-amz-object-lock-legal-hold with any of the standard S3 API requests for uploading
objects:

l PUT Object

l PUT Object Copy

l POST Object

l Initiate Multipart Upload

For HyperStore support of these S3 operations see PUT Object, PUT Object Copy, POST Object, and Initiate
Multipart Upload.

Similarly to the bucket default configuration options, the individual Object Lock configuration options include
the choice between Governance retention mode and Compliance retention mode (as set by the x-amz-object-
lock-mode request header).

126

4.5. Security Features

Unlike the bucket default configuration options, the individual object configuration attributes also include an
option for Legal Hold (as optionally set by the x-amz-object-lock-legal-hold request header). Legal Hold pre-
vents the object from being deleted by any user, for an indefinite period of time until the Legal Hold is explicitly
removed from the object (by a privileged user). Legal Hold can be used instead of having a defined retention
date for the object, or in combination with having a defined retention date for the object. For example, if both a
Governance retention date and a Legal Hold are set on an object, and then the Legal Hold is removed before
the retention date, the object will continue to be protected by Governance mode retention until its retention date
is reached. For a second example, if both a Compliance retention date and a Legal Hold are placed on an
object, and the Compliance retention date is reached while the Legal Hold is still in place, the object continues
to be protected by the Legal Hold until the Legal Hold is explicitly removed.

Note Setting retention attributes on an object as the object is uploaded can be done by the bucket
owner, or by a user who has s3:PutObject and s3:PutObjectRetention permissions on the bucket. Set-
ting a legal hold on an object as the object is uploaded can be done by the bucket owner or by a user
who has s3:PutObject and s3:PutObjectLegalHold permissions on the bucket.

Note Object upload requests that include Object Lock headers must use Signature Version 4 request
authentication. This is consistent with Amazon's Object Lock requirements.

Setting Object Lock Attributes on Existing Objects

l With a third party S3 application, existing objects in an Object Lock enabled bucket can be assigned
Object Lock attributes by using the standard S3 requests PUT Object retention and/or PUT Object
legal hold. For HyperStore support of these S3 operations see PUT Object retention and PUT Object
legal hold.

Note Setting retention attributes on an existing object can be done by the bucket owner or by a
user who has s3:PutObjectRetention permission on the object. Setting or removing a legal hold
on an existing object can be done by the bucket owner or by a user who has s3:PutOb-
jectLegalHold permission on the object.

For an existing object that already has retention attributes, the PUT Object retention request can be
used to increase the existing retention period on the object but not to reduce the existing retention
period (unless Governance mode retention being used and the requesting user is a privileged user, as
described in "Object Protection Under Governance Retention, Compliance Retention, and Legal
Hold" (page 128)).

l With the CMC, the bucket owner can assign Object Lock attributes to an existing object in the bucket by
accessing the object's Properties page and using the Object Lock tab. For more information see "Set
Object Lock Attributes on an Object" (page 255).

Checking an Object's Lock Status

l With a third party S3 application, checking an object's lock status can be done by using the standard
S3 requests GET Object, HEAD Object,GET Object retention, and/or GET Object legal hold. For
HyperStore support of these S3 operations see GET Object, HEAD Object,GET Object retention, and
GET Object legal hold.

An object's lock status will reflect the Object Lock attributes that were set directly on that individual

127

Chapter 4. Working with HyperStore Major Features

object (if any), or otherwise will reflect the object's inheriting of the bucket's default Object Lock con-
figuration (if any).

Note Checking an object's lock status can be done by the bucket owner or by a user who has
s3:GetObject, s3:GetObjectVersion, s3:GetObjectRetention (for retention status), and s3:GetOb-
jectLegalHold (for legal hold status) permissions on the object.

l With the CMC, the bucket owner can view the list of objects in her bucket, and locked objects will have
a padlock icon beside the version ID of each version of the object. The bucket owner can then view an
object version's Properties page and check the Object Lock tab to see what the lock attributes are for
that object version.

4.5.7.2.4. Object Protection Under Governance Retention, Compliance Retention, and
Legal Hold

The table below shows the key differences between Governance mode retention, Compliance mode retention,
and Legal Hold in terms of the protection that they provide to locked objects. Recall that for all forms of Object
Lock, the lock is applied to each individual version of an object.

Governance Mode Retention Compliance Mode
Retention Legal Hold

Delete a locked
object version?

The bucket owner and users who have
both s3:DeleteObjectVersion and s3:By-
passGovernanceRetention permission
can use the DELETE Object Version
request with an x-amz-bypass-gov-
ernance-retention: true request header to
delete a locked object version.

No user can delete a
locked object version

No user can delete a
locked object version

Remove the
lock on an
object version?

The bucket owner and users who have
both s3:PutObjectRetention and s3:By-
passGovernanceRetention permission
can use the PUT Object retention request
with an x-amz-bypass-governance-reten-
tion: true request header to remove the
retention lock on a object version.

No user can remove
the retention lock on an
object version

The bucket owner and
users with s3:PutOb-
jectLegalHold per-
mission can use the
PUT Object legal hold
request to remove the
legal hold on an object
version.

Reduce the
retention period
for an object ver-
sion?

The bucket owner and users who have
both s3:PutObjectRetention and s3:By-
passGovernanceRetention permission
can use the PUT Object retention request
with an x-amz-bypass-governance-reten-
tion: true request header to reduce the
retention period for a locked object ver-
sion.

No user can reduce the
retention period for an
object version

Not applicable

Note In the CMC, only the bucket owner can access and manage the objects in his or her bucket.
(Depending on your system configuration, the CMC may also allow system administrators to access a
bucket and its objects on behalf of the bucket owner. By default configuration, system administrator
access to users' buckets is not allowed.)

128

4.6. User Provisioning and LDAP Integration

4.6. User Provisioning and LDAP Integration

4.6.1. User Provisioning and LDAP Integration Feature Overview
Through the HyperStore Admin API or through the CMC, you can provision the user groups and individual
users who you want to authorize to use the HyperStore S3 service. You will provision groups first, and then
once one or more groups exist you can add individual users to each group. All users must belong to a
group.

As a system administrator you can act on groups in a variety of ways:

l Each group can be configured for integration with an external LDAP system as a means of authen-
ticating users, if applicable to your environment. For more information see "LDAP Integration" (page
131).

l Each group can be assigned quality of service (QoS) limits that will enforce upper bounds on the ser-
vice usage levels of the group as a whole. Each group can also be assigned default user-level QoS con-
trols that will limit the service usage of individual users within the group. (Optionally, you can also
assign per-user QoS limits that will supersede this default.)

l You can generate service usage reports for groups (and also for individual users).

l Each group can be assigned a default rating plan which will determine how users in that group will be
charged for HyperStore service usage. (Optionally, you can also assign per-user rating plans that will
supersede this default.)

l You can create one or more users who have group administrator privileges. Group administrators are
able to perform the following operations through the CMC:

o Create a user within the group

o Edit a user’s profile

o Retrieve a list of users in the group

o Assign user-specific QoS limits

o Provide user support by accessing a user’s data in the S3 object store

o Delete a user

o Generate a usage report for the group

o Generate a usage report for an individual user in the group

Note The set of privileges that you make available to group administrators is configurable in a
granular way (in the mts-ui.properties.erb file, see the admin.manage_users.enabled property
and those that follow it). Individual CMC UI functions and sub-functions can be displayed to or
hidden from group administrators depending on your configuration settings.

129

Chapter 4. Working with HyperStore Major Features

4.6.1.1. IAM Support

HyperStore provides limited support for the Amazon Identity and Access Management (IAM) API. For an over-
view of this HyperStore feature -- including support for creating IAM groups and users -- see "HyperStore Sup-
port for the AWS IAM API" (page 991).

4.6.1.2. SAML Support

HyperStore supports Security Assertion Markup Language (SAML) based access to S3 storage resources. For
more information see "SAML Support" (page 1032).

4.6.2. Provisioning Groups
You can provision user groups through either the CMC or the Admin API.

Note Optionally, when creating a group you can enable LDAP-based authentication of group mem-
bers. For more information see "LDAP Integration" (page 131).

Provisioning Groups (CMC)
In the CMC’s Manage Groups page you can perform group operations including:

l "Add a Group" (page 271)

l "Set Quality of Service (QoS) Controls" (page 285)

l "Retrieve a Group or a List of Groups" (page 275)

l "Edit a Group" (page 276) (including suspending a group)

l "Delete a Group" (page 277)

Provisioning Groups (Admin API)
Through the HyperStore Admin API you can perform group operations including:

l Create a new group: PUT /group

l Assign a rating plan to a group: POST /group/ratingPlanId

l Assign QoS limits to a group: POST /qos/limits

l Retrieve a list of groups:GET /group/list

l Edit a group (including suspending a group): POST /group

l Delete a group: DELETE /group

4.6.3. Provisioning Users
You can provision individual users through the CMC, or the Admin API, or by enabling LDAP integration.

130

4.6. User Provisioning and LDAP Integration

Note The HyperStore system does not currently support bulk provisioning of users. Users must be
added one at a time.

Provisioning Users (CMC)
In the CMC’s Manage Users page you can perform user operations including:

l "Add a User" (page 263)

l "Set Quality of Service (QoS) Controls" (page 285)

l "Retrieve a User or List of Users" (page 265)

l "Edit or Suspend a User" (page 266) (including suspending a user)

l "Delete a User" (page 270)

Note The CMC does not support retrieving a list of users who have been deleted from the system. If
you need to retrieve a list of deleted users, you can do so through the Admin API -- see GET /user/list.

Provisioning Users (Admin API)
Through the HyperStore Admin API you can perform user operations including:

l Create a new user: PUT /user

l Assign a rating plan to a user: POST /user/ratingPlanId

l Assign QoS limits to a user: POST /qos/limits

l Retrieve a list of users:GET /user/list

l Update a user’s profile (including suspending a user): POST /user

l Delete a user: DELETE /user

Provisioning Users (LDAP / Active Directory)
As an alternative to provisioning users through the CMC or the Admin API, on a per-group basis you can
enable integration between the CMC and your Active Directory or other LDAP system, such that users will be
automatically provisioned within HyperStore when they log into the CMC with their LDAP credentials. For more
information see "LDAP Integration" (page 131).

4.6.4. LDAP Integration
Subjects covered in this section:

l Introduction (immediately below)

l "Enabling LDAP Authentication for a Group" (page 132)

l "Provisioning of Users within LDAP-Enabled Groups" (page 132)

l "Deleting Users from the CMC and/or LDAP" (page 133)

l "Disabling LDAP Authentication After Having Used It" (page 133)

l "Special Considerations for LDAP Authentication of System Administrators" (page 134)

131

Chapter 4. Working with HyperStore Major Features

HyperStore supports integrating with Active Directory or other types of LDAP systems so that users can log into
the CMC with their LDAP-based login credentials. This feature is implemented on a per-group basis, so you
have the option of creating some groups that are LDAP-enabled and others that are not. The system also sup-
ports having different groups use different Active Directory or LDAP servers for authentication, or having all
LDAP-enabled groups use the same Active Directory or LDAP server.

Within an LDAP-enabled group, along with users who the CMC will authenticate against an Active Directory or
other LDAP system you can optionally also have local users who the CMC will authenticate by use of a CMC-
based password rather than LDAP.

Note Under no circumstances does the CMC try to write to your Active Directory or LDAP server — it
only reads from it, for the purpose of authenticating users.

Note Only system administrators can enable Active Directory or LDAP authentication for a group.
Group administrators cannot enable Active Directory or LDAP authentication for their groups.

4.6.4.1. Enabling LDAP Authentication for a Group

To use the CMC to enable LDAP authentication for a group, use the Add Group interface (to create a new
group with LDAP authentication enabled) or the Edit Group interface (to enable LDAP authentication for an
existing group). When creating or editing the group select the "Enable LDAP Authentication" option and
provide the required Active Directory or LDAP information.

To use the Admin API to enable LDAP authentication for a group, use the PUT /groupmethod (to create a new
group with LDAP authentication enabled) or the POST /groupmethod (to enable LDAP authentication for an
existing group). When creating or editing the group, in the GroupInfo object in the request body set the ldapEn-
abled attribute to true and also set the other LDAP-related attributes.

Note If you enable LDAP Authentication for an existing group to which you have already added users
via the CMC's Add User function, those existing users will continue to be authenticated by reference to
their CMC-based passwords -- not by reference to an LDAP server. LDAP Authentication will apply
only for new users.

Note If you wish you can enable LDAP Authentication for the System Admin group, by editing the
group either through the CMC or the Admin API. For further information specific to this group, see "Spe-
cial Considerations for LDAP Authentication of System Administrators" (page 134).

4.6.4.2. Provisioning of Users within LDAP-Enabled Groups

Within a HyperStore group that has LDAP authentication enabled you can have both LDAP-authenticated
users and users who are authenticated by a CMC-based password rather than LDAP:

l For users who you want to be authenticated by Active Directory or LDAP, do not manually create
those users through the CMC (or the Admin API). Instead, simply have those users log into the CMC
using their LDAP credentials. If a user tries to log into the CMC as a member of an LDAP-authenticated
group and the user is not already registered in HyperStore as a member of the group, the CMC will

132

4.6. User Provisioning and LDAP Integration

attempt to authenticate the user against the LDAP system. If the authentication succeeds, the CMC will
automatically provision the user into HyperStore. This includes automatic creation of security keys for
accessing the HyperStore S3 data store. Going forward whenever the user logs in the CMC will recog-
nize the user as a registered HyperStore user, but will continue to authenticate the user against the
LDAP system each time rather than by reference to a CMC-based password.

Note that for such users to be successfully provisioned, the user names that they use when logging into
the CMC must satisfy HyperStore restrictions for user names:

o Must be unique within the group.

o Only letters, numbers, dashes, and underscores are allowed. No spaces or special characters.

o Maximum allowed length is 64 characters.

o Must not be any of the following: "anonymous", "public", "null", "none", "admin", "0". These names
are reserved for system use.

Note If you want the group administrator to be authenticated by LDAP, have the user log into
the CMC using their LDAP credentials. Once this occurs and the CMC automatically provisions
the user, you can subsequently edit the user’s profile (using the CMC’s Edit User function or the
Admin API's POST /user method) to promote them to the group admin role.

l For users who you want to be authenticated by a CMC-based password rather than by the LDAP sys-
tem, create those users through the CMC's Add New User interface (or the Admin API's PUT /user
method). The CMC will not use LDAP-based authentication for users created through the Add New
User interface or the PUT /user method.

4.6.4.3. Deleting Users from the CMC and/or LDAP

After you’ve enabled LDAP integration and have been using this feature, the HyperStore system behaves in
the following way in respect to users being deleted from the CMC and/or LDAP:

l If you delete a user from the CMC but that user still exists in LDAP, the user will be able to log in to the
CMC as if they were a first-time user and the CMC will auto-provision the user once again. If you want
to prevent a user from accessing the CMC and HyperStore, but the user still exists in LDAP, the thing to
do is to deactivate the user in the CMC (through the CMC’s Edit User function), rather than deleting
them. This will prevent the user from logging into the CMC or accessing HyperStore storage, even
though they still exist in LDAP.

l If you delete a user from LDAP but do not delete them from the CMC, the user will not be able to log into
the CMC. However, they still have valid S3 credentials and can access the HyperStore storage layer
through a different S3 client. If you want a user who you’ve deleted from LDAP to not have access to the
HyperStore S3 system, you should delete them from CMC also (which prevents access and also
deletes the user’s stored data) or else deactivate them in the CMC (which prevents access but leaves
their stored data in place).

4.6.4.4. Disabling LDAP Authentication After Having Used It

If you have LDAP enabled for a particular group for some period of time, and during that time LDAP-based
users from the group logged into the CMC with their LDAP credentials and were auto-provisioned into the
HyperStore system, and then you subsequently disable LDAP for that group — those auto-provisioned users
will no longer be able to log into the CMC.

133

Chapter 4. Working with HyperStore Major Features

4.6.4.5. Special Considerations for LDAP Authentication of System Administrators

HyperStore supports enabling LDAP authentication for the System Admin group, which is a pre-existing group
in any HyperStore system. You can do this through the CMC's Edit Group interface or the Admin API's POST
/groupmethod, just as you would for any group. Just as with any other group, any users who already exist in
the System Admin group at the time that you enable LDAP authentication for the group will continue to be
authenticated by reference to their CMC-based password. Just as with any other group, after enabling LDAP
authentication for the System Admin group, if you want a new system admin user to be authenticated by LDAP
do not manually create that user through the CMC or the Admin API -- instead, have that user log into the
CMC with his or her LDAP credentials, and the user will then be automatically be provisioned into HyperStore
(see "Provisioning of Users within LDAP-Enabled Groups" (page 132)).

When using LDAP authentication for the System Admin group:

l The default System Admin user -- with user ID admin -- is considered a pre-existing user and can only
be authenticated by reference to the CMC-based password for that user. LDAP authentication is not
supported for the admin user.

l To edit the System Admin group via the CMC or the Admin API you will need to know the group ID,
which is "0" (the number zero).

l When a new system admin user is auto-provisioned into HyperStore as an LDAP-authenticated user
(upon their first login to the CMC with their LDAP credentials), and the system automatically creates a
corresponding HyperStore Shell user -- so that the new system admin user can log into and use the
HyperStore Shell -- that user's logins to the HyperStore Shell will also be LDAP-authenticated. That
is, when logging into the HyperStore Shell the user will supply their LDAP username and password,
and the system will verify those credentials against your LDAP service.

o For "local" system admin users -- who have been manually added through the CMC or the
Admin API and who are not configured for LDAP authentication -- their HyperStore Shell user
name is their CMC login user name prefixed by "sa_" (such as "sa_admin2"). By contrast, for
LDAP-authenticated system admin users their HyperStore Shell user name is simply the same
user name that they use to log into the CMC (without any prefix).

o For LDAP authentication of HyperStore Shell users to work, along with enabling LDAP for the
System Admin group in the CMC's Edit Group interface (or through the Admin API's POST
/groupmethod) you must perform this additional configuration step:

1. Log in to the Puppet Master node (as root or as a locally authenticated HyperStore Shell
user).

2. Set the Distinguished Name for binding to your LDAP service, and the password:

hsctl config set hsh.ldap.bindDN=<bind Distinguished Name>
hsctl config set hsh.ldap.bindPassword=<bind password>
hsctl config apply hsh

For more information on the HyperStore Shell see:

o "Security Features" (page 89)

o "Enabling the HSH and Managing HSH Users" (page 90)

o "Using the HSH" (page 94)

Note If any system admin users were set up for LDAP authentication while you were running
HyperStore 7.2.2 (the first version to support LDAP for system admin users), for those users

134

4.7. Quality of Service Controls

their HyperStore Shell password is a local, hard-coded version of the LDAP password that they
used when they were first provisioned into HyperStore, and LDAP authentication is not per-
formed when they log into the HyperStore Shell. LDAP authentication for HyperStore Shell
users works only for system admin users created in HyperStore version 7.2.3 and later.

4.7. Quality of Service Controls

4.7.1. Quality of Service (QoS) Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Service Usage Types Subject to QoS Controls" (page 135)

l "QoS Assignment Granularity" (page 136)

The Cloudian HyperStore system supports user-level and group-level Quality of Service (QoS) settings:

l User QoS settings place upper limits on service usage by individual users.

l Group QoS settings place upper limits on aggregate service usage by entire user groups.

The HyperStore system enforces QoS settings by rejecting S3 requests that would result in a user (or a user’s
group) exceeding the allowed service usage level.

4.7.1.1. Service Usage Types Subject to QoS Controls

Several types of service usage metrics can be configured for QoS controls:

l Storage quota, by number of KBs.

l Storage quota, by number of objects.

l Peak HTTP request rate, in requests per minute. The user is not allowed more than this many requests
in a 60 second interval.

l Peak data upload rate, in KBs per minute.

l Peak data download rate, in KBs per minute.

When configuring QoS controls, you have the option of limiting some of the usage types above while leaving
others unrestricted. For example, you could limit per-user and/or per-group storage volume (by KBs), while pla-
cing no restrictions on number of stored objects. Similarly, you could cap data upload rate while placing no cap
on data download rate.

When the system rejects a user request because of a storage quota, it returns an HTTP 403 response to the cli-
ent application. When the system rejects a user request due to rate controls, it returns an HTTP 503 response
to the client application.

For HTTP request rate and for upload and download rates, the system also supports a configurable warning
level -- which you can set to a lower threshold of usage than the threshold at which requests will be rejected. If
a user's request results in the warning threshold being exceeded, the request will succeed but the system will
log an INFO level message to the S3 Service application log. (Note that the system does not inform the user
that the warning threshold has been exceeded -- it only writes the aforementioned log message.)

135

Chapter 4. Working with HyperStore Major Features

Note The storage overhead associated with replication or erasure coding does not count toward a
user’s storage quota. For example, a 1MB object that is protected by 3X replication or by 4+2 erasure
coding counts as only 1MB toward the storage quota.

Note For information on how auto-tiering impacts the implementation QoS controls, see "How Auto-
Tiering Impacts Usage Tracking, QoS, and Billing" (page 179).

4.7.1.2. QoS Assignment Granularity

The system also provides you the flexibility to assign different QoS settings to different users and groups. In the
case of user QoS settings, the system provides you three levels of granularity:

l For the system as a whole, you can configure a system default for user QoS settings, applicable to all
users of your S3 service.

l For particular groups, you can configure a group-specific default for user QoS settings. If you do, then
for users in that group, the group-specific user QoS defaults will override the system-wide user QoS
defaults.

l For particular users, you can configure user-specific QoS settings. If you do, these settings will over-
ride any group-wide or system-wide defaults.

For group QoS settings you have two levels of granularity:

l For the system as a whole, you can configure a system default for group QoS settings, applicable to
all groups in your S3 service.

l For particular groups, you can configure group-specific group QoS settings. If you do, these settings
will override the system-wide defaults.

Note for multi-region systems

If your HyperStore service has multiple service regions, the system also provides you the ability to configure dif-
ferent QoS settings for different regions. For example, you might configure default user QoS settings that allow
users 20GB of storage in your "North" service region and 30GB in your "South" service region.

4.7.2. Enabling QoSEnforcement
By default, the HyperStore system’s QoS functionality is disabled. Before enabling the functionality, think first
about whether you want to implement QoS controls based just on storage quotas, or if you also want to apply
QoS controls for request rates (HTTP requests and upload/download bytes). This choice impacts that con-
figuration changes that you will make. In general, for optimal system performance you should enable only the
QoS functionality that you actually intend to apply to service users.

Note that enabling in QoS functionality as described below, you are merely "turning on" the S3 Service mech-
anisms that enforce whatever QoS restrictions you establish for users and groups. The creation of specific QoS
restrictions is a separate administrative task as described in "Setting QoS Limits for Users" (page 137) and
"Setting QoS Limits for Groups" (page 137).

To enable HyperStore QoS enforcement, in the CMC go to the Configuration Settings page and open the
Quality of Service panel. Then:

136

4.7. Quality of Service Controls

l To enable enforcement of storage quotas only (number of bytes and/or number of objects), set just the
"QoS Limits" setting to "enabled".

l To enable enforcement of storage quotas and also traffic rates (number of HTTP requests per minute,
or bytes uploaded or downloaded per minute), set both the "QoS Limits" setting and the "QoS Rate Lim-
its" setting to "enabled".

After you Save, your configuration changes are applied to the system dynamically — no service restart is
required.

Note Enforcing QoS for traffic rates but not for stored bytes and objects is not supported at the system
configuration level. If you want to use QoS in this way, set both "QoS Limits" and "QoS Rate Limits" to
enabled, then when you’re configuring QoS limits for groups and users set the stored bytes and objects
controls to unlimited and the rate controls to your desired levels.

4.7.3. Setting QoS Limits for Groups
As with user QoS settings, you can set group QoS settings through either the CMC or the Admin API. Group
QoS settings limit the aggregate activity of all users in a group.

Setting QoS Limits for Groups (CMC)
First you should decide whether you want to set default QoS limits for all groups in your HyperStore system. If
so, you can do this by going to the CMC’s Manage Groups page and clicking Group QoS Default to open the
Group QoS Limits: Defaults panel. Here you can configure default group QoS limits for your whole system.

Next, you can set group QoS limits for a specific group. If you do so, these limits will override any system
defaults for group QoS. To do this, first retrieve the group in the Manage Groups page. Then click Group QoS
for the group. This opens the Group QoS Limits: Overrides panel, where you can configure group QoS limits
for that specific group.

Note For details about working with the CMC’s QoS configuration panels see "Set Quality of Service
(QoS) Controls" (page 285).

Setting QoS Limits for Groups (Admin API)
To establish group QoS settings through the Admin API, you use the same method that you do for user QoS set-
tings: POST /qos/limits. URI parameters enable you to specify that you’re creating system defaults for group
QoS settings, or settings for a particular group.

The GET /qos/limits and DELETE /qos/limits methods can be used to retrieve or delete group QoS settings.

4.7.4. Setting QoS Limits for Users
By system default, QoS controls for all service usage types — storage quota by bytes, storage quota by number
of objects, HTTP requests per minute, upload bytes per minute, and download bytes per minute — are set to

137

Chapter 4. Working with HyperStore Major Features

"unlimited". So when you enable QoS enforcement by the system, service users still are not subject to QoS
controls until you establish specific QoS limits for the various service usage types.

You can set QoS limits for users through either the CMC or the Admin API.

Setting QoS Limits for Users (CMC)
First you should decide whether you want to set default QoS limits for all users of your HyperStore system. If so,
you can do this by going to the CMC’s Manage Users page and clicking User QoS Default to open the User
QoS Limits: Defaults panel, where you can configure default user QoS limits for your system.

Next, decide whether you want to set default QoS limits for all users who belong to a particular user group. If
you do so, this will override the system-wide default, for users within that group. To do this, first retrieve the
group in the Manage Groups page. Then click User QoS Group Default for the group. This opens User QoS
Limits: Group Defaults panel, where you can configure default user QoS limits for the group.

Finally, you also have the option of setting QoS limits for a specific individual user. If you do so, these limits will
override any system or group default limits, for that user. To do this, first retrieve the user in the Manage Users
page, then click Set QoS for the user. This opens the User QoS Limits: Overrides panel, where you can con-
figure QoS limits for that specific user.

Note For details about working with the CMC’s QoS configuration panels see "Set Quality of Service
(QoS) Controls" (page 285).

Setting QoS Limits for Users (Admin API)
With the Admin API method POST /qos/limits you can set QoS limits for HyperStore service users. With the
method’s URI parameters you can specify whether you’re setting default limits for all users in the system; or
default limits for all users within a specified group; or limits for a specific user. URI parameters also enable you
to set the numerical limits for each service usage type — for example, a Storage Bytes limit of 10GB.

The Admin API also supports:

l A GET /qos/limits method, for retrieving system-default, group-default, or user-specific QoS limits

l A DELETE /qos/limits method, for deleting system-default, group-default, or user-specific QoS limits

4.8. Usage Reporting and Billing

4.8.1. Usage Reporting and Billing Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Bucket Usage Statistics" (page 139)

l "How Usage Data is Calculated, Tracked, and Processed" (page 139)

l "Protection of Usage Data Through Replication" (page 141)

l "S3 Request Traffic Analysis and Visualization" (page 141)

l "Billing" (page 141)

138

4.8. Usage Reporting and Billing

By default the HyperStore system keeps track of the following service usage metrics for each user group and
each individual user:

l Number of Storage Bytes

l Number of Storage Objects

Optionally, you can configure the system to also track the following metrics for each group and user:

l Number of HTTP Requests

l Number of Bytes IN (bytes uploaded into the system)

l Number of Bytes OUT (bytes downloaded from the system)

Like Amazon S3, the HyperStore system attributes all service usage to bucket owners. If a bucket owner
grants permission (via ACL policies) for other users to use the bucket, the system attributes the service activity
of the grantees to the bucket owner. For example, if grantees upload objects into the bucket, the associated
Bytes IN activity and Storage Bytes impact is attributed to the bucket owner — not to the grantees.

The HyperStore system’s tracking of service usage by groups and users serves two main purposes:

l Usage reporting. Based on service usage tracking data, you can generate service usage reports for
individual users, for user groups, for a whole service region, or for your entire HyperStore system.

l Billing. Usage tracking provides the foundation for billing users or groups on the basis of their service
usage level.

4.8.1.1. Bucket Usage Statistics

Optionally, you can also configure the system to track usage statistics on a per-bucket basis. This may be use-
ful if for example your HyperStore service is set up such that there is just single "user" for service access pur-
poses, with that one user having multiple buckets each for a different purpose.

In the current release, bucket statistics are not available through the CMC. Bucket statistics are supported only
by Admin API calls.

The bucket statistics feature is disabled by default. For information on enabling this feature see "Enabling
Advanced Usage Reporting Features" (page 142).

Note The Admin API call that returns the current total number of bytes and total number of objects in a
bucket -- POST /usage/repair/bucket -- works even if bucket statistics are disabled in the system. The
other bucket statistics related API calls only work if bucket statistics are enabled. For more information
on the API calls see "usage" (page 868).

4.8.1.2. How Usage Data is Calculated, Tracked, and Processed

The table below provides a high level view of how the system generates and handles usage data for users and
groups. Usage tracking for Storage Bytes and Storage Objects is handled somewhat differently than tracking
for HTTP Requests and Bytes IN/OUT, including that the latter is disabled by default.

Usage Data Types System Handling

l Storage Bytes

l Storage Objects

For each S3 request that the S3 Service processes, the S3 Service
updates per-user and per-group Storage Bytes and Storage Objects
counters that are maintained in the Redis QoS database. In calculating
the increment to Storage Bytes associated with a given S3 request, the

139

Chapter 4. Working with HyperStore Major Features

Usage Data Types System Handling

system includes the object name size and object metadata size as well
as the size of the object itself.

Note that storage overhead associated with replication or erasure cod-
ing does not count toward a user’s Storage Bytes count. For example, a
1MB object that is protected by 3X replication or by 4+2 erasure coding
counts as only 1MB toward the Storage Bytes count.

These per-user and per-group Storage Bytes and Storage Objects coun-
ters in Redis are used by the system to enforce storage quotas, if such
quotas are part of your Quality of Service configurations.

Every five minutes, freshly updated Redis QoS counts for Storage Bytes
and Storage Objects are written to the Raw column family in Cassandra’s
Reports keyspace, where the data is subjected to additional processing
in support of reporting and billing functionality. Each hour the Raw data
is automatically processed to derive hourly roll-up data which is written to
the RollupHour column family. The hourly roll-up data includes, for each
user and each group, the hour’s maximum value and weighted average
value for Storage Bytes and for Storage Objects.

For example, if during a given hour User1 has 10MB of Storage Bytes for
the first 20 minutes of the hour and then 15MB for the next 40 minutes of
the hour, her weighted average Storage Bytes for the hour is:

10MB X 20/60 = 3.33MB

+ 15MB X 40/60 = 10 MB

= 13.33MB weighted average for hour

This hourly data is in turn rolled up once each day to derive daily roll-up
values (including, for each user and group, the day’s maximum and
day’s average for Storage Bytes and Storage Objects); and the daily roll-
up values are rolled up once each month to derive monthly roll-up values
(including monthly maximums and averages for each user and group).
This data is stored in the RollupDay column family and RollupMonth
column family, respectively.

Note The writing of Storage Bytes and Storage Objects counters
from Redis over to Cassandra, and the usage data roll-ups that
take place within Cassandra, are triggered by system cron jobs.

l HTTP Requests

l Bytes IN

l Bytes OUT

By default system configuration, HTTP Requests, Bytes IN, and Bytes
OUT are not tracked.

If you enable usage tracking for HTTP Requests and Bytes IN/OUT,
then for each S3 request the S3 Service writes transactional metadata dir-
ectly to the Raw column family in Cassandra’s Reports keyspace. It does
so asynchronously so that S3 request processing latency is not
impacted.

In recording the Bytes IN and Bytes OUT impacts of a given S3 trans-

140

4.8. Usage Reporting and Billing

Usage Data Types System Handling

action, both the request and the response are counted, and HTTP
header size is counted as well as body size. For example, a GET
request/response pair will count as Bytes IN (typically very small) as well
as Bytes OUT (varies with object size); and conversely a PUT request/re-
sponse pair will count as Bytes OUT (typically very small) as well as
Bytes IN (varies with object size).

Together with the Storage Bytes and Storage Objects data, the HTTP
Request and Bytes IN/OUT data in the Raw column family is rolled up
each hour. For each user and each group the roll-up calculates the
hour’s total for HTTP GETs, PUTs, and DELETEs, and for Bytes IN and
Bytes OUT. For Bytes IN and Bytes OUT, maximums for the hour (largest
single upload and largest single download) and averages for the hour
(average upload size and average download size) are derived for each
user and group.

The hourly roll-up data is rolled up daily; and the daily roll-up data is
rolled up monthly.

If you fully enable HyperStore Quality of Service functionality, then for
each S3 request the S3 Service also updates HTTP Request and Bytes
IN/OUT counters in the Redis QoS database, in support of QoS enforce-
ment.

4.8.1.3. Protection of Usage Data Through Replication

All HyperStore service usage data is stored in Cassandra, in the Reports keyspace. This data is protected
against loss or corruption by maintaining multiple copies of the data, with each copy stored on a different node.
During system installation the install script prompts you to specify how many replicas to keep of service
metadata, which includes usage data. If you are running HyperStore in multiple data centers, during install you
choose how many service metadata replicas to keep in each data center.

4.8.1.4. S3 Request Traffic Analysis and Visualization

For information on setting up an Elastic Stack node and streaming request log data to that node to support
analysis and visualization of your S3 request traffic, see "Setting Up Elastic Stack for S3 Request Traffic
Analysis" (page 631).

4.8.1.5. Billing

The HyperStore system maintains comprehensive service usage data for each group and each user in the sys-
tem. This usage data serves as the foundation for HyperStore service billing functionality.

The system provides you the ability to create rating plans that specify charges for the various types of service
usage activity, and to assign each group and each user a rating plan. You can then generate bills for a user or
for a whole user group, for a selected service period. The CMC has a function for displaying a single user's bill
report in a browser, but in the more typical use case you will use the HyperStore Admin API to generate user or
group billing data that can be ingested a third party billing application.

141

https://www.elastic.co/products

Chapter 4. Working with HyperStore Major Features

Cloudian HyperStore also allows for special treatment of designated source IP addresses, so that the billing
mechanism does not apply any data transfer charges for data coming from or going to these "whitelisted"
domains.

Note For information on how auto-tiering impacts billing calculations, see "How Auto-Tiering Impacts
Usage Tracking, QoS, and Billing" (page 179).

4.8.1.5.1. Retention of Usage Data Used for Billing

Billing calculation is derived from hourly rollup usage data. The retention period for hourly rollup usage data is
configurable and defaults to 65 days. Once this rollup data is deleted it can no longer be used to generate
users' bills.

For more information about this configurable setting see "Setting Usage Data Retention Periods" (page 144)

4.8.1.5.2. Retrieving Bucket Tags

If your billing scheme makes use of bucket tags (as created by the S3 API method PUT Bucket tagging): The
HyperStore Admin API supports a method for retrieving all the bucket tags for all users in a specified group.
Because it is implemented through the Admin API, that method does not require the users' S3 access cre-
dentials. For more information see GET /bucketops/gettags.

4.8.2. Enabling Advanced Usage Reporting Features
This topic describes how to enable advanced HyperStore usage reporting features that are disabled by default:
per-user and per-group traffic rates (HTTP request rates and data transfer rates); and per-bucket usage track-
ing.

4.8.2.1. Per-User and Per-Group Traffic Rates

By default the HyperStore system tracks Storage Bytes and Storage Objects for each user and each group. If
you want the system to also track HTTP Requests, Bytes IN, and Bytes OUT for each user and group, log into
the CMC and go to Cluster → Cluster Config→ Configuration Settings, and then open the Usage Tracking
panel. There, enable the "Track/Report Usage for Request Rates and Data Transfer Rates" setting and Save
your change. Your change is applied to the system dynamically -- there is no need to restart services.

Once you enable this feature, this type of usage data will be tracked and available for reporting from that point
in time forward. There will not be any per-user and per-group traffic rate data from prior to the time that you
enabled this feature.

Note Enabling this feature results in additional data being stored in Cassandra, and additional work
for the cron jobs that roll up usage data into hourly, daily, and monthly aggregates.

4.8.2.2. Per-Bucket Usage Tracking

HyperStore supports usage tracking and reporting on a per-bucket basis, but this feature is disabled by default.
To enable per-bucket usage statistics, in the configuration file common.csv set bucketstats_enabled to "true".

142

4.8. Usage Reporting and Billing

Then push your change out to the cluster and restart the S3 Service. For instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

Once you enable this feature, bucket usage data for storage consumption and traffic rates will be tracked and
available for reporting from that point in time forward. There will not be any per-bucket usage data from prior to
the time that you enabled this feature.

Note Enabling this feature results in additional data being stored in Cassandra, and additional work
for the cron jobs that roll up usage data into hourly, daily, and monthly aggregates.

Note The Admin API call that returns the current total number of bytes and total number of objects in a
bucket -- POST /usage/repair/bucket -- works even if bucket statistics are disabled in the system. The
other bucket statistics related API calls only work if bucket statistics are enabled. For more information
on the API calls see "usage" (page 868).

4.8.3. Validating Storage Usage Data
As described in "Usage Reporting and Billing Feature Overview" (page 138), each time the S3 Service pro-
cesses an S3 request it updates per-user and per-group counters for Storage Bytes and Storage Objects which
are maintained in the Redis QoS database. These counts are regularly written over to the Cassandra Reports
keyspace, where they are post-processed for reporting and for bill generation.

Because the Redis QoS counters for Storage Bytes and Storage Objects can impact your billing of service
users (if you charge users based on volume of storage used), it’s important that the counts be accurate.

Various types of errors and conditions can on occasion result in discrepancies between the Redis QoS counts
and the actual stored bytes and objects owned by particular users. The HyperStore system provides mech-
anisms for detecting and correcting such discrepancies.

4.8.3.1. Routine Automated Validation

Twice a day, a system cron job executes the HyperStore Admin API method POST /usage/repair/dirtyusers.
This operation randomly selects up to a configurable maximum number of users (mts.properties.erb: "usage.re-
pair.maxdirtyusers" (page 569); default = 1000) for whom Storage Bytes and/or Storage Objects counts in
Redis have changed since the last time a validation operation was run. For those users, the operation val-
idates the Redis counters by comparing them to the information in the Cassandra "UserData" keyspace’s
"CLOUDIAN_METADATA" column family, which stores metadata (including size) for every object belonging to
each user of the HyperStore service. If any users' Redis counters are found to be out-of-sync with counts
derived from the object metadata, the Redis counters are corrected.

In normal circumstances, this automated mechanism should suffice for maintaining the accuracy of usage data
for Storage Bytes and Storage Objects.

4.8.3.2. Validation for Special Cases

If you have reason to question the accuracy of Storage Bytes and/or Storage Objects counts for a particular
user — for example, if a user claims their usage report or their bill to be inaccurate — the Admin API supports a
method for validating the counts for a specified user: POST /usage/repair/user.

143

Chapter 4. Working with HyperStore Major Features

The Admin API also supports a method for validating Storage Bytes and Storage Object counts for a whole
user group, a whole service region, or the whole system: POST /usage/repair. Depending on how many users
are in your system, this is potentially a resource-intensive operation. This operation should only be considered
in unusual circumstances, such as if the Redis QoS database has been brought back online after being
unavailable for some period of time.

4.8.4. Setting Usage Data Retention Periods
Data retention periods are separately configurable for raw, hourly roll-up, daily roll-up, and monthly roll-up
usage data. After data has been stored for its configured retention period (also known as its "time-to-live" or
TTL), it’s automatically deleted from the system.

The relevant settings are all in the configuration template mts.properties.erb:

l "reports.rolluphour.ttl" (page 567) (default = 5616000 seconds [65 days])

IMPORTANT ! The HyperStore system calculates monthly bills for service users by aggregating
hourly roll-up data. Once hourly data is deleted, you will not be able to generate bills for the ser-
vice period covered by that data. So be sure to have reports.rolluphour.ttl set to a value large
enough to accommodate your billing routine.

l "reports.rollupday.ttl" (page 568) (default = 5616000 seconds [65 days])

l "reports.rollupmonth.ttl" (page 568) (default = 15552000 seconds [180 days])

If you edit any of these settings, push your changes out to the cluster and restart the S3 Service. For instruc-
tions see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page 506).

4.8.5. Generating a Usage Report
You can generate usage report data through either the CMC or the Admin API.

Generating a Usage Report (CMC)
In the CMC's Usage By Users & Groups page you can generate usage reports for a user, a group, a whole
region, or your whole system. You can choose a report interval, a report granularity (raw, hourly, daily, or
monthly roll-up), and the usage type to report on (stored bytes or stored object counts, or — if request tracking
is enabled— statistics for HTTP requests and data transfer).

You can display reports in the CMC in tabular format or dynamic graph format, or download report data in
comma-separated value (CSV) format.

The CMC does not support per-bucket usage reporting. For that you must use the Admin API.

Generating a Usage Report (Admin API)
The Admin API method GET /usage returns usage data for a specified user, group, or bucket. You can choose
a report interval, a report granularity (raw, hourly, daily, or monthly roll-up), and the usage type to report on
(stored bytes or stored object counts, or — if request tracking is enabled— statistics for HTTP requests and
data transfer).

144

4.8. Usage Reporting and Billing

Note To retrieve usage data for a whole region or the whole system, you must execute GET /usage
separately for each group.

The Admin API also supports a POST /usage/repair/bucket call that returns the current total bytes count and
total objects count for a bucket; and a POST /usage/bucket call that can retrieve raw usage data for multiple
specified buckets at once.

Note The Admin API call that returns the current total number of bytes and total number of objects in a
bucket -- POST /usage/repair/bucket -- works even if bucket statistics are disabled in the system. The
other bucket statistics related API calls only work if bucket statistics are enabled.

Note For information on setting up an Elastic Stack node and streaming request log data to that node
to support analysis and visualization of your S3 request traffic, see "Setting Up Elastic Stack for S3
Request Traffic Analysis" (page 631).

4.8.6. Creating Rating Plans for Billing
The HyperStore system supports the creation of billing rating plans in which charges can be specified for each
of several different service activity types. The system supports rating plans that charge:

l Per GB of data in storage (based on a calculated average storage volume for the billing period)

l Per GB of data uploaded

l Per GB of data downloaded

l Per 10,000 HTTP GET or HEAD requests

l Per 10,000 HTTP PUT or POST requests

l Per 10,000 HTTP DELETE requests

A user’s bill can then be calculated by applying the user’s assigned rating plan to the user’s activity levels for
each of these activity types, and adding together the charges for each activity type to get a total charge for the
billing period.

You can create multiple, named rating plans, each of which applies different charges to the various service
activity types. Once you’ve created rating plans, those plans are then available for you to assign to users.

For example, you can create higher-priced and lower-priced rating plans and then assign different plans to dif-
ferent users based on the users' quality of service terms.

IMPORTANT ! If you want to bill for data upload or download volume, or for HTTP request volume, you
must enable the "Track/Report Usage for Request Rates and Data Transfer Rates" setting in the CMC’s
Configuration Settings page, Usage Tracking section. By default this setting is disabled and the system
does not maintain per-user HTTP request counts and data transfer byte counts.

You can create rating plans either through the CMC or through the HyperStore Admin API. The system also
comes equipped with an editable default rating plan.

145

https://www.elastic.co/products

Chapter 4. Working with HyperStore Major Features

Creating Rating Plans for Billing (CMC)
To create rating plans through the CMC, use the Rating Plan page. For each plan you create, you can select a
currency and then specify the charges to apply per each of the chargeable service activity types (per GB of
stored data, per GB of data uploaded, and so on). For each rating plan, the interface supports the creation of
single-tier or multi-tier pricing schemes for each chargeable activity.

The Rating Plan page also supports viewing and editing existing plans, including the default rating plan that
comes with the HyperStore system.

Creating Rating Plans for Billing (Admin API)
To create a rating plan through the Admin API, use the PUT /ratingPlanmethod.

The Admin API also supports:

l Retrieving a list of existing rating plans:GET /ratingPlan/list

l Retrieving a rating plan:GET /ratingPlan

l Editing a rating plan: POST /ratingPlan

l Deleting a rating plan: DELETE /ratingPlan

Example of a Rating Plan Applied to Calculate a User’s Monthly Bill
This example walks through a hypothetical rating plan and how it would apply to a user’s service usage for a
month.

4.8.6.0.1. Storage Charges

l Types: One type only. The average number of GBs of data stored for the month.

l Example:

o Unit: Dollars per GB-months.

o Pricing: From 0-1 TB at $0.14 per GB-month, 1-10 TB at $0.12 per GB-month, 10+ TB at $0.10
per GB-month.

o Usage: Store 0.1 TB for first 10 days of month, then 20 TB for remaining 21 days of month.

o Sum up usage over month: 0.1TB X 240 hours + 20TB X 504 hours = 10,104 TB-hours.

o Convert to GB-months: 10,104 TB-hours X (1024 GB/TB) X (1 month/744 hours) = 13,906.58
GB-months

o Apply tiered pricing: ($0.14 X 1 X 1024GB) + ($0.12 X 9 X 1024GB) + ($0.10 X 3666.58GB) =
$1615.94.

4.8.6.0.2. Data Transfer Charges

l Types: 2 types. Data Transfer IN and Data Transfer OUT.

o Each type (IN, OUT) has own cost.

l Example:

o Unit: Dollars per GB.

o Pricing: IN: 0GB+ at $0.10. OUT: 0-10GB at $0.20, 10GB+ at $0.10

o Usage: Transfer-IN 300GB, Transfer-OUT 100GB.

o (300 X $0.10) + (10 X $0.20 + 90 X $0.10) = $41.00.

146

4.8. Usage Reporting and Billing

4.8.6.0.3. Request Charges

l Types: 3 types of requests are HTTP PUT/POST, HTTP GET/HEAD, and HTTP DELETE.

o Each request type has own cost.

l Example:

o Unit: Dollars per 10,000 requests.

o Pricing: PUT/POST: $0.20 per 10,000 requests, GET/HEAD: $0.01 per 10,000 requests,
DELETE: $0.00 per 10,000 requests.

o Usage: For the month, 25,000 PUTs/POSTs, 300,000 GETs/HEADs, 1000 DELETEs.

o ($0.20 X 25,000 / 10,000) + ($0.01 X 300,000 / 10,000) + ($0.00 X 1000 / 10,000) = $0.53.

4.8.6.0.4. Total Bill for Month

l Storage charges: $1615.94

l Data transfer charges: $41.00

l Requests charges: $0.53

l TOTAL: $1657.47

4.8.7. Assigning Rating Plans to Users
When you create a new user group you can assign to the group a rating plan that by default will apply to each
user in the group. Optionally you can assign a rating plan to specific users within the group, overriding the
group’s default rating plan.

In a multi-region HyperStore system, you have the option of assigning groups or individual users different rat-
ing plans for activities in different regions. For example, you might charge users more for stored data in buckets
that they’ve created in your North region than for stored data in buckets created in your South region.

If you do not explicitly assign a rating plan to a user, the user is automatically assigned the rating plan that’s
assigned to the user’s group. If you do not explicitly assign a rating plan to a group, then the system default rat-
ing plan is automatically used for that group.

You can assign rating plans to users through either the CMC or the Admin API.

Assigning Rating Plans to Users (CMC)
To use the CMC to assign a rating plan to a group, use the Manage Groups page. From here you can create a
new group, and while doing so assign the group a rating plan from a drop-down list of rating plans that exist in
the system (the system default plan plus any plans you’ve created). From here you can also retrieve an existing
group and change the group’s rating plan assignment. Whichever rating plan you associate with a group will
be applied to each user in the group, except for any users to whom you explicitly assign a rating plan.

To use the CMC to assign a rating plan to an individual user, use the Manage Users page. From here you can
create a new user, and while doing so assign the user a rating plan from a drop-down list. By default the new
user is assigned whichever plan is assigned to the user’s group. From the Manage Users page you can also
retrieve an existing user and change her rating plan assignment.

Assigning Rating Plans to Users (Admin API)
To use the HyperStore Admin API to assign a rating plan to a group, you must have first created the group (with

147

Chapter 4. Working with HyperStore Major Features

the PUT /groupmethod). Once a group exists, you can assign the group a rating plan by using the POST
/group/ratingPlanIdmethod. You could subsequently use this same API method to change a group’s rating
plan assignment. The Admin API also supports a GET /group/ratingPlanIdmethod, for retrieving a group’s cur-
rent rating plan identifier.

The approach is similar if you want to assign a rating plan to an individual user. The user must have already
been created (with PUT /user), and then you can use POST /user/ratingPlanId to assign the user a rating plan
(and to subsequently update that assignment). The method GET /user/ratingPlanId lets you retrieve the iden-
tifier of the rating plan currently assigned to a specified user, and there’s also a GET /user/ratingPlanmethod
for retrieving the user’s rating plan in full.

4.8.8. Creating a "Whitelist" for Free Traffic
There may be certain source domains from which you want users to be able to submit S3 requests to the Hyper-
Store system without incurring any data transfer charges. The HyperStore system allows you to create such a
"whitelist", consisting of IPv4 addresses and/or subnets. For traffic originating from these addresses or subnets,
there is no charge for data IN or data OUT, nor is there any charge for HTTP requests — regardless of users'
assigned rating plans.

Note that the whitelist does not have any impact on what users are charged for data storage. It allows only for
free traffic from the specified origin domains. For data storage billing, a user’s regular assigned rating plan pri-
cing is used, even if all of the user’s S3 requests originate from a whitelisted IP address.

You can creating a billing whitelist through either the CMC or the Admin API. But before doing so, you must
enable the whitelist feature. It is disabled by default.

IMPORTANT ! If your S3 Servers are behind a load balancer, the load balancer must be configured to
pass through request source IP addresses in order for the whitelist feature to work. Also, note that when
S3 requests are submitted via the CMC, the S3 Servers consider the CMC itself to be the source of the
request. The CMC does not pass to the S3 Servers the IP addresses of CMC clients.

Enabling the Whitelist Feature
To enable the HyperStore billing whitelist feature:

1. On your Puppet master node, open the following configuration file in a text editor:

/etc/cloudian-<version>-puppet/manifests/extdata/common.csv

2. Set admin_whitelist_enabled to true, then save your change.

3. Use the installer to push your changes to the cluster and to restart the S3 Service and the CMC. For
instructions see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page
506).

Creating a Source IP "Whitelist" (CMC)
To create a whitelist through the CMC, use theWhitelist page. That page shows the ID and name of the default
whitelist, which initially has no IP addresses in it. To create a functioning whitelist, you edit the default whitelist
by adding IP addresses or subnets to it.

148

4.8. Usage Reporting and Billing

Once created, the whitelist takes effect. From that time forward, the HyperStore billing system will no longer
apply traffic charges to users' traffic originating from the whitelisted IP addresses and subnets.

Note If you want to see a particular user’s whitelisted traffic volume during a given billing period, you
can do so as part of the HyperStore system’s functionality for "Generating Billing Data for a User or
Group" (page 149).

Creating a Source IP "Whitelist" (Admin API)
The HyperStore Admin API provides two different methods for creating a whitelist:

l Use the POST /whitelist method to post your whitelist as a JSON-encoded request payload.

l Use the POST /whitelist/list method to post your whitelist as a URI parameter.

The Admin API also supports a GET /whitelist method for retrieving the contents of your current whitelist.

4.8.9. Generating Billing Data for a User or Group
The HyperStore system supports generating a bill for a specified user or for a whole user group. The system
applies the user’s or group's assigned rating plan to their service usage during the billing period. Bills can be
generated for any completed calendar month of service usage.

With the CMC you can generate a billing report for an individual user (but not for a whole group). With the
Admin API you can generate billing data for a specified user or for a whole user group.

IMPORTANT ! Billing calculation is derived from hourly rollup usage data. The retention period for
hourly rollup usage data is configured by mts.properties.erb: "reports.rolluphour.ttl" (page 567). The
default retention period is 65 days. Once this rollup data is deleted it can no longer be used to generate
users' bills.

Generating Billing Data for a User (CMC)
To generate billing data through the CMC, use the Account Activity page. In this page you can specify a user
and select a billing period. The most recent period you can select is the most recently completed calendar
month. You cannot generate a billing report for an in-progress month.

The billing data that you can generate from this page displays in the form of a printable billing document that
includes the user’s name and user-ID, their user group, the billing period, and the bill generation date. The doc-
ument shows a summary of the user’s rating plan, the user’s service activity for the billing period, and the asso-
ciated charges.

The Account Activity page also provides you an option to view a user’s service traffic originating from whitel-
isted domains, if any.

Generating Billing Data for a User or Group (Admin API)
To generate user or group billing data through the HyperStore Admin API, use the POST /billingmethod. This
triggers the calculation of the billing data for the specified calendar month, and returns the billing data as a
JSON-encoded response payload.

149

Chapter 4. Working with HyperStore Major Features

The Admin API method also supports a GET /billingmethod, which simply retrieves billing data that you’ve pre-
viously generated with the POST /billing method. Like the POST /billing method, the GET /billing method
returns billing data as a JSON-encoded response payload.

4.9. Automated Data Repair

4.9.1. Automated Data Repair Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Repair-On-Read" (page 150)

l "Proactive Repair" (page 151)

l "Scheduled Auto-Repair" (page 151)

l "Operator-Initiated Data Repair" (page 152)

Through its storage policies feature, HyperStore provides you the option of using eventual consistency for
writes of S3 object data and metadata. For example, in the context of a 3X replication storage policy you can
configure a policy such that the system returns a success response to an S3 client’s PUT Object request so
long as two of the three replicas can be written at the time of the request. As a second example, in the context
of a 4+2 erasure coding storage policy you can configure a policy to return a success response to a PUT
Object request so long as five of the six erasure coded fragments can be written at the time of the request.

Eventual consistency can reduce S3 write request latency and increase S3 write availability while still provid-
ing a high degree of data durability assurance. Eventual consistency also means that for a given object, there
may be times when not all of the object’s intended replicas or EC fragments exist in the system. For example, in
a 3X replication context there may be times when only two replicas of an object exist in the system, rather than
the intended three replicas.

HyperStore automatically implements several mechanisms to detect and replace missing replicas or EC frag-
ments: repair-on-read, proactive repair, and scheduled auto-repair.

4.9.1.1. Repair-On-Read

Whenever a read request is processed for a particular replicated object, all replicas of the object are checked
and any missing or out-of-date or corrupted (mismatched with the MD5 hash in the file digest) replicas are
automatically replaced or updated. This repair process occurs whether the read succeeds in meeting con-
sistency requirements or not, so long as at least one valid replica exists in the system.

Repair-on-read is also performed for erasure coded object reads, in the event that there are enough fragments
to decode the object but one or more of the object's fragments are missing. For example, if 4+2 erasure coding
is being used and the system when reading an object finds only 5 fragments for the object, the system replaces
the object's missing fragment.

Note In the case of large objects (over 10MB) that the system has automatically divided into "chunks"
before replication or erasure coding is applied, when processing an object read request the system
reads an object's chunks sequentially. If a given chunk is unreadable -- that is, if read consistency

150

4.9. Automated Data Repair

requirements cannot be met for that chunk -- then the system does not attempt to read the object's
remaining chunks (if any). In this case, repair-on-read is applied only to the chunks that the system
read or tried to read, and not to any remaining chunks that the system did not try to read.

4.9.1.2. Proactive Repair

When a node has been down or unreachable, then when the node comes back online it is automatically
brought up to date by proactive repair. Proactive repair works by reading from Cassandra a list of objects for
which a write succeeded in the system as a whole but failed on that node. Working from this object list, pro-
active repair streams in any locally missing replicas by copying them from nodes where they do exist; or, in the
case of erasure coded objects, the proactive repair process re-generates the locally missing fragment. This all
happens automatically without need for operator action.

Proactive repair covers several circumstances wherein writes may succeed in the system as a whole but fail to
be written to a particular endpoint node:

l The endpoint node was momentarily unavailable

l The endpoint node had been unavailable for long enough for the S3 layer to mark it as temporarily
down and stop sending write requests to it (by default this occurs after a few minutes of a high rate of
timeouts or other errors returned by the node)

l The endpoint node was in a stop-write condition and so the S3 layer stopped sending write requests
to it (by default this occurs when all data disks on the node are 90% full or more)

l The endpoint node wasmarked down for maintenance by an operator and so the S3 layer stopped
sending write requests to it

The maximum time for which proactive repair jobs can be queued for a node that is unavailable is 4 hours by
default, and is configurable. Also configurable is the regular interval at which each node in the cluster checks
whether there are any queued proactive repair jobs for itself, and executes those jobs if there are any (default =
1 hour). For more information see "Configuring Automatic Data Repair" (page 152) .

4.9.1.3. Scheduled Auto-Repair

To ensure that your HyperStore data is protected to the degree that you intend, the system automatically runs
node repairs on scheduled intervals. By default:

l To repair replicated object data, each node is scheduled to have hsstool repair automatically run on it
once every 30 days.

l To repair erasure coded object data, each node is scheduled to have hsstool repairec automatically
run on it once every 29 days.

l To repair metadata in Cassandra, each node is scheduled to have hsstool repaircassandra auto-
matically run on it once every 7 days.

The repairs are scheduled and launched in such a way thatwithin a service region only one repair of each
type is running at a time. For each repair type the system maintains a queue of nodes scheduled for auto-
repair -- a replicated data repair queue, an erasure coded data repair queue, and a Cassandra metadata
repair queue. For each repair type, repair of the node that is next in queue will not start until the repair oper-
ation completes on the node on which a repair is currently running. Consequently if you have a lot of nodes
and/or a high volume of data in your system, the actual time between repairs of a given node may be larger

151

Chapter 4. Working with HyperStore Major Features

than the scheduled interval. This effect is most pronounced with erasure coded data repair (which can be very
long-running) and least pronounced with Cassandra repair (which is relatively fast).

Note that when a repair operation is running on a target node, the scope of repair activity will extend to other
nodes as well. In the case of repair of replicated object data, repair of a target node will also make sure that for
objects that fall within the target node's primary token range, the objects' replicas also are present on the other
nodes where they are supposed to be. That same repair dynamic is true also for repair of replicated Cassandra
metadata.

In the case of erasure coded object data, for single data center storage policies and for multi- data center rep-
licated EC storage policies, repair of a target node has the effect of assessing and repairing all erasure coded
data on all nodes within the data center where the target node resides. And for multi- data center distributed
EC storage policies, repair of a target node has the effect of assessing and repairing all erasure coded data in
all of the participating data centers. In a multi- data center HyperStore service region, the erasure coded data
auto-repair queue is ordered in such a way that the target nodes alternate among the data centers -- for
example after a repair completes on a target node in DC1, then the next target node will be from DC2, and then
after that completes the next target node will be from DC3, and then after that completes the next target node
will be from DC1 again, and so on.

Note The intervals for scheduled auto-repair are configurable as described in "Configuring Auto-
matic Data Repair" (page 152).

Note The system allows repair operations of different types -- such as an hsstool repair operation and
an hsstool repairec operation -- to run concurrently within the same service region.

4.9.1.4. Operator-Initiated Data Repair

In most circumstances HyperStore's automatic data repair mechanisms -- read-on-repair, proactive repair, and
scheduled auto-repair -- are sufficient to keep the data in your cluster complete and consistent. However, there
are occasions when you will need to manually trigger a repair operation:

l After removing a dead node from your cluster. See "Removing a Node" (page 443).

l When a node is brought back online after being unavailable for longer than the configurable maximum
time that proactive repair can handle. See "Restoring a Node That Has Been Offline" (page 453).

For repair command syntax see hsstool repair and hsstool repairec and hsstool repaircassandra.

4.9.2. Configuring Automatic Data Repair
By default, HyperStore’s automatic data repair functions are configured in a way that’s suitable for typical
HyperStore deployments. However, there are a few settings that you can modify if you wish.

The Scheduled Auto-Repair feature is configurable by these settings in the CMC’s Configuration Settings
page:

l Replicas Repair Interval (default = every 30 days)

l EC Repair Interval (default = every 29 days)

l Cassandra Full Repair Interval (default = every 7 days)

152

4.9. Automated Data Repair

See "Auto-Repair Schedule Settings" (page 350) for important details about how these interval set-
tings are applied.

Note If you wish, you can have some or all of the auto-repairs of replica data and erasure coded
data use the "computedigest" option to combat bit rot. This feature is controlled by the "auto_
repair_computedigest_run_number" (page 518) setting in common.csv. By default "com-
putedigest" is not used in auto-repair runs.

The Proactive Repair feature is configurable by these properties:

l In hyperstore-server.properties.erb the setting "hyperstore.proactiverepair.poll_time" (page 550)
controls how frequently each HyperStore node checks to see whether any proactive repair jobs are
queued for itself, and executes those jobs if there are any. HyperStore nodes automatically make this
check upon start-up, and then again at this configurable interval (default is 1 hour). This recurring check
is necessary because even if a node hasn’t been down, there may be need to execute proactive repair
— for example, if network issues had made the node temporarily unreachable as other nodes were pro-
cessing S3 write requests. In the case of a newly added node, this recurring check will also take care of
repairing any data that failed to be streamed into the node during the rebalance operation.

Note If for some reason you want to trigger proactive repair on a particular node immediately,
you can do so by running the hsstool proactiverepairq command with the "-start" option.

l In mts.properties.erb the setting "hyperstore.proactiverepair.queue.max.time" (page 579) sets the
maximum time for which proactive repair jobs can be queued for a node that is unavailable (default is 4
hours). This time limit prevents Cassandra from being over-loaded with metadata relating to proactive
repair, and ensures that proactive repair is used only for its designed purpose, which is to repair object
data from a relatively brief time period. If a node is down for longer than this, then when you bring the
node back online you will need to let proactive repair complete and then run a manual repair also. For
detail see "Restoring a Node That Has Been Offline" (page 453).

If you edit properties file settings, be sure to push your changes to your cluster and to restart the HyperStore
Service (for a hyperstore-properties.erb edit) and/or the S3 Service (for an mts.properties.erb edit). For instruc-
tions see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page 506).

4.9.3. Checking Data Repair Status
Cluster-wide summary information about current data repair activity is available in the CMC's Repair Status
page. This includes information about any in-progress proactive repair, scheduled auto-repair, or operator-ini-
tiated repair. This CMC page also indicates whether proactive repair is pending for a node.

Repairs that you have initiated via the CMC can also be tracked in the Operation Status page. If you initiate a
repair via the command line, you can track its progress by executing hsstool opstatus (either on the command
line or via the CMC's Node Advanced page).

To view the cluster-wide schedule for auto-repairs, execute the hsstool repairqueue command on any node
(either on the command line or via the CMC's Node Advanced page).

153

Chapter 4. Working with HyperStore Major Features

4.9.3.1. Repair Completion Alerts

Whenever a proactive repair, an auto-repair, or an operator-initiated repair finishes its run, HyperStore sends
an alert email to the system administrator(s). An alert also appears in the CMC, in both the Alerts page and the
Node Status page. The alert indicates the final status of the repair run: either COMPLETED, FAILED, or
TERMINATED (if interrupted by an operator).

You can customize these alerts — including an option for having SNMP traps sent — in the CMC's Alert Rules
page.

For detailed repair status information for a recently finished repair run — for example, to get more information
about a FAILED repair run that you’ve been alerted to — in the CMC go to the Node Advanced page and from
the "Info" command group execute the hsstool opstatus command for the node on which the repair ran.

4.9.4. Disabling or Stopping Data Repairs
Subjects covered in this section:

l Introduction (immediately below)

l "Temporarily Disabling Automatic Data Repairs" (page 154)

l "Stopping In-Progress Data Repairs" (page 156)

HyperStore allows you to temporarily disable its automatic data repair features, and also to stop data repairs
that are in progress.

IMPORTANT ! The scheduled auto-repair feature and the proactive repair feature are both important
for maintaining data integrity in your system. Do not permanently disable either of these features.

4.9.4.1. Temporarily Disabling Automatic Data Repairs

If you wish you can temporarily disable HyperStore's scheduled auto-repair feature and its proactive repair fea-
ture, if for some reason you do not want either type of repair to automatically start up for some period of time.

Note The system automatically disables the auto-repair and proactive repair features when you per-
form a HyperStore version upgrade and when you add nodes to your cluster; and the system auto-
matically re-enables the auto-repair and proactive repair features at the conclusion of those operations.
So the steps below are only needed if you want to temporarily disable these features in circumstances
other than system upgrade or system expansion.

To disable all automatic data repairs in a service region, go to the CMC's Node Advanced page and
execute the maintenance command autorepair with the Disable option. This will prevent any new schedule-
based auto-repairs or proactive repairs from launching. The target node can be any node in the service region;
automatic data repairs will be disabled throughout the service region regardless of which node receives the
command. Leave the "Type" option unselected.

154

4.9. Automated Data Repair

Note Disabling automatic data repairs prevents new scheduled auto-repairs and new proactive
repairs from launching, but it does not stop repairs that are currently in-progress. For information
about doing the latter see "Stopping In-Progress Data Repairs" (page 156).

After completing the system operation that you are undertaking, be sure to re-enable automatic data repairs.

4.9.4.1.1. Temporarily Disabling Just Certain Types of Automatic Data Repairs

If you wish you can disable just a certain type of automatic data repair, rather than disabling all automatic data
repairs.

To disable just scheduled auto-repair for replicated object data, or just scheduled auto-repair for erasure
coded object data, or just scheduled auto-repair for Cassandra metadata, go to the CMC's Node Advanced
page and execute the maintenance command autorepair with the Disable option and with a "Type" specified
(Replicas or EC or Cassandra).

155

Chapter 4. Working with HyperStore Major Features

To disable just proactive repair go to the CMC's Node Advanced page and execute the maintenance com-
mand proactiverepair with the Disable option.

Be sure later to re-enable whichever type of automatic data repair you disabled, by using the same inter-
face.

4.9.4.2. Stopping In-Progress Data Repairs

On rare occasions, you may want to stop a data repair that's in progress on a particular node.

l To stop an in-progress repair of replicated object data, use hsstool repair with the "-stop" option.

l To stop an in-progress repair of erasure coded object data, use hsstool repairec with the "-stop"
option.

l To stop an in-progress repair of Cassandra metadata, use hsstool repaircassandra with the "-stop"
option.

l To stop an in-progress proactive repair, use hsstool proactiverepairq with the "-stop" option.

It does not matter whether the repair in progress was initiated automatically by the system or initiated by an
operator -- in either case you can stop it with the "-stop" option.

Note A typical Cassandra metadata repair would take minutes, and a typical proactive repair would
take minutes or hours, but a replicated object data repair or erasure coded object data repair for a node
may take days (depending on the amount of data involved and on network bandwidth). If a replica
repair or EC data repair is in progress you can check either the CMC's Operation Status page or the
CMC's Repair Status page to see how far along the repair is and approximately how much longer it
will take, before deciding whether to stop it. The Repair Status page also has progress information for
proactive repairs.

156

4.10. Automated Disk Management

4.10. Automated Disk Management

4.10.1. Automated DiskManagement Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Automatic Correction of Substantial Disk Usage Imbalance" (page 157)

l "Automatic Stop of Writes to a Disk at 90% Usage" (page 157)

l "Automatic Stop of Writes to a Node at 90% Usage" (page 158)

l "Dynamic Object Routing" (page 160)

l "Automatic Disk Failure Handling" (page 160)

HyperStore has mechanisms for automatically correcting imbalances of data disk utilization on each node, and
automatically discontinuing new writes to disks or nodes that are near capacity.

4.10.1.1. Automatic Correction of Substantial Disk Usage Imbalance

HyperStore is implemented in such a way that among multiple data storage disks on the same host the disk
usage will typically be well balanced. However, the system also supports an automated mechanism for detect-
ing and rectifying disk usage imbalance if it does occur. On a configurable interval (by default 72 hours) the sys-
tem checks for a configurable degree of disk usage imbalance on each node (by default a 10% delta between
a given disk's utilization and the average disk utilization on the node). If imbalance is detected whereby a par-
ticular disk's usage exceeds the node's average disk utilization by more than the configured delta, the system
migrates one or more storage tokens from the over-used disk to less-used disks on the same node. From that
point forward the less-used disks will store an increased share of newly uploaded object data while the over-
used disk stores a reduced share of newly uploaded object data. Note that this mechanism does not move
existing data from one disk to another; rather, it impacts the share of new data load allocated to each disk
going forward.

The same imbalance-correcting logic applies if the system detects that a particular disk's usage is lower than
the node's average disk utilization by more than the configured delta. The system automatically migrates one
or more storage tokens from the node's more heavily utilized disks to the under-utilized disk.

You do not need to run a repair operation in connection with this disk usage balancing feature. The disk usage
rebalancing mechanism is not intended to move existing data between disks. It is designed to impact only
objects uploaded after the time that the automated token migration was executed. If you were to perform a
repair, existing objects on the over-used disk will not follow a migrated token to the token’s new home on a
less-used disk. For more about how the token migration works see "Dynamic Object Routing" (page 160).

Note that the disk usage balancing feature applies only to HyperStore data disks (where S3 object data is
stored). It does not apply to disks that store only Cassandra, Redis, or the OS.

4.10.1.2. Automatic Stop of Writes to a Disk at 90% Usage

Every 30 minutes the capacity usage level of each HyperStore data disk in the system is checked. If 90% or
more of a disk’s capacity has been filled the system automatically moves all of the disk's tokens to other disks
that are at less than 90% usage, on the same node. The system moves a 90% full disk's tokens in a manner

157

Chapter 4. Working with HyperStore Major Features

that takes into account the current usage levels among the remaining disks on the node: the lower a disk's cur-
rent usage level, the more likely it is to receive some of the transferred tokens.

The object data on the 90% full disk remains readable and the disk will still support S3 get requests and delete
requests, but any S3 writes associated with the token ranges that used to be on the disk are now directed to the
new locations of those token ranges, on other disks on the same node. This disk-level "stop-write" condition
triggers a warning message in the HyperStore application log, which in turn results in an alert being generated
in the CMC's Alerts page.

For a disk that reaches stop-write condition, if its capacity usage level later falls back below 90% it becomes eli-
gible to receive tokens from any other disks on the node that subsequently reach 90% utilization and go into a
stop-write condition. Recall though that when the system moves tokens away from a 90% full disk it prioritizes
allotting tokens to disks that have relatively low usage. So a disk that is only a little below 90% usage is less
likely to receive tokens during this process than disks that are at lower usage levels on the node.

Note When a disk at 90% usage level enters stop-write condition it stops receiving new S3 writes, but
object data writes associated with hsstool repair, hsstool repairec, hsstool rebalance, and hsstool
decommission operations continue to be supported until the disk reaches 95% usage. If the disk
reaches 95% usage, then subsequent writes that hsstool operations target to that disk will fail (and in
the operation's status metrics these failures will increment the "Failed count").

Note If you want to customize the disk usage check interval (default 30 minutes) or the "stop-write"
threshold (default 90%) or the hssstool operation write threshold (default 95%) or the "start-write"
threshold (default 85%), consult with Cloudian Support.

4.10.1.3. Automatic Stop of Writes to a Node at 90% Usage

If all of a node's data disks have reached a stop-write condition -- because each disk has hit 90% disk usage --
then the whole node goes into a "stop-write" condition. When a node is in "stop-write" condition:

l The S3 Service is not able to write object data to the token ranges assigned to that node. This may
result in the failure of some S3 PUT requests from client applications. Whether failures occur or not
depends on the consistency requirements that you have configured for your storage policies, and on
the availability of the other nodes in your system. For example if you are using 3X replication with a
write consistency level of ALL, then an S3 PUT of an object will fail if one of the three endpoint token
ranges for the object (as determined automatically by a hash of the bucket name and object name) is a
token range on the node that's in stop-write condition. With 3X replication and a write consistency level
of QUORUM, then an S3 PUT of an object will fail if one of the object's three endpoint token ranges is
on the stop-write node and either of the nodes hosting the object's other two endpoint token ranges is
also unavailable (such as if one of those other nodes is down, or is in stop-write condition). Note that
HyperStore does not reallocate tokens from a node that's in stop-write condition to other nodes in the
system. Dynamic token reallocation is supported only between the disks on a node -- not between
nodes.

Note After detecting that a node is in stop-write condition, the S3 Service will mark that node as
unavailable for object data writes and will stop sending object data write requests to that node
(rather than continuing to send object data write requests to that node and having all those
requests fail).

158

4.10. Automated Disk Management

l The S3 Service is still able -- while implementing requests from S3 client applications -- to read object
data from that node and to delete object data from that node.

l Object metadata can still be written to the Cassandra database on that node, since this is on the OS
and metadata disk(s) not the data disks. The stop-write feature applies only to the data disks.

l The hsstool repair, hsstool repairec, and hsstool decommission operations cannot write to a node
that's in stop-write condition. If a node is in stop-write condition, then writes that hsstool operations dir-
ect to that node will fail (and in the operation's status metrics these failures will increment the "Failed
count").

l When a node goes into stop-write condition a critical message appears in the CMC's Dashboard; an
alert is generated in the Alerts page; and the node is marked by a red disk-stack icon in the Data
Centers page.

IMPORTANT ! To avoid having disks and nodes go into a stop-write condition, closely monitor your
system's current and projected disk space usage and expand your cluster well in advance of disks
and nodes becoming nearly full. See "Capacity Monitoring and Expansion" (page 71).

4.10.1.3.1. Getting a Node Out of Stop-Write Condition

A node will exit the "stop-write" condition -- and the S3 layer will resume sending object data write requests to
the node -- if enough data is deleted from the node's data disks to reduce the node's average disk utilization
to 85% usage or lower. At this point all of the node's tokens -- and consequently all of the S3 object data writes
on the node -- will be allocated to the data disks that are currently at 85% usage or lower. Disks that are still
above 85% utilization will not be assigned any tokens and will not support writes.

When you have a node in stop-write condition there are two ways in which disk space utilization on the node
can be reduced such that the node starts accepting writes again:

l You can delete objects from your HyperStore system. In HyperStore each object's replicas or eras-
ure coded fragments are stored on multiple nodes and there is not a way to target only the replicas and
fragments on a specific node for deletion. Rather, you can delete objects from the system as a whole so
that the overall disk space utilization in the system is reduced. This will have the effect of also reducing
disk space utilization on the node that's in stop-write condition. You can delete objects either through
the S3 interface or through the special Admin API call that lets you efficiently delete all the objects in a
specified bucket (see "bucketops" (page 762)). You can use the CMC's Node Status page to peri-
odically check the node's disk space usage.

NoteWhen you delete objects using the S3 interface or Admin API, the objects are immediately
flagged for deletion but the data is not actually removed from disk until the running of the hourly
batch delete cron job.

l You can add nodes to your cluster, and execute the associated rebalancing and cleanup operations
(for instructions see "Adding Nodes" (page 420)). This will have the effect of reducing data utilization
on your existing nodes, including the node that's in the stop-write condition. Note that rebalance and
cleanup are long-running operations and so this approach to getting a node out of stop-write condition
may take several days or more depending on how much data is in your system.

159

Chapter 4. Working with HyperStore Major Features

4.10.1.4. Dynamic Object Routing

In implementing its disk usage balancing and disk stop-write features the system uses a dynamic token-to-disk
mapping scheme that allows tokens to be migrated from one disk to another disk on the same host without
existing data following the migrated tokens. With Dynamic Object Routing, an object replica (or EC fragment)
associated with a given token range stays with the disk where that token range was located when the
object was originally uploaded. The system keeps track of the location of each token -- the host and mount-
point to which each token is assigned -- across time. Then, based on an object's creation timestamp, the sys-
tem can tell where the object's replicas (or EC fragments) are located based on where the relevant token
ranges were located at the time that the object was first uploaded. In this way object data can be kept in place -
- and read or updated at its original location -- even if tokens are moved.

Dynamic Object Routing allows for low-impact automated token migrations in circumstances such as disk
usage imbalance remediation, disk stop-write implementation, and automated disk failure handling.

Note This automated token migration occurs only between disks on a node -- not between nodes.

4.10.1.5. Automatic Disk Failure Handling

In the event of failure of a HyperStore data disk — a disk where S3 object data is stored — the HyperStore sys-
tem by default automatically detects the failure and takes the disk offline. To detect disk failures, for each node
the HyperStore system does the following:

l Continuously monitors the HyperStore Service application log for error messages indicating a failure to
read from or write to a disk (messages containing the string "HSDISKERROR").

l At a configurable interval (default is once each hour), tries to write one byte of data to each HyperStore
data disk. If any of these writes fail, /var/log/messages is scanned for messages indicating that the file
system associated with the disk drive in question is in a read-only condition (message containing the
string "Remounting filesystem read-only"). This recurring audit of disk drive health is designed to pro-
actively detect disk problems even during periods when there is no HyperStore Service read/write activ-
ity on a disk.

If HyperStore Service application errors regarding a drive occur in excess of a configurable error rate
threshold, or if the proactive audit detects that a drive is in read-only condition, then HyperStore by default auto-
matically disables the drive.

When a drive is automatically disabled, the system will no longer direct writes or reads to that drive. The stor-
age tokens from the disabled disk are automatically moved to the other disks on the host, so that new writes
associated with those token ranges can be directed to the other disks. The disabled disk's data is not recreated
on the other disks, and so that data is unreadable on the host. For more detail on the configuration options and
the disk disabling behaviors see "HyperStore Disk Failure Action" (page 342).

Note You can tell that a disk is disabled by viewing its status in the "Disk Detail Info" section of the
CMC's Node Status page.

Note As part of the Smart Support feature, if a data disk on one of your HyperStore nodes fails
(becomes disabled), information about the failed disk is automatically sent to Cloudian Support within

160

4.10. Automated Disk Management

minutes. This triggers the automatic opening of a Support case for the failed disk. For HyperStore Appli-
ances, automatic case creation is also performed for failed OS disks.

4.10.1.5.1. Limitations on Automatic Disk Failure Handling

The automatic disk disabling feature works only if you have multiple HyperStore data disks on the host. If there
is only one HyperStore data disk on the host, the system will not automatically disable the disk even if errors
are detected.

Also, the automatic disk disabling feature works only if you are using ext4 file systems mounted on raw disks
(which is the only officially supported configuration). If you've installed HyperStore on nodes with unsupported
technologies such as Logical Volume Manager (LVM) or XFS file systems, the automatic disk disabling feature
will be deactivated by default and the HyperStore system will not take any automatic action in regard to disk
failure. Also, the automatic disk disabling feature does not work in Xen or Amazon EC2 environments. Contact
Cloudian Support if you are using any of these technologies.

4.10.2. Configuring Disk Usage Balancing
With the HyperStore data disk usage balancing feature there are the questions of how often to check the disk
usage balance on each host and what degree of imbalance should trigger a token migration. Both of these
factors are configurable.

By default, each node is checked for disk imbalance every 72 hours, and token migration is triggered if a disk’s
utilization percentage differs from the average disk utilization percentage on the node by more than 10%. For
example, if the average disk space utilization on a node is 35%, and the disk space utilization for Disk4 is 55%,
then one or more tokens will be migrated away from Disk4 to other disks on the node (since the actual delta of
20% exceeds the maximum allowed delta of 10%). For another example, if the average disk utilization on a
node is 40%, and the disk utilization for Disk7 is 25%, then one or more tokens will be migrated to Disk7 from
the other disks on the node.

The settings for adjusting the frequency of the disk balance check or the delta that triggers disk migration are:

l "hyperstore_disk_check_interval" (page 523) in common.csv (default = 72 hours)

l "disk.balance.delta" (page 552) in hyperstore-server.properties.erb (default = 10 percent)

After editing either of these settings, be sure to push your changes to the cluster and restart the HyperStore Ser-
vice. For instructions see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page
506).

Note In connection with the HyperStore "stop-write" feature, if you want to customize the disk usage
check interval (default 30 minutes) or the "stop-write" threshold (default 90%) or the "start-write"
threshold (default 85%), consult with Cloudian Support. These settings are not in HyperStore con-
figuration files by default.

161

Chapter 4. Working with HyperStore Major Features

4.10.3. Triggering a Disk Usage Balance Check
If you don’t want to wait until the next automatic check of disk usage balance (which by default occurs every 72
hours for each node), you have the option of using a JMX command to immediately trigger a disk balance
check on a specific node.

To trigger an immediate disk usage balance check:

1. Use JConsole to access the HyperStore Service’s JMX port (19082 by default) on the host for which
you want the balance check to be performed.

2. Access the com.gemini.cloudian.hybrid.server.disk → VirtualNodePartitioner MBean, and under "Oper-
ations" execute the "shuffletoken" operation.

The operation will run in a background thread and may take some time to complete. If the space utilization for
any disk is found to differ from the node's average disk utilization by more than the configured maximum delta
(10% by default), then tokens will automatically be migrated between disks.

4.10.4. Configuring Disk Failure Handling

IMPORTANT ! The automatic disk failure handling feature does not work correctly in Xen, Logical
Volume Manager (LVM), or Amazon EC2 environments. Contact Cloudian Support if you are using any
of these technologies.

Several aspects of the HyperStore automated disk failure handling feature are configurable.

In the CMC's Configuration Settings page, in the "System Settings" section, you can configure a "HyperStore
Disk Failure Action" (page 342). This is the automated action for the system to take in the event of a detected
disk failure, and the options are "Disable Disk + Move Its Tokens" (the default) or "None". If you change this set-
ting in the Configuration Settings page, your change is dynamically applied to the cluster — no service restart
is necessary.

Additional settings are available in hyperstore-server.properties.erb on your Puppet master node. These
include settings for establishing an error rate threshold for disk-related errors in the HyperStore Service applic-
ation log (which if exceeded for a given disk will result in the automatic triggering of the Disk Failure Action):

l "disk.fail.error.count.threshold" (page 551)

l "disk.fail.error.time.threshold" (page 552)

By default the threshold is 10 errors in the space of 5 minutes, for a particular disk.

Also in hyperstore-server.properties.erb is this setting for the interval at which to conduct the proactive disk
drive audit:

l "disk.audit.interval" (page 552)

By default the proactive audit occurs hourly.

After editing any of these hyperstore-server.properties.erb settings, push the changes to the cluster and restart
the HyperStore Service. For instructions see "Pushing Configuration File Edits to the Cluster and Restarting
Services" (page 506).

162

4.10. Automated Disk Management

Note As part of the Smart Support feature, if a data disk on one of your HyperStore nodes fails
(becomes disabled), information about the failed disk is automatically sent to Cloudian Support within
minutes. This triggers the automatic opening of a Support case for the failed disk. For HyperStore Appli-
ances, automatic case creation is also performed for failed OS disks.

4.10.5. Checking Disk Usage and Health Status
You can use the CMC to check disk status for each disk on each node in your HyperStore system. Go to the
CMC's Node Status page, select a node, and then review the Disk Detail Info section of the page. Here you
will see

l The current space utilization information for each disk on the selected node.

l The current health status of each disk on the selected node. Each data disk’s status is communicated
by a color-coded icon, with the status being one of OK, Error, or Disabled.

4.10.6. Disk Error Alerts
HyperStore sends a "Disk Error" alert email to the system administrator(s) if a disk read/write error occurs in the
HyperStore Service application log. An alert also appears in the CMC, in both the Alerts page and the Node
Status page.

Note that such an alert does not necessarily indicate that the disk has been automatically disabled. This is
because the alert is triggered by the appearance of a single "HSDISKERROR" message in the HyperStore Ser-
vice application log, whereas the automatic disabling action is triggered only if such messages appear at a rate
exceeding the configurable threshold.

4.10.7. Responding to a Disabled Disk
If a disk has been automatically disabled by HyperStore in response to disk failure, you have two options for
restoring service on that drive:

l Re-enable the same disk. You might choose this option if, for example, you know that some cause
other than a faulty disk resulted in the drive errors and the automatic disabling of the disk.

HyperStore provides a highly automated method for bringing the same disk back online. For instructions
see "Enabling a HyperStore Data Disk" (page 480).

l Replace the disk. You would choose this option if you have reason to believe that the disk is bad.

HyperStore provides a highly automated method for replacing a disk and restoring data to the new disk.
For instructions see "Replacing a HyperStore Data Disk" (page 482).

With either of these methods, any tokens that were migrated away from the disabled disk will be auto-
matically migrated back to it (or its replacement). Object data that was written in association with the
affected tokens while the disk was disabled — while the tokens were temporarily re-assigned to other disks on
the host — will remain on those other disks and will be readable from those disks (utilizing HyperStore
"Dynamic Object Routing" (page 160)).

163

Chapter 4. Working with HyperStore Major Features

Note As part of the Smart Support feature, if a data disk on one of your HyperStore nodes fails
(becomes disabled), information about the failed disk is automatically sent to Cloudian Support within
minutes. This triggers the automatic opening of a Support case for the failed disk. For HyperStore Appli-
ances, automatic case creation is also performed for failed OS disks.

4.11. Object Metadata

4.11.1. Object Metadata Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "System-Defined Object Metadata" (page 164)

l "User-Defined Object Metadata Based on x-amz-meta-* headers" (page 165)

l "User-Defined Object Tagging" (page 165)

l "Object Metadata and Storage Policies" (page 165)

l "Object Metadata, Cross-Region Replication, and Auto-Tiering" (page 165)

Like Amazon S3, HyperStore allows for rich metadata to be associated with each stored object. There are three
categories of object metadata:

l The system itself assigns certain metadata items to objects, having to do with object attributes and
status

l Optionally, users can assign metadata to objects by using the S3 x-amz-meta-* request headers

l Optionally, users can assign key-value "tags" to objects by using the S3 API methods and headers that
implement object tagging

4.11.1.1. System-Defined Object Metadata

For each object, HyperStore maintains a variety of system-defined object metadata including (but not limited to)
the following:

l Creation time

l Last modified time

l Last accessed time

l Size

l ACL information

l Version, if applicable

l Public URL, if applicable

l Compression type, if applicable

l Encryption key, if applicable

l Auto-tiering state, if applicable

164

4.11. Object Metadata

4.11.1.2. User-Defined Object Metadata Based on x-amz-meta-* headers

S3 client applications can create user-defined object metadata by the use of x-amz-meta-* request headers
that accompany the upload of an object. The client application sets the specific header names and cor-
responding values (such as x-amz-meta-project: apollo or x-amz-meta-author: ozowa). This is a standard S3
API feature that is supported by HyperStore's S3 Service. For more information see "Creating Object
Metadata and Tags" (page 166).

By default the maximum size limit for x-amz-meta-* based metadata is 2KB per object. It is possible to increase
this size limit by using hidden configuration settings, but to do so could have significant implications for the stor-
age space requirements on the SSDs on which you store Cassandra data. If you are interested in increasing
the size limit for x-amz-meta-* based object metadata, consult with Cloudian Support.

4.11.1.3. User-Defined Object Tagging

S3 client applications can create user-defined object tags -- key-value pairs such as status=complete or con-
fidential=true -- either as they upload new objects or for objects that are already stored in the system. This is
implemented by the use of object tagging request headers (in the case of assigning tags to an object as it's
being uploaded) or object tagging API methods (in the case of assigning tags to an object that's already in stor-
age). This is a standard S3 API feature that is supported by HyperStore's S3 Service. For more information see
"Creating Object Metadata and Tags" (page 166).

Object tags share some common use cases with x-amz-meta-* based object metadata -- for example, you
could use either a x-amz-meta-* header or an object tag to identify an object as belonging to a particular pro-
ject. But object tags support a wider range of capabilities, including being able to assign tags to an object that's
already in storage, and being able to use object tags as criteria in access control policies. (A future release of
HyperStore will also support using object tags as criteria for bucket lifecycle policies for auto-tiering or auto-
expiration).

An object may have a maximum of 10 tags associated with it, and each tag must have a unique key (for
example you can't assign status:in-progress and status:complete to the same object). Each key can be a max-
imum of 128 unicode characters in length, and each value can be up to 256 unicode characters.

4.11.1.4. Object Metadata and Storage Policies

HyperStore object metadata -- including object tags -- is stored in Cassandra, and is protected by replication.
The degree of replication depends on the type of storage policy being used. For more information see "Object
Metadata Replication" (page 80).

4.11.1.5. Object Metadata, Cross-Region Replication, and Auto-Tiering

When the cross-region replication feature replicates objects from a bucket in one service region to a bucket in
a different service region in the same HyperStore system, user-defined metadata in the form of x-amz-meta-*
headers and object tags is replicated along with the object data.

When the auto-tiering feature transitions objects from a HyperStore bucket to an external destination system,
user-defined metadata in the form of x-amz-meta-* headers and object tags is sent along with the object data if
the tiering destination is an S3-compliant system such as Amazon Web Services or Google Cloud Storage.
Also, the user-defined object metadata is retained in the local HyperStore system as well.

165

Chapter 4. Working with HyperStore Major Features

If the tiering destination is not S3-compliant, such as Microsoft Azure or Spectra Pearl Logic, then the user-
defined object metadata is not sent along with the object data. The user-defined object metadata will exist only
in the HyperStore system, even after the corresponding object data is transitioned to the destination system.

IMPORTANT ! Even if the destination system is S3-compliant, the auto-tiering feature does not send
certain types of object metadata such as ACL data (data regarding access permissions on objects).

4.11.2. Creating Object Metadata and Tags
S3 client applications can create user-defined object metadata -- x-amz-meta-* based object metadata and/or
object tags -- by using standard S3 API methods and headers that the HyperStore S3 Service supports.

Note In the current version of HyperStore, the CMC’s built-in S3 client does not support creating user-
defined object metadata. To create user-defined object metadata you will need to use an S3 client
application other than the CMC.

4.11.2.1. Creating x-amz-meta-* Based Object Metadata

When uploading a new object, S3 clients can create user-defined object metadata by including one or more x-
amz-meta-* request headers along with the PUT Object request. For example, x-amz-meta-topic: merger or x-
amz-meta-status: draft.For HyperStore support of the PUT Objectmethod, see PUT Object.

The S3 API method POST Object— for uploading objects via HTML forms — also allows for the specification of
user-defined metadata (through x-amz-meta-* form fields), and HyperStore supports this method as well. For
HyperStore support of the POST Objectmethod, see POST Object.

4.11.2.2. Creating Object Tags

When uploading a new object, S3 clients can create one or more user-defined object tags by including a single
x-amz-tagging request header along with the PUT Object request. For example, x-amz-tagging: team-
m=Marketing&project=SEO-2018&status=Needs-Review. For HyperStore support of the PUT Objectmethod,
see PUT Object.

S3 clients can also create object tags when calling the POST Objectmethod, by using the tagging form field.
For HyperStore support of the POST Objectmethod, see POST Object.

The PUT Object - Copy method supports copying or replacing an object's tags as it is copied, by making use of
the x-amz-tagging-directive and x-amz-tagging request headers. For HyperStore support of the PUT Object --
Copy method, see PUT Object - copy.

S3 clients can also create object tags for an object that is already stored in the HyperStore system, by using the
S3 API method PUT Object tagging. For HyperStore support of this API method, see PUT Object tagging.

For a high-level view of object tagging usage and methods, in the Amazon S3 online documentation see
Object Tagging.

166

http://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html

4.11. Object Metadata

4.11.3. Retrieving Object Metadata and Tags
S3 client applications can retrieve user-defined object metadata -- x-amz-meta-* based object metadata and/or
object tags -- by using standard S3 API methods and headers that the HyperStore S3 Service supports.

Note In the current version of HyperStore, the CMC’s built-in S3 client does not support retrieving user-
defined object metadata. To retrieve user-defined object metadata you will need to use an S3 client
application other than the CMC.

4.11.3.1. Retrieving x-amz-meta-* Based Object Metadata

S3 client applications can retrieve user-defined x-amz-meta-* based object metadata -- as well as system-
defined object metadata -- by using either of two standard S3 API methods, both of which the HyperStore sys-
tem supports:

l GET Object returns this type of object metadata as response headers, as well as returning the object
itself. For HyperStore support of this API method see GET Object.

l HEAD Object returns this type of object metadata as response headers, without returning the object
itself. For HyperStore support of this API method see HEAD Object.

4.11.3.2. Retrieving Object Tags

The S3 methods GET Object and Head Object will not return object tags. They will however return a count of
the object tags associated with the object (if any), in an x-amz-tagging-count response header. For HyperStore
support of these API methods see GET Object and HEAD Object.

To retrieve the object tags associated with an object, use the S3 API method GET Object tagging. For Hyper-
Store support of this API method see GET Object tagging.

For a high-level view of object tagging usage and methods, in the Amazon S3 online documentation see
Object Tagging.

4.11.4. Object Metadata Structure in Cassandra
Subjects covered in this section:

l Introduction (immediately below)

l "Partitioning of a Bucket's Object Metadata Into Multiple Records" (page 168)

l "How a Bucket's Data Organization Impacts the Bucket's Metadata Partitioning" (page 169)

o "Avoid: Having No Folder Name Variety Within the First Three Levels of Folder Depth "
(page 169)

o "Avoid: Having A Very Large Number of Folders with Very Few Objects in Each Folder"
(page 170)

Metadata for a given object is stored in two different types of record in Cassandra:

l A record exclusively for that object (called "skinny row" object metadata because along with the key the
row has just one column, for that one object)

167

http://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html

Chapter 4. Working with HyperStore Major Features

l A bucket-level record that includes metadata for that object as well as for other objects in the bucket
(called "wide row" object metadata because along with the key the row has potentially very many
columns, with one column per object)

These two different types of object metadata records -- object-level records and bucket-level records -- are
used for different purposes within HyperStore. For example, while processing an S3 GET Object request the
system will retrieve the object-level record. While processing a GET Bucket (List Objects) request the system
will retrieve bucket-level records. Bucket-level records are also used during batch delete operations and dur-
ing some hsstool operations.

While the structure of object-level records is simple, the structure of bucket-level records is somewhat more
complex and will be impacted by how your users and applications organize data within buckets. Since in some
circumstances this can have system performance implications, it's useful to understand how bucket-level object
metadata structure is impacted by the organization of data within buckets.

4.11.4.1. Partitioning of a Bucket's Object Metadata Into Multiple Records

In older versions of HyperStore, all object metadata for a given bucket was stored in a single record (one
record -- also known as a row -- per bucket). While having the appeal of simplicity, this design had certain lim-
itations:

l Imposed a hard limit of two billion objects per bucket (since each object's metadata constitutes a
column in the metadata row and a Cassandra row can have a maximum of two billion columns)

l Made for possible performance hot spots on drives that happened to store metadata records for buckets
that contained a huge number of objects

l Made for possible problems with excess Cassandra "tombstones", when mass deletes were performed
on buckets that contained a huge number of objects

Consequently, for buckets created in HyperStore 7.1 and newer the object metadata for each bucket is par-
titioned into multiple rows in Cassandra. For each bucket, the bucket's object metadata partitioning follows two
rules:

l For objects in the root level of the bucket, with no folder structure, object metadata partitioning for the
bucket is based on the first character of the object name, with case-sensitivity. Examples:

o Metadata for each of these objects will be stored in a different row:

ant.txt
beaver.txt
cat.txt
Caribou.txt
314_animals.xls

o Metadata for these objects will be stored in the same row:

dog.txt
deer.txt
dolphin.txt

l For objects in folders, metadata partitioning gives each unique folder path its own row, down to three
levels of folder depth. Examples:

o Metadata for each of these objects will be stored in a different row:

images/logo.png
images/screenshots/dashboard.png

168

4.11. Object Metadata

2020/06/09/report.xls
2020/06/08/report.xls
2020/06/07/report.xls

o Metadata for these objects will be stored in the same row:

2020/06/09/report.xls
2020/06/09/objectives.docx
2020/06/09/images/venue.jpg
2020/06/09/images/parts/backplane.png
2020/06/09/images/tradeshow/guestspeakers/duranian.png

Each of the object metadata rows for a given bucket has a unique row key that is derived from the bucket name
and the partitioning criterion (such as a specific folder path). For each bucket, a special metadata record iden-
tifies all the partitioned object metadata rows for that bucket, so that the system can aggregate the metadata
when executing operations such as an S3 GET Bucket (List Objects) call.

4.11.4.2. How a Bucket's Data Organization Impacts the Bucket's Metadata Par-
titioning

In the great majority of use cases HyperStore's bucket-level object metadata partitioning scheme works well to
serve the goal of optimizing system performance. There are however two atypical ways of organizing bucket
data that can result in sub-optimal performance if the number of objects in the bucket is very large.

4.11.4.2.1. Avoid: Having No Folder Name Variety Within the First Three Levels of
Folder Depth

HyperStore's object metadata partitioning for a bucket creates a different row for each folder in the bucket,
down to three levels of folder depth. This results in partitioning of the bucket's object metadata only if you have
at least some variety within the first three levels of folder depth in the bucket. If you put all of your objects dir-
ectly under a single one-segment or two-segment folder, or if you put all your objects under a single three-seg-
ment folder and its sub-folders, then only one object metadata row will be created for that bucket. To illustrate,
all of these examples would result in the creation of just one metadata row for the bucket:

l All objects in the bucket are directly under the same one-segment folder:

/images/ant.png
/images/bat.png
/images/caterpillar.jpg
/images/...

l All objects in the bucket are directly under the same two-segment folder:

/accounting/documents/report1.docx
/accounting/documents/demo1.pptx
/accounting/documents/spreadsheet1.xlsx
/accounting/documents/...

l All objects in the bucket are under the same three-segment folder and its sub-folders:

/backup/cloudian-S3/datacenter1/hostlist.txt
/backup/cloudian-S3/datacenter1/host1/2020-06-11.tar.gz
/backup/cloudian-S3/datacenter1/host2/2020-06-11.tar.gz
/backup/cloudian-S3/datacenter1/host3/2020-06-11.tar.gz
/backup/cloudian-S3/datacenter1/host4/2020-06-11.tar.gz
/backup/cloudian-S3/datacenter1/host5/2020-06-11.tar.gz

169

Chapter 4. Working with HyperStore Major Features

/backup/cloudian-S3/datacenter1/...

Note Variety in the fourth folder level or deeper does not result in metadata partitioning for the
bucket.

If just one metadata row is created for the bucket, and if the number of objects in the bucket is very large, then
there are increased risks of Cassandra tombstone issues or performance hotspots, and there is also the hard
limit of two billion objects in the bucket.

Consequently, in a bucket in which there is expected to be a very large number of objects, it's best to have
some folder name variety within the first three levels of folder paths so that object metadata for the bucket
is partitioned.

4.11.4.2.2. Avoid: Having A Very Large Number of Folders with Very Few Objects in
Each Folder

At the opposite extreme of having a very large number of objects under a single folder path is having a very
large number of one-, two-, or three-segment folder paths -- such that each folder is given its own object
metadata row in Cassandra -- with only one or a few objects under each folder. This structure may encounter
sub-standard performance for GET Bucket (Object List) operations, since there would be an inefficiently high
ratio of metadata rows to number of objects (and processing a GET Bucket request entails retrieving all of the
bucket's metadata rows).

While it's best to avoid this way of organizing data within a bucket, if your use case requires that data be organ-
ized this way, you can reconfigure the system such that for a specified bucket or buckets, the system creates a
metadata row per folder only to one level of folder depth -- rather than the default behavior of creating a
metadata row per folder down to three levels of folder depth. So for example, by default each of these eight
folder paths in a bucket would have their own metadata row:

/cars/toyota/new/
/cars/toyota/used/
/cars/honda/new/
/cars/honda/used/
/trucks/ford/new/
/trucks/ford/used/
/trucks/chevy/new/
/trucks/chevy/used/

By contrast, with the bucket configured to create a metadata row per folder only to one level of folder depth, that
same set of folder paths would result in only two metadata rows (one for "/cars/" and all its sub-folders and one
for "/trucks/" and all its sub-folders).

If you want to configure certain buckets to use the single folder depth based approach for partitioning
metadata, note that:

l The configuration must be applied before you create the bucket(s). You cannot apply this configuration
to a bucket that already exists.

l Before making the configuration change please consult with Cloudian Support about your use case
and your intention to configure the bucket(s) this way.

To configure one or more buckets to use to use the single folder depth based approach for partitioning
metadata, do the following:

170

4.11. Object Metadata

1. On the Puppet master node, add the following properties to the configuration file mts.properties.erb
(these properties are not in the file by default):

cloudian.s3.buckets.folder.depth.one=bucket1,bucket2
cloudian.s3.folder.depth=1

where bucket1,bucket2 is a comma-separated list of buckets to which you want to apply this special con-
figuration (or it can be just a single bucket rather than a comma-separated list). These must be buckets
that do not yet exist but which you will create later in this procedure.

After adding these properties, save and close the file.

2. Still on the Puppet master node, use the installer to push your configuration change out to the cluster
and to restart the S3 Service. If you need instructions for this see "Pushing Configuration File Edits to
the Cluster and Restarting Services" (page 506).

3. Use the CMC or another S3 client application to create the buckets that you specified in Step 1 (bucket1
and bucket2 in the example).

For the life of these buckets, their object metadata partitioning will be based on first-level folders within
the bucket (for instance /cars/ versus /trucks/) and not on any deeper level folder organization.

4. After creating all buckets to which you want to apply this special configuration, return to the mts.-
properties.erb file and remove this line that you previously had added:

cloudian.s3.folder.depth=1

Note Do not remove the cloudian.s3.buckets.folder.depth.one=bucket1,bucket2 line.

5. Use the installer to push your configuration change out to the cluster and to restart the S3 Service.

4.11.5. Elasticsearch Integration for Object Metadata
Subjects covered in this section:

l "Overview of Elasticsearch Integration for Object Metadata" (page 171)

l "Enabling Elasticsearch Integration for Object Metadata" (page 173)

l "Using the elasticsearchSync Tool " (page 174)

l "Option to Send Metadata to an HTTP Server Rather than to Elasticsearch" (page 175)

4.11.5.1. Overview of Elasticsearch Integration for Object Metadata

HyperStore supports integrating with an Elasticsearch cluster, so that you can use the Elasticsearch cluster to
search through the object metadata associated with the objects stored in your HyperStore system. This could
be an Elasticsearch cluster that you already have running in your environment, or an Elasticsearch cluster that
you install specifically for the purpose of integrating with HyperStore.

Note To work with HyperStore your Elasticsearch version must be a 6.x version, 6.6 or newer. For
availability and performance Cloudian recommends that you have at least three nodes in your Elastic-
search cluster.

171

https://www.elastic.co/products/elasticsearch

Chapter 4. Working with HyperStore Major Features

When you configure the HyperStore system to integrate with an Elasticsearch cluster, you can then enable
object metadata search on a per storage policy basis (as described in "Elasticsearch Integration for Object
Metadata" (page 171)). For a storage policy on which you've enabled object metadata search, the following
will happen:

l For each object that subsequently gets uploaded into a HyperStore bucket that uses that storage policy,
HyperStore will retain the object metadata locally (as it always does) and also transmit a copy of the
object metadata into your Elasticsearch cluster (using HyperStore's built-in Elasticsearch REST client).

o This includes HyperStore system-defined object metadata and user-defined metadata (for more
information on these types of metadata see "Object Metadata Feature Overview" (page 164)).
It does not include object tags.

o HyperStore will create in your Elasticsearch cluster an index for each bucket that uses a
metadata search enabled storage policy. The indexes created in Elasticsearch are named as fol-
lows (using lower case only):

cloudian-<cloudianclustername>-<regionname>-<datacentername>-<bucketname>-<buck-
etcreationdatetime>

For example:

cloudian-cloudianregion1-region1-dc1-bucket2-2017-10-19t18:25:56.955z

Each index will be created in Elasticsearch with three shards and two replicas.

o For each object uploaded to HyperStore a "document" containing the object metadata will be cre-
ated in Elasticsearch. Each such document will have a name (ID) in this format:

<bucketname>/<objectname>

In the case of versioned objects there will be a separate Elasticsearch document for each object
version, named as:

<bucketname>/<objectname>\u0001u-<versionId>

The document names will be URL-encoded before transmission to the ES cluster and then URL-
decoded upon retrieval from the ES cluster.

Note Enabling object metadata search on a storage policy results in HyperStore copying into
Elasticsearch any object metadata associated with objects uploaded from that time forward. If
you also want to load into Elasticsearch the object metadata associated with objects that are
already in your HyperStore system, you can use the Elasticsearch synchronization tool that
comes with HyperStore -- as described in "Elasticsearch Integration for Object Metadata"
(page 171).

l When an object is updated (overwritten by a new S3 upload operation) in HyperStore, its metadata will
be updated in Elasticsearch; and when a object or object version is deleted in HyperStore (by an S3
delete operation or by execution of a bucket lifecycle policy), its metadata will be deleted in Elastic-
search.

l If objects that have metadata in Elasticsearch get auto-tiered to a remote destination, their metadata will
remain in Elasticsearch.

l If a bucket is deleted from HyperStore, its corresponding index will be deleted in Elasticsearch.

172

4.11. Object Metadata

l All insertions, updates, and deletes of HyperStore object metadata in your Elasticsearch cluster are
implemented by an hourly cron job in HyperStore. Note that this means that object metadata asso-
ciated with a new S3 upload will not immediately appear in Elasticsearch.

l If you enable metadata search for a storage policy, and then at a later time disable metadata search on
that storage policy, any object metadata that had been copied to Elasticsearch during the period when
metadata search was enabled will remain there (it will not be deleted by HyperStore).

Note that when you enable Elasticsearch integration, HyperStore only writes to your Elasticsearch cluster. It
does not read from the cluster, and you cannot use HyperStore to search through or retrieve object metadata in
Elasticsearch. For that you must use Elastic Stack applications, such as Kibana.

Note If you also want to use the Elastic Stack for HyperStore S3 request traffic analysis (as described
in "Setting Up Elastic Stack for S3 Request Traffic Analysis" (page 631)), contact Cloudian Sales
Engineering or Support to discuss using the same Elastic Stack cluster for both object metadata search
and S3 request log analysis.

4.11.5.2. Enabling Elasticsearch Integration for Object Metadata

To enable Elasticsearch integration in your HyperStore system:

1. On your Puppet master node, make these configuration file edits:

l In common.csv, edit the cloudian_elasticsearch_hosts setting to equal a comma-separated list
of the IP addresses of your Elasticsearch hosts. In a production environment Cloudian recom-
mends that you use at least three Elasticsearch hosts.

l In mts-ui.properties.erb, set the elasticsearch.enabled property to true. By default it is false.

l In mts.properties.erb:

o If your Elasticsearch cluster does not use the X-Pack extension, set cloud-
ian.elasticsearch.xpack.enabled to false. By default this is set to true.

o If your Elasticsearch cluster does use the X-Pack extension:

n Set cloudian.elasticsearch.xpack.username and cloud-
ian.elasticsearch.xpack.password to the user name and password that you have
already established in your Elasticsearch cluster set-up.

n Optionally, change the cloudian.elasticsearch.ssl.* settings to suit your envir-
onment.

SSL can be enabled only when Xpack is enabled. To use SSL, in your ESDB you
will first need to create a new keystore: ./keytool -import -alias elasticCA -file
/etc/elasticsearch/certs/client/client-ca.cer -keystore truststore.jks.

Then copy the truststore.jks file to each HyperStore node, in the directory path spe-
cified by mts.properties.erb: cloudian.elasticsearch.ssl.truststore.path (the default
setting for the path is /opt/cloudian/conf/certs/truststore.jks).

2. On the Puppet master node, use the installer to push your configuration changes out to the cluster,
restart the S3 Service, and restart the CMC. For more detail see "Pushing Configuration File Edits to
the Cluster and Restarting Services" (page 506).

3. Log into the CMC and go to the Storage Policies page. Now when you either create a new storage
policy or edit an existing storage policy, the interface will display an "Enable metadata search" option.
For each storage policy for which you select the "Enable metadata search" option (and Save your

173

Chapter 4. Working with HyperStore Major Features

change), object metadata from buckets that use that storage policy will be sent to the Elasticsearch
cluster.

Note Recall that when you enable Elasticsearch for a storage policy, that means that from that
time forward objects that get uploaded into buckets that use the storage policy will have copies
of their object metadata sent to Elasticsearch. Enabling this option does not copy into Elastic-
search metadata from objects that are already stored in buckets that use the storage policy.

4.11.5.3. Using the elasticsearchSync Tool

HyperStore includes a tool that you can use to synchronize object metadata in your Elasticsearch cluster to
object metadata currently in your HyperStore cluster. To use the tool you must first enable Elasticsearch integ-
ration for your HyperStore system and for one or more of your storage policies, as described in "Elasticsearch
Integration for Object Metadata" (page 171). Then, using different script options you can bring object
metadata in Elasticsearch up to date for any of the following:

l All buckets for which Elasticsearch integration is enabled (that is, all buckets that use Elasticsearch-
enabled storage policies).

l A single bucket for which Elasticsearch integration is enabled (a bucket that uses an Elasticsearch-
enabled storage policy).

l A single object in a bucket for which Elasticsearch integration is enabled.

The primary use case for the synchronization tool is to populate Elasticsearch with object metadata that was
already in your HyperStore system before you enabled Elasticsearch integration. For example, suppose you
enable Elasticsearch integration for one or more of your existing storage policies that are already being used
by existing buckets. HyperStore will automatically copy into Elasticsearch the metadata associated with objects
that get uploaded into those buckets from that point forward. But if you want to copy into Elasticsearch all the
metadata associated with objects that are currently in those buckets -- including objects that were already in
the buckets before Elasticsearch integration was enabled -- you need to use the sync tool.

Another use case for the sync tool is if your Elasticsearch cluster has been down or unreachable for more than
a few hours. HyperStore uses an hourly cron job to apply needed updates to object metadata in Elasticsearch.
Elasticsearch update requests that fail during one run of the cron job are retried during the next run of the cron
job. But if your Elasticsearch cluster is unreachable for more than a few hours, the Cassandra-based queue for
unprocessed Elasticsearch update requests can get filled up. Consequently if Elasticsearch has been unreach-
able for more than a few hours you should use the sync tool when Elasticsearch comes back online (for all
Elasticsearch-enabled buckets). This will bring Elasticsearch up to date with HyperStore object uploads and
deletions that occurred while Elasticsearch was unavailable.

The sync tool is located on each of your HyperStore nodes, under the /opt/cloudian/bin directory. Once you
change into that directory, the tool syntax is as follows:

Sync all Elasticsearch-enabled buckets:

./elasticsearchSync all

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH), you do not need to change into the /opt/cloudian/bin directory or
use the leading "./". Instead, from any directory just run the command as:

$ elasticsearchSync all

The same points apply to the other command options described below.

174

4.11. Object Metadata

Sync one Elasticsearch-enabled bucket:

./elasticsearchSync bucket <bucketname>

Sync one object in an Elasticsearch-enabled bucket:

./elasticsearchSync object <bucketname>/<objectname>

Sync one version of one object in an Elasticsearch-enabled bucket:

./elasticsearchSync object <bucketname>/<objectname> <versionid>

Note Along with performing your specified action, the running of the sync tool always triggers the pro-
cessing of any Elasticsearch update requests that are currently in the retry queue.

4.11.5.4. Option to Send Metadata to an HTTP Server Rather than to Elasticsearch

HyperStore supports an option to send object metadata copies to an HTTP server of your choosing. If you
enable this option, then HyperStore will send object metadata to your specified HTTP URI instead of sending it
to Elasticsearch. This works only for object metadata associated with objects that get uploaded after you
enable this feature. It does not work for metadata associated with any objects already in the system.

Note The elasticsearchSync tool -- for transmitting metadata associated with any objects already in
the system -- only works with Elasticsearch as the destination. It does not work with an HTTP Server as
the destination.

To configure HyperStore to send object metadata to your specified HTTP server:

1. On your Puppet master node, make these configuration file edits:

l In common.csv, set cloudian_elasticsearch_hosts to the IP address of the HTTP server. By
default this setting is empty.

l In mts-ui.properties.erb, set the elasticsearch.enabled property to true. By default it is false.

l In mts.properties.erb:

o Set cloudian.elasticsearch.process.type to http. By default this is set to elasticsearch.

o Set cloudian.elasticsearch.http.url to the HTTP URL that you want metadata to be sent to.
For example, http://<HTTP_server_IP_address>:<port #>. By default this setting is empty.

2. On the Puppet master node, use the installer to push your configuration changes out to the cluster,
restart the S3 Service, and restart the CMC. For more detail see "Pushing Configuration File Edits to
the Cluster and Restarting Services" (page 506).

3. Log into the CMC and go to the Storage Policies page. Now when you either create a new storage
policy or edit an existing storage policy, the interface will display an "Enable metadata search" option.
For each storage policy for which you select the "Enable metadata search" option (and Save your
change), object metadata from buckets that use that storage policy will be sent to the HTTP server.

Note Recall that when you enable metadata search for a storage policy, that means that from
that time forward objects that get uploaded into buckets that use the storage policy will have
copies of their object metadata sent to the HTTP server. Enabling this option does not copy to

175

Chapter 4. Working with HyperStore Major Features

the HTTP server metadata from objects that are already stored in buckets that use the storage
policy.

Here is an example of a POST request by which HyperStore submits object metadata to an HTTP server. In this
example the request body contains the metadata associated with an S3 PUT Object operation that was pro-
cessed in HyperStore.

POST / HTTP/1.1.

Content-type: application/json.

Content-Length: 209.

Host: 10.20.2.64:9000.

Connection: Keep-Alive.

User-Agent: Apache-HttpClient/4.5.2 (Java/1.8.0_172).

Accept-Encoding: gzip,deflate.

.

{"id":"buser1%2Fabc","bucketName":"buser1","objectName":"abc",

"lmt":"2019-06-26T08:23:16.224Z","objectSize":1,

"contentType":"application/octet-stream","esTime":"Wed Jun 26 16:23:16 CST 2019",

"userMetadata":{}}

4.12. Auto-Tiering

4.12.1. Auto-Tiering Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Tiering Destination Accounts, Credentials, and Buckets" (page 177)

l "Bridge Mode" (page 178)

l "Option to Retain a Local Copy" (page 178)

l "Auto-Tiering Logging" (page 178)

l "Auto-Tiering Licensing" (page 179)

l "Auto-Tiering of Encrypted Objects" (page 179)

l "Auto-Tiering and User-Defined Object Metadata" (page 179)

l "How Auto-Tiering Impacts Usage Tracking, QoS, and Billing" (page 179)

The HyperStore system supports an "auto-tiering" feature whereby objects can be automatically moved from
local HyperStore storage to a remote storage system on a defined schedule. HyperStore supports auto-tiering
from a local HyperStore bucket to any of several types of destinations systems:

l S3-compliant systems: Amazon S3, Amazon Glacier, Google Storage Cloud, a HyperStore region or
system, or a different S3-compliant system of your choosing

l Microsoft Azure

l Spectra Logic BlackPearl

Auto-tiering is configurable on a per-bucket basis. A bucket owner activating auto-tiering on a bucket can spe-
cify:

176

4.12. Auto-Tiering

l The auto-tiering destination system

l Whether auto-tiering applies to all objects in the bucket, or only to objects for which the full object name
starts with a particular prefix

l The tiering schedule, which can be implemented in any of these ways:

o Move objects X number of days after they’re created

o Move objects if they go X number of days without being accessed

o Move objects on a fixed date — such as December 31, 2018

o Move objects immediately after they're created ("Bridge Mode"). Note that with Bridge Mode, fil-
tering by prefix is not supported -- if Bridge Mode is used, this applies to all objects regardless of
prefix.

Although there can only be one auto-tiering destination for a given HyperStore bucket, bucket owners have the
option of configuring different auto-tiering schedules for different sets of objects within the bucket, based on the
object name prefix (unless Bridge Mode is being used, which does not support prefix filtering).

For more information about configuring auto-tiering in the system and on individual buckets, see "Setting Up
Auto-Tiering" (page 180).

Note Auto-tiering restrictions based on destination type:
* By default the largest object size that can be auto-tiered to Amazon, Google, or other S3-compliant
destinations is 100GB. If you want to tier objects larger than this, consult with Cloudian Support. This
100GB limit does not apply to tiering to Azure or Spectra BlackPearl.
* Tiering to Azure or Spectra BlackPearl is not supported for source buckets that have versioning
enabled or that have had versioning enabled in the past.
* When auto-tiering to Spectra BlackPearl is used for a bucket, objects in the bucket will not be auto-
tiered unless they are larger than 5MB. Objects 5MB or smaller will remain in HyperStore. To change
this limit, consult with Cloudian Support.

4.12.1.1. Tiering Destination Accounts, Credentials, and Buckets

Auto-tiering to Amazon or another destination system requires that there be an existing account that the Hyper-
Store system can access at the destination system. There are two options for account access:

l Bucket owners can supply their own destination account credentials, on a per-bucket basis. In this way
each bucket owner tiers to his or her own account at the destination system. This is the default method
for auto-tiering.

l You can supply system default tiering credentials. This is the appropriate approach if all users will be
tiering to the same account at the same tiering destination system. For more information see "Setting
Up Auto-Tiering" (page 180).

HyperStore encrypts supplied tiering account credentials and stores them in the Redis Credentials database,
where they can be accessed by the system in order to implement auto-tiering operations.

Auto-tiering moves objects from a local HyperStore source bucket into a tiering bucket at the destination sys-
tem. The source bucket owner when configuring auto-tiering can specify as the tiering bucket a bucket that
already exists in the destination system, or the source bucket owner can have HyperStore create a tiering
bucket in the destination system. If having HyperStore create a tiering bucket, the source bucket owner can
choose a tiering bucket name or have HyperStore automatically name the tiering bucket. When HyperStore
automatically names the tiering bucket it uses this format:

<origin-bucket-name-truncated-to-34-characters>-<random-string>

177

Chapter 4. Working with HyperStore Major Features

The HyperStore system appends a 28-character random string to the origin bucket name to ensure that the res-
ulting destination bucket name is unique within the destination system. If the origin bucket name exceeds 34
characters, in the destination bucket name the origin bucket name segment will be truncated to 34 characters.

After objects have been auto-tiered to the destination system they can be accessed directly through that sys-
tem's interfaces (such as the Amazon S3 Console), by persons having the applicable credentials. Auto-tiered
objects can also be accessed indirectly through the local HyperStore system interfaces. Tiered object access is
described in more detail in "Accessing Auto-Tiered Objects" (page 184).

Note In the case of auto-tiering to Amazon Glacier, the HyperStore system creates a bucket in Amazon
S3 and configures that remote bucket for immediate transitioning to Glacier. Objects are then auto-
tiered from HyperStore to Amazon S3, where they are immediately subject to Amazon’s automated
mechanism for transitioning objects to Glacier.

4.12.1.2. Bridge Mode

The HyperStore auto-tiering feature supports a "Bridge Mode" whereby objects can be transitioned to a des-
tination system immediately after they are uploaded to the HyperStore source bucket. As soon as such objects
are successfully transitioned to the destination system they are flagged for deletion from the local HyperStore
system (the actual deletion will be executed afterwards, by a cron job that runs hourly). After deletion of the
local copy of the objects, only object metadata remains (see "How Auto-Tiering Impacts Usage Tracking,
QoS, and Billing" (page 179) for detail).

If the initial attempt to move an object to the destination system fails with a temporary error, the system will retry
once every six hours until either the object is successfully moved or a permanent error is encountered (an
example permanent error would be if, outside of HyperStore, someone had deleted the tiering destination
bucket). The retries are triggered by a system cron job. These retries are executed by the cron job node (to
see which node this is in your cluster, in the CMC's Cluster Information page look to see the "System Mon-
itoring / Cronjob Primary Host"). The local copy of the object will not be deleted until the object is successfully
moved to the destination system, as indicated by the destination system returning a success status.

Users have the option of choosing Bridge Mode when they configure auto-tiering rules for a bucket.

Note Bridge mode is not supported for tiering to Amazon Glacier or Spectra BlackPearl.

4.12.1.3. Option to Retain a Local Copy

By default the system deletes the local copy of an object as soon as the object is successfully transitioned to
the tiering destination. However, HyperStore supports an option to retain a local copy of objects that have been
auto-tiered, for a specified period of time. Locally retained objects will continue to be protected by the storage
policy associated with the bucket in which the objects reside (whether replication or erasure coding). After the
specified retention period the system will automatically delete the local copy.

Users have the option of specifying a local retention period when they configure auto-tiering rules for a bucket.

4.12.1.4. Auto-Tiering Logging

As the HyperStore system auto-tiers objects from local storage to the tiering destination, it records information
about the tiering transactions (including source bucket name, object name, and destination bucket name) in

178

4.12. Auto-Tiering

the tiering request log cloudian-tiering-request-info.log. For regular auto-tiering that occurs on a defined
schedule this request logging occurs on all nodes in the region in which the cron job primary node is located
(since that daily cron job distributes the auto-tiering execution workload across all nodes in the region).

In the special case of "Bridge Mode" auto-tiering, whichever S3 node processes the upload of a given object
into the source bucket also initiates the immediate auto-tiering of the object to the destination system, and the
tiering request log entry for that is written locally on that node.

4.12.1.5. Auto-Tiering Licensing

Your HyperStore license may impose a limit on how much tiered data you can have stored in external systems
other than HyperStore. For details see "Licensed Maximum Tiered Storage Usage" (page 18).

4.12.1.6. Auto-Tiering of Encrypted Objects

For information about how auto-tiering works together with the server-side encryption feature, see "Encryption
and Auto-Tiering" (page 106). As detailed in that section, encrypted objects may or may not be eligible for
auto-tiering depending on the encryption method and the particular tiering destination.

4.12.1.7. Auto-Tiering and User-Defined Object Metadata

For information about how auto-tiering impacts user-defined object metadata, see "Object Metadata, Cross-
Region Replication, and Auto-Tiering" (page 165).

4.12.1.8. How Auto-Tiering Impacts Usage Tracking, QoS, and Billing

When an object is auto-tiered to a destination system and deleted from local storage the size of the tiered
object is subtracted from the bucket owner’s HyperStore usage count for Storage Bytes. At the same time, a ref-
erence to the auto-tiered object is created and the size of this reference — 8KB, regardless of the transitioned
object size — is added to the Storage Bytes count. Meanwhile, auto-tiering does not impact the Storage
Objects count. An object counts toward the number of Storage Objects regardless of whether or not it is auto-
tiered.

For example, if a 1MB object has been auto-tiered to Amazon then that object would count as:

l 8KB toward the bucket owner’s HyperStore count for Storage Bytes.

l 1 toward the bucket owner’s HyperStore count for Storage Objects.

If an auto-tiered object is temporarily restored to HyperStore storage, then while the object is restored the
object’s size is added back to the Storage Bytes count and the 8KB for the reference is subtracted from the
count. After the restore interval ends and the restored object instance is automatically deleted, the object size is
once again subtracted from Storage Bytes and the 8KB for the reference is added back. For more on temporary
restoration of tiered objects see "Accessing Auto-Tiered Objects" (page 184).

Auto-tiering does not impact HyperStore usage counts for Bytes-IN or Bytes-OUT.

Note If users select the Retain Local Copy option when configuring their buckets for auto-tiering,
objects that are temporarily retained in HyperStore after they've been auto-tiered will continue to count
toward the local Storage Bytes count until the local copy is deleted.

179

Chapter 4. Working with HyperStore Major Features

HyperStore's Quality of Service (QoS) and billing features make use of Storage Bytes and Storage Object
counts. So the impact of auto-tiering on QoS and billing is as described above. For example in the case of the
QoS restrictions applied to users, if a bucket owner's 1MB object has been auto-tiered to Amazon, then that
object counts as 8KB toward that user's QoS limit for Storage Bytes; and as 1 toward that user's QoS limit for
Storage Objects.

For more information on the QoS and billing features, see "Quality of Service (QoS) Feature Overview"
(page 135) and "Usage Reporting and Billing Feature Overview" (page 138).

4.12.2. Setting Up Auto-Tiering
Subjects covered in this section:

l Introduction (immediately below)

l "Enable and Configure the Auto-Tiering Feature in the CMC" (page 180)

l "Configure Tiering Destinations" (page 181)

l "Configure Auto-Tiering Rules for Individual Buckets (CMC)" (page 183)

l "Configure Auto-Tiering Rules for Individual Buckets (S3 API and Admin API)" (page 183)

l "Tiering Statistics for Spectra BlackPearl" (page 184)

To use the CMC to set up buckets for auto-tiering, follow the high-level instructions below. First you will enable
and configure the auto-tiering feature in the CMC, and then you or your users can use the CMC to configure
individual buckets for auto-tiering. (If you want to use an S3 client application other than the CMC, jump down
to "Configure Auto-Tiering Rules for Individual Buckets (S3 API and Admin API)" (page 183)).

4.12.2.1. Enable and Configure the Auto-Tiering Feature in the CMC

Note None of the settings described below is applicable to using a third party S3 client application to
invoke the HyperStore S3 Service's auto-tiering feature. These settings are applicable only to using the
auto-tiering feature through the CMC.

By default auto-tiering functionality is disabled in the CMC, such that CMC users when configuring bucket life-
cycle properties will not see an option for auto-tiering. Do the following to enable and configure the auto-tiering
feature so that CMC users can apply auto-tiering to their buckets:

1. In the CMC's Configuration Settings page, open the Auto-Tiering panel.

2. Set "Enable Auto-Tiering" to Enabled.

3. Configure how you want auto-tiering options to display to CMC users as they configure their buckets for
auto-tiering. The system supports three different approaches:

l If you want all CMC users to auto-tier to a single system-default tiering destination account for
which you are providing the account security credentials, set "Enable Per Bucket Cre-
dentials" to Disabled and then enter the "Default Tiering URL" and the account security cre-
dentials.

l If you want CMC users to be able to choose from a pre-configured list of tiering destinations
(AWS S3, AWS Glacier, Google, and Azure by default) and no other destinations, leave "Enable
Per Bucket Credentials" at Enabled (the default) and leave "Enable Custom Endpoint" at

180

4.12. Auto-Tiering

Disabled (the default). With this approach users provide their own account security credentials
for the tiering destination. You can edit the list of tiering destinations that will display for users,
and the endpoints for those destinations, as described in "Configure Tiering Destinations"
(page 181) below.

l If you want CMC users to be able to choose from a pre-configured list of tiering destinations
and also give users the option to specify a custom S3 tiering endpoint, leave "Enable Per
Bucket Credentials" at Enabled (the default) and set "Enable Custom Endpoint" to Enabled. With
this approach users provide their own account security credentials for the tiering destination. If
users specify a custom tiering endpoint, it must be an S3-compliant system and it cannot be a
Glacier, Azure, or Spectra BlackPearl endpoint.

4. After finishing your edits in the Configuration Settings page, click Save at the bottom of the page to
save your changes. These changes are applied dynamically and no service restart is required.

4.12.2.2. Configure Tiering Destinations

Unless you configure the system so that all users tier to the same one default tiering endpoint (as described
above in Step 3's first bullet point), users when they configure auto-tiering for their buckets in the CMC will be
able to choose from a list of several common tiering destinations. By default the destinations are AWS S3, AWS
Glacier, Google Cloud Storage, and Azure; and by default the endpoints for those destinations are as follows:

Destination Default Endpoint

AWS S3 https://s3.amazonaws.com

AWS Glacier https://s3.amazonaws.com

Google Cloud Storage https://storage.googleapis.com

Azure https://blob.core.windows.net

Note If your original HyperStore version was older than 7.1.4, then after upgrade to 7.1.4 or later the
default list of tiering destinations will also include Spectra BlackPearl with endpoint https://b-
plab.spectralogic.com.

If you want to change this list -- by changing the endpoint for any of the destinations above, or by adding or
removing destinations -- you can do so by editing the "cmc_bucket_tiering_default_destination_list" (page
541) setting in common.csv. The setting is formatted as a quote-enclosed list, with comma-separation
between destination attributes and vertical bar separation between destinations, like this:

"<name>,<endpoint>,<protocol>|<name>,<endpoint>,<protocol>|..."

This can be multiple destinations (as it is by default), or you can edit the setting to have just one destination in
the "list" if you want your users to only use that one destination.

The <name> will display in the CMC interface that bucket owners use to configure auto-tiering, as the auto-tier-
ing destination name. The <protocol> must be one of the following:

l s3

l glacier

l azure

l spectra

181

Chapter 4. Working with HyperStore Major Features

If you wish you can include multiple destinations of the same type, if those destinations have different end-
points. For example, "Spectra 1,<endpoint1>,spectra|Spectra 2,<endpoint2>,spectra". Each such destination
will then appear in the CMC interface for users configuring their buckets for auto-tiering.

If you make any changes to this setting, push your changes to the cluster and restart the CMC. For instructions
see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page 506).

Note About Tiering to a Different HyperStore Region or System

In the CMC configuration set-up described in "Enable and Configure the Auto-Tiering Feature in the CMC"
(page 180) (above), there are two ways in which your users can use a HyperStore service region as the tiering
destination:

l You configure the system so that all users tier to a system default tiering destination, and you define that
default tiering URL to be a HyperStore service region endpoint.

l You configure the system so that users can enter a user-defined endpoint, and then individual users
can specify a HyperStore service region as their user-defined tiering endpoint.

The HyperStore region that's being used as the tiering destination could be a different region in the same
HyperStore system (for example users are tiering from Region1 to Region2 within the same HyperStore sys-
tem); or it could be a service region within a different HyperStore system altogether (users are tiering from
HyperStore system A to a region in HyperStore system B). For background on the distinction between a Hyper-
Store region and a HyperStore system, see "System Levels" (page 30).

If your users will be tiering to a region in a different HyperStore system, then for tiering to that region to work
"out of the box" the endpoint for that region must be specified in this format:

s3-<region>.<domain>

For example:

s3-boston.company.com

where "boston" is the actual region name in the destination HyperStore system's own system con-
figuration.

If the endpoint for the external HyperStore system is in any format other than the above -- if, for example, the
endpoint is simply boston.company.com rather than s3-boston.company.com -- then for tiering to work you
must first make the following configuration change in your own HyperStore system (the source system from
which the tiering will originate):

1. On the Puppet Master node, open the following file in a text editor:

/etc/cloudian-<version>-puppet/modules/cloudians3/templates/

tiering-regions.xml.erb

2. Copy the sample "Region" block at the top of the tiering-regions.xml.erb file and paste it toward the end
of the file after the existing "Region" blocks (but before the closing "</XML>" tag that’s at the very end of
the file).

3. Edit the block as follows:

l Use the "Name" element to specify the region name of destination system region that you will tier
to. Enter the region name exactly as it is defined in the destination HyperStore system.

l Leave the "ServiceName", "Http", and "Https" elements at their default values.

l Use the "Hostname" element to specify the service endpoint that you will tier to.

182

4.12. Auto-Tiering

For example, if the region name is "boston" and the service endpoint is "boston.company.com", then
your edited Region block would look like this:

<Region>

<Name>boston</Name>

<Endpoint>

<ServiceName>s3</ServiceName>

<Http>true</Http>

<Https>true</Https>

<Hostname>boston.company.com</Hostname>

</Endpoint>

</Region>

Note Make sure that the service endpoint that you will tier to is resolvable in your DNS system.

Note Do not have two instances of "s3" in the endpoint, like s3-tokyo.s3.enterprise.com. This
may cause auto-tiering errors (and cross-region replication errors, if you use the cross-region
replication feature).

4. Save your change and close the tiering-regions.xml.erb file.

5. Push your changes to the cluster and restart the S3 Service. For instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

4.12.2.3. Configure Auto-Tiering Rules for Individual Buckets (CMC)

HyperStore service users can configure auto-tiering for their own buckets through the CMC’s Bucket Prop-
erties page. Here users can select the tiering destination (within the limits of the system configuration as
described in the preceding section), the tiering schedule (including, if desired, having different schedules for dif-
ferent sets of objects based on object name prefix), and whether or not to temporarily retain a local copy of
tiered objects.

Alternatively, as a system administrator you can set auto-tiering for a user’s bucket by retrieving the user in the
Manage Users page and then clicking "View User Data" to open a Bucket Properties page for that user’s
data.

With either approach, the bucket first must be created in the usual way, and then the bucket can be configured
for auto-tiering.

For details, see "Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration" (page 227)

Note Auto-tiering cannot be enabled for a bucket that has an underscore in its name. For this reason
it's best not to use underscores when naming buckets in HyperStore.

4.12.2.4. Configure Auto-Tiering Rules for Individual Buckets (S3 API and Admin
API)

To configure auto-tiering rules on a bucket by using the S3 API, your S3 client application will need to use
HyperStore extensions to the S3 API method PUT Bucket lifecycle. The extensions take the form of request
headers to specify the bucket's auto-tiering destination and mode (x-gmt-tieringinfo), whether to base auto-

183

Chapter 4. Working with HyperStore Major Features

tiering timing on object creation time or last access time (x-gmt-compare), and whether to retain a local copy of
the object after auto-tiering occurs (x-gmt-post-tier-copy). For details about these API extensions see PUT
Bucket lifecycle.

If you plan to configure auto-tiering on a bucket by calling the PUT Bucket lifecycleS3 API method, you will first
need to use the HyperStore Admin API to store into the system the tiering destination account security
credentials that HyperStore should use when auto-tiering objects from that bucket. For example, if you want to
use the S3 API method PUT Bucket lifecycle to configure HyperStore source bucket "my-bucket" to auto-tier to
AWS S3, you (or your application) must first use the HyperStore Admin API to post the security credentials that
HyperStore should use when accessing AWS S3 on behalf of source bucket "my-bucket". The same require-
ment applies to other destination types such as Spectra BlackPearl. For details about the relevant Admin API
methods, see "tiering" (page 861).

Also, if you want to support auto-tiering to an external HyperStore system -- not a different region within the
same HyperStore system but rather a different HyperStore system altogether -- see "Note About Tiering to a
Different HyperStore Region or System" (page 182), in regard to the format requirements for the tiering end-
point.

4.12.2.5. Tiering Statistics for Spectra BlackPearl

If your HyperStore system is using auto-tiering to Spectra BlackPearl, you can run the following command on
the HyperStore cron job master node to retrieve tiering statistics.

curl http://localhost:80/.system/stats/tiering/spectra

For example:

curl http://localhost:80/.system/stats/tiering/spectra
{"totalInQueue":0,"totalTiered":51,"tieringFail":0,"restored":1,"restoreFail":0,
"bytesTiered":629145600,"bytesRestored":1073741824}

The returned statistics are:

l Number of objects in queue waiting to be tiered to Spectra BlackPearl

l Number of objects tiered to Spectra BlackPearl

l Number of objects for which tiering to Spectra BlackPearl failed

l Number of tiered objects restored to HyperStore from Spectra BlackPearl

l Number of objects for which restoring to HyperStore from Spectra BlackPearl failed

l Total number of bytes tiered to Spectra BlackPearl

l Total number of bytes restored to HyperStore from Spectra BlackPearl

Note If you're not sure which node is your cron job node, you can check this in the CMC's Cluster
Information page.

4.12.3. Accessing Auto-TieredObjects
After objects have been auto-tiered to a destination system, there are two ways to access those objects:

l Indirect access through HyperStore

l Direct access through the destination system

184

4.12. Auto-Tiering

Indirect Access Through HyperStore
When you use the CMC’s Objects interface to view the contents list for a HyperStore storage bucket, objects
that have been auto-tiered appear in the list and are marked with a special icon. Your options for retrieving
such objects through the CMC depend on how auto-tiering was configured for the bucket.

First, for any auto-tiered object (regardless of bucket configuration or tiering destination), the object can be
retrieved by temporarily restoring a copy of the object into the local bucket. The CMC Buckets & Objects inter-
face supports temporarily restoring auto-tiered objects, for a length of time that you can specify.

Restoration of auto-tiered objects does not happen instantly. For example, for an object in Amazon S3, it can
take up to six hours before a copy of the object is restored to HyperStore storage. For an object in Glacier it can
be up nine hours, factoring in the time it takes for an object to be restored from Glacier to Amazon S3, before
being restored to HyperStore. In the interim, the object is marked with an icon that indicates that the object is in
the process of being restored. During this stage you cannot download the object.

After a copy of an object has been restored, the icon next to the object name changes again and you can then
download the object through the Buckets & Objects interface in the usual way.

As a second option for retrieving auto-tiered objects, some objects may be directly downloadable through the
Buckets & Objects interface without any need for first restoring the objects. This is supported only if both of the
following are true:

l The tiered objects are in Amazon S3, Google Storage Cloud, or Azure (not Glacier or Spectra Black-
Pearl)

l The bucket’s auto-tiering is configured to support Streaming of auto-tiered objects.

If you’re uncertain regarding whether an auto-tiered object meets these requirements, you can try directly down-
loading the auto-tiered object by clicking on its name. If direct download is not supported for the object, a
response message will indicate that you need to temporarily restore a local copy of the object rather than dir-
ectly downloading it.

If you want to delete an object that has been auto-tiered, you can do so by deleting the object through the
Buckets & Objects interface. You do not need to restore the object first. When the HyperStore system is delet-
ing an auto-tiered object, it first triggers the deletion of the object from the destination system, and then after
that succeeds it deletes the local reference to the object.

Note As an alternative to accessing auto-tiered objects through the CMC, you can use a third party S3
client application to submit POST Object restore requests (for any auto-tiered objects) or GET Object
requests (for auto-tiered objects that support streaming) to the HyperStore system’s S3 Service. You
can delete auto-tiered objects by submitting DELETE Object requests to the HyperStore system’s S3
Service.

Direct Access Through the Destination System
Objects auto-tiered to a destination system can be accessed directly through the destination system's standard
interfaces, such as the AWS Management Console for objects that have been tiered to AWS S3.

For example, if a bucket owner supplied her own AWS credentials when configuring her HyperStore bucket for
auto-tiering to AWS S3, she can log into her AWS account and see the HyperStore auto-tiering destination
bucket (either named as she had specified or automatically named by HyperStore -- see "Tiering Destination
Accounts, Credentials, and Buckets" (page 177) for detail). After objects have been auto-tiered from Hyper-

185

Chapter 4. Working with HyperStore Major Features

Store to her AWS destination bucket, she can view the bucket content list and retrieve individual tiered objects
directly through AWS.

In the case of auto-tiering from one HyperStore region to another region in the same HyperStore system, the
tiered objects are accessible through the CMC’s Buckets & Objects interface, by selecting the destination
region.

IMPORTANT ! Users should not overwrite or delete tiered objects directly through the destination
system's interfaces. Doing so will cause a discrepancy between the local metadata in HyperStore
and the actual data in the destination bucket. If users want to overwrite or delete tiered objects they
should do so through HyperStore interfaces (such as the CMC or an S3 application accessing the
HyperStore S3 Service). In the case of auto-tiering from one HyperStore region to another HyperStore
region, any overwriting or deleting of objects should be done through the source bucket not the des-
tination bucket.

4.13. Cross-Region Replication

4.13.1. Cross-Region Replication Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Bi-Directional Replication" (page 187)

l "Replication Timing and Error Handling" (page 187)

l "Cross-Region Replication Versus Auto-Tiering" (page 188)

l "Cross-Region Replication Impact on Usage Tracking" (page 188)

l "Cross-Region Replication of Encrypted Objects" (page 189)

l "Cross-Region Replication andWORM" (page 189)

Like Amazon S3, HyperStore supports cross-region replication (CRR). This feature may be valuable if your
HyperStore system consists of multiple service regions. With cross-region replication, a bucket in one service
region can be configured so that all objects uploaded into the bucket are replicated to a chosen destination
bucket in a different service region within the same HyperStore system. This feature enables a bucket owner to
enhance the protection of data by having it stored in two geographically dispersed service regions. The feature
is also useful in cases where a bucket owner wants to have the same set of data stored in two different regions
in order to minimize read latency for users in those regions.

If you wish, you can also use the CRR feature within a single HyperStore service region, so that objects
uploaded into one bucket are replicated to a different bucket in the same service region.

As is the case with Amazon S3's implementation of this feature, with HyperStore both the source bucket and
the destination bucket must have "versioning" enabled in order to activate cross-region replication.

Object metadata — including any access permissions assigned to an object, and any user-defined object
metadata or object tags— is replicated to the destination bucket as well as the object data itself.

As with Amazon S3, HyperStore’s implementation of the cross-region replication feature does not replicate:

186

4.13. Cross-Region Replication

l Objects that were already in the source bucket before the bucket was configured for cross-region rep-
lication.

l Objects that are encrypted with user-managed encryption keys (SSE-C) or AWS KMS managed encryp-
tion keys

l Objects that are themselves replicas from other source buckets. If you configure "bucket1" to replicate to
"bucket2", and you also configure "bucket2" to replicate to "bucket3", then an object that you upload to
"bucket1" will get replicated to "bucket2" but will not get replicated from there on to "bucket3". Only
objects that you directly upload into "bucket2" will get replicated to "bucket3".

l Deletions of specific object versions.

o In the case of an object deletion request that does not specify the object version, the deletion
marker that gets added to the source bucket is replicated to the destination bucket.

Note HyperStore currently supports only Version 1 of the Amazon S3 specification for
replication configuration XML, not Version 2. Those two versions differ in regard to
whether or not deletion markers are replicated. The behavior described above is the Ver-
sion 1 behavior, which is implemented by HyperStore.

o In the case of an object deletion request that does specify the object version, the object ver-
sion is deleted from the source bucket but is not deleted from the destination bucket.

4.13.1.1. Bi-Directional Replication

HyperStore supports bi-directional replication, whereby you configure two buckets to replicate to each other.
For example, objects directly uploaded into "bucket1" can be replicated to "bucket2", while objects directly
uploaded into "bucket2" are replicated to "bucket1".

As with the HyperStore cross-region replication generally, objects are not replicated if they are themselves rep-
licas from another source bucket. Only objects directly uploaded into a bucket by a client application will be rep-
licated. In the context of bi-directional replication this means that objects that are uploaded directly into one
bucket will be replicated to the other bucket, but they will not then be replicated back into the original bucket
and so on in an endless loop.

4.13.1.2. Replication Timing and Error Handling

Objects are replicated to the destination bucket immediately after they are uploaded to the source bucket. The
replication request is initiated by whichever S3 Service node processes the upload request for the original
object. Errors in replicating an object to the destination bucket are handled as follows:

l If the destination system returns an HTTP 403 or 404 error when HyperStore tries to replicate an object
to the destination, this is treated as a permanent error. In the "Cross-Region Replication request log
(cloudian-crr-request-info.log)" (page 622) on the node that initiates the replication request, an entry
for the object replication attempt is written with status FAILED. The system does not retry replicating the
object. Examples of scenarios that could result in permanent errors like this are if the destination bucket
has been deleted, or if versioning has been disabled on the destination bucket, or if the source bucket
owner no longer has write permissions on the destination bucket.

l Any other type of error -- such as the destination region being unreachable due to a network partition,
or the destination region returning an HTTP 5xx error -- is treated as temporary. In the Cross-Region
Replication request log on the node that initiates the replication request, an entry for the object rep-
lication attempt is written with status PENDING. The object replication job will be queued and retried.

187

Chapter 4. Working with HyperStore Major Features

Retries of object replication jobs with PENDING status are executed by a system cron job that runs
once every four hours. These retries are executed by the cron job node (to see which node this is in
your cluster, in the CMC's Cluster Information page look to see the "System Monitoring / Cronjob
Primary Host"). The retries for an object will recur once every four hours, until either the object is suc-
cessfully replicated to the destination bucket or a permanent error is encountered. Each retry attempt
results in a new entry in the Cross-Region Replication request log on the cron job node, with a status of
either COMPLETED, PENDING, or FAILED.

A permanent failure for replication of an object applies only to that object and does not impact the processing
of other objects subsequently uploaded into the same source bucket. The system will continue to replicate -- or
attempt to replicate -- other objects that subsequently get uploaded into the bucket. Those objects may also
encountered permanent errors, but the system will continue to try to replicate newly uploaded objects unless
you disable cross-region replication on the source bucket.

There is no limit on the number of replication retries for a given object or on the number of objects that are
queued for retry.

Note If an attempt to replicate an object to the destination region -- either the original attempt or a retry
attempt -- results in a FAILED status in the Cross-Region Replication request log, so that there will be
no further retries, this triggers an Alert in the CMC's Alerts page. This type of alert falls within the alert
rules for S3 service errors (there is not a separate alert rule category for CRR replication failures).

4.13.1.3. Cross-Region Replication Versus Auto-Tiering

The key difference between cross-region replication and auto-tiering from one region to another is that with
cross-region replication each replicated object is stored in both the source region and the destination region.
By contrast, after an object is auto-tiered from a source region to a destination region the object data is (by
default) stored only in the destination region.

Also, auto-tiering is supported for destinations that are outside the HyperStore system -- for example you can
auto-tier objects to Amazon S3 or other S3-compatible storage clouds; and you can auto-tier objects from one
HyperStore system to a completely different HyperStore system.

For more information on auto-tiering see "Auto-Tiering Feature Overview" (page 176)

4.13.1.4. Cross-Region Replication Impact on Usage Tracking

If a user configures cross-region replication and consequently objects are replicated from a source bucket in
one HyperStore region to a destination bucket in a different HyperStore region, the replica data in the des-
tination region will count toward the user’s Stored Bytes count in the destination region as well as in the source
region. For instance a 100MB object that gets replicated in this way would count as 100MB toward the user’s
Stored Bytes count in the source region and also as 100MB toward the user’s Stored Bytes count in the des-
tination region, for a total of 200MB across the system. (Also, for each replicated object there are about 50
bytes of object metadata associated with implementing this feature).

Note also that to enable cross-region replication the source bucket and destination bucket must both have "ver-
sioning" enabled. Once versioning is enabled, when objects are modified by users the system continues to
store the older version(s) of the object as well as storing the new version. In a cross-region replication context,
this means that over time multiple versions of an object may come to be stored in both the source bucket and
the destination bucket, with each version counting toward Stored Bytes counts in both buckets.

188

4.13. Cross-Region Replication

4.13.1.4.1. Impact on System-Wide Stored Byte Count and Licensed Max Storage Limit

When users use cross-region replication to replicate objects from one HyperStore bucket to another Hyper-
Store bucket, the objects in the source bucket and the object replicas in the destination bucket both count
toward your system's stored byte count -- the count that is used to determine whether you are in compliance
with your licensed maximum storage limit. In this respect bucket-to-bucket cross-region replication is different
than storage policy based replication or erasure coding of objects within a region, which is treated as overhead
and not counted toward your stored byte count.

4.13.1.5. Cross-Region Replication of Encrypted Objects

Whether or not objects encrypted by server-side encryption are replicated from a source bucket to the des-
tination bucket depends on the server-side encryption method used. For details see "Encryption and Cross-
Region Replication" (page 106).

4.13.1.6. Cross-Region Replication and WORM

For information on this topic see "WORM (Object Lock)" (page 121).

4.13.2. Configuring Cross-Region Replication for a Bucket
Bucket owners can configure replication from a source bucket to destination bucket. This can be done either
through the CMC or through a different S3 client application that invokes the HyperStore implementation of the
S3 API.

Configure Cross-Region Replication for a Bucket (CMC)

Note Before configuring cross-region replication, be sure that both the source bucket and the des-
tination bucket have versioning enabled. This is required in order to use cross-region replication. For
information about enabling versioning on a bucket in HyperStore, see "Set Versioning for a Bucket"
(page 239).

In the CMC, bucket owners can enable and configure cross-region replication through the Buckets & Objects
page. For a given source bucket, cross-region replication is among the options that can be configured as
bucket properties. For detail, see "Configure Cross-Region Replication for a Bucket" (page 237). Along with
specifying a destination bucket to which objects will be replicated from the source bucket, bucket owners can
indicate whether they want all newly uploaded objects to be replicated or only objects for which the full object
name starts with a particular prefix (such as /profile/images).

Also in the CMC, you can disable CRR on a source bucket for which it is currently enabled.

Configure Cross-Region Replication for a Bucket (S3 API)
S3 applications can invoke the HyperStore implementation of the S3 API to configure a source bucket for
cross-region replication. For detail see PUT Bucket replication.

As with Amazon S3, the HyperStore implementation of the S3 API requires that versioning be enabled on both
the source and the destination bucket before cross-region replication can be applied. HyperStore supports the
standard S3 PUT Bucket versioning API.

189

Chapter 4. Working with HyperStore Major Features

HyperStore also supports the GET Bucket replicationmethod for retrieving a bucket's current CRR con-
figuration, and the DELETE Bucket replicationmethod for disabling CRR on a source bucket for which it is cur-
rently enabled.

4.14. Smart Support

4.14.1. Smart Support and Diagnostics Feature Overview
Subjects covered in this section:

l Introduction (immediately below)

l "Smart Support" (page 190)

l "On-Demand Node Diagnostics" (page 191)

HyperStore includes two automated features that help you collaborate with Cloudian Support to keep your sys-
tem running smoothly: Smart Support and on-demand Node Diagnostics.

4.14.1.1. Smart Support

Smart Support is a feature that enables Cloudian Support to help you maximize the uptime and performance of
your HyperStore system. With Smart Support, your HyperStore system automatically transmits detailed system
and node performance data to Cloudian Support once a day over a secure internet connection. Cloudian Sup-
port applications and personnel continually analyze this data to detect critical issues. Cloudian Support notifies
you to make you aware of such issues and, if appropriate, to advise you on the actions that should be taken to
keep your system running well.

IMPORTANT ! Cloudian's Smart Support feature is not a comprehensive remote monitoring program.
Cloudian Support will notify you only in the case of critical issues, and not in real time. Primary respons-
ibility for monitoring and managing your HyperStore system lies with you, the customer.

Specifically, the Smart Support mechanism provides Cloudian Support with the following system and node
information:

l Cluster topology information

l HyperStore license information

l Packages and dependencies version information

l Node hardware, OS, and software information, including (if applicable) information specific to Hyper-
Store appliances

l Network interface and routing table information for each node

l Storage capacity utilization information for each node

l Disk diagnostics data for each node

l Service status (service UP/DOWN) history for each node

l S3 transaction performance data for each node

l System performance data such as disk I/O and per-disk capacity usage for each node

l Current map of tokens to disks on each node

190

4.14. Smart Support

l Redis information to confirm sync between master and slave nodes

l Data repair operation status and history for each node

l Proactive repair queue information for the cluster

l Configuration files for each node

l Alerts for each node (the same as you would see in the CMC's Alerts page)

l System log files and HyperStore log files

This information is collected daily on to one of your nodes (the node identified as the "System Mon-
itoring/Cronjob Primary Host" in the CMC's Cluster Information page). Under /var/log/cloudian on that node
there are these files:

l diagnostics.csv -- This is the live file into which the current day's performance statistics are continuously
written.

l diagnostics_<date/time>_<version>_<region>.tgz-- Once a day the current diagnostics.csv file is pack-
aged -- together with application and transaction log files -- into a diagnostics_<date/time>_<version>_
<region>.tgz file. This file is transmitted to Cloudian Support once each day. By default a local copy of
each diagnostics_<date/time>_<version>_<region>.tgz file remains on the node for 15 days before
being automatically deleted.

The Smart Support feature is enabled by default. You have the option of disabling the feature, although this is
not recommended.

4.14.1.1.1. Automatic Support Case Creation for Failed Disks

As part of the Smart Support feature, if a data disk on one of your HyperStore nodes fails (becomes disabled),
information about the failed disk is automatically sent to Cloudian Support within minutes. This triggers the auto-
matic opening of a Support case for the failed disk. This occurs in addition to the alerting functions that bring
the failed disk to your attention.

For HyperStore Appliances, automatic case creation is also performed for failed OS disks.

For more information on automated disk failure handling see "Automated Disk Management Feature Over-
view" (page 157).

4.14.1.2. On-Demand Node Diagnostics

HyperStore also supports a mechanism that allows you to easily collect deep diagnostic data for a specific
node or nodes that you are having a problem with. You can use the CMC's Collect Diagnostics function to trig-
ger the collection and packaging of this Node Diagnostics data and send the package to Cloudian Support so
that they can help you troubleshoot the problem. So while the fully automated Smart Support feature allows for
proactive monitoring and support of your system as a whole, the on-demand Node Diagnostics feature allows
for deep-dive reactive troubleshooting for problems that have occurred with specific nodes.

The Node Diagnostics package includes:

l System log files and HyperStore log files for the target node(s)

l Outputs from various system commands and HyperStore application commands for the target node(s)

l MBean data for the Java-based HyperStore services on the target node(s)

l Configuration files from the target node(s)

l Puppet and Salt configuration files and logs from the system

191

Chapter 4. Working with HyperStore Major Features

On the target node(s), under the directory /var/log/cloudian/cloudian_sysinfo, the Node Diagnostics mech-
anism packages all this data into a file named <hostname>_<YYYYMMDDhhmm>.tar.gz. Optionally you can
have the system also automatically send a copy of the package(s) to Cloudian Support.

Note The system creates the /var/log/cloudian/cloudian_sysinfo directory on a node the first time you
use the Collect Diagnostics feature for that node.

4.14.2. Configuring Smart Support and Node Diagnostics
The HyperStore Smart Support and Node Diagnostics features work out of the box and do not require any con-
figuration changes. Optionally you can do the following with configuration settings:

l Have the daily Smart Support upload go to an S3 destination other than Cloudian Support, by setting
the phonehome_uri, phonehome_bucket, phonehome_access_key, and phonehome_secret_key set-
tings in common.csv. For more information see "phonehome_uri" (page 524) and the subsequent set-
ting descriptions.

l Have the daily Smart Support upload use a local forward proxy by setting the phonehome_proxy_host,
phonehome_proxy_port, phonehome_proxy_username, and phonehome_proxy_password settings in
common.csv. For more information see "phonehome_proxy_host" (page 523) and the subsequent set-
ting descriptions.

l Disable the daily Smart Support upload by setting phonehome.enabled in mts.properties.erb to false.
This is not recommended.

l Have on-demand Node Diagnostics uploads (triggered by your using the CMC's "Collect Diagnostics"
(page 328) function) go to an S3 destination other than Cloudian Support, by setting the sysinfo.uri, sys-
info.bucket, sysinfo.accessKey, and sysinfo.secretKey properties in mts.properties.erb. For more inform-
ation see "sysinfo.uri" (page 575) and the subsequent property descriptions.

Note Be sure to do a Puppet push and restart the S3 Service if you edit any of these configuration set-
tings. For instructions see "Pushing Configuration File Edits to the Cluster and Restarting Services"
(page 506).

4.14.2.1. Other Configuration Considerations

Changing the timing of the daily diagnostics upload

When enabled, the daily diagnostics upload to an S3 URI is triggered by a HyperStore cron job. The timing of
the cron job is configured in /etc/cloudian-<version>-puppet/modules/cloudians3/templates/cloudian-
crontab.erb on the Puppet master. If you want to edit the cron job configuration, look for the job that includes
the string "phoneHome". If you edit the crontab, do a Puppet push. No service restart is necessary.

Deletion of old daily diagnostics and node diagnostics packages

The deletion of old diagnostics packages is managed by Puppet, as configured in common.csv by the
"cleanup_directories_byage_withmatch_timelimit" (page 515) setting (for daily system diagnostics pack-
ages associated with the Smart Support feature) and the "cleanup_sysinfo_logs_timelimit" (page 516) set-
ting (for on-demand Node Diagnostics packages that you've generated) . By default these settings have
Puppet delete the diagnostics packages after they are 15 days old. This presumes that you have left the

192

4.14. Smart Support

Puppet daemons running in your HyperStore cluster, which is the default behavior. If you do not leave the Pup-
pet daemons running the diagnostics logs will not be automatically deleted. In that case you should delete the
old packages manually, since otherwise they will eventually consume a good deal of storage space.

If you edit either of these settings in common.csv, do a Puppet push. No service restart is necessary.

Compliance with the European Union's General Data Protection Regulation (GDPR)

As part of a GDPR compliance program, you can have HyperStore remove personally identifiable user inform-
ation -- such as user IDs and client IP addresses -- from the S3 request log copies and S3 application log cop-
ies that get uploaded to Cloudian Support as part of the Smart Support and Node Diagnostics features. To do
so, set "phonehome_gdpr" (page 525) to true in common.csv (by default it's set to false). Setting this para-
meter to true will not remove the user IDs and client IP addresses from the original S3 request logs on your
HyperStore nodes -- just from the log file copies that get sent to Cloudian. In the log file copies that get sent to
Cloudian the user ID and IP address fields will say "Not Available".

After editing common.csv do a Puppet push and restart the S3 Service. For instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

4.14.3. Executing Node Diagnostics Collection
To generate deep-dive Node Diagnostics in support of troubleshooting one or more problem nodes, use the
CMC's "Collect Diagnostics" (page 328) function. When using that function you will be able to select one or
more nodes for which to collect diagnostics. You will also be able to choose whether to have the diagnostics
package(s) automatically uploaded to Cloudian Support (or an alternative S3 destination, if you have con-
figured the system to support this option).

Each node's diagnostics package will be created on the node itself, at path /var/log/cloudian/cloudian_sys-
info/<hostname>_<YYYYMMDDhhmm>.tar.gz.

193

This page left intentionally blank

195

Chapter 5. Cloudian Management Console (CMC)

Chapter 5. CloudianManagement Con-
sole (CMC)
The Cloudian Management Console (CMC) is a web-based user interface for Cloudian HyperStore system
administrators, group administrators, and end users. The functionality available through the CMC depends on
the user type associated with a user’s login ID (system admin, group admin, or regular user). System admins
can perform a wide range of system maintenance and operational tasks as well as provisioning and managing
user accounts. Group admins can perform a much more limited range of tasks, pertaining specifically to their
group. Regular users can use the CMC to create and configure storage buckets and to upload or download
data.

Just as the CMC's functionality is tailored to the logged-in user type, so too is the CMC's online help: users can
only view the Help topics for the functionality that is available to them based on their user type.

Note The CMC supports Firefox and Chrome browsers. It is recommended that you use a recent ver-
sion of one of those browsers when accessing the Console. Internet Explorer is not supported — you
may experience display problems with some CMC pages if you use IE.

To access the CMC for the first time, follow these steps:

1. Point a browser to https://<CMC_host>:8443/Cloudian

Since the CMC runs on all of your HyperStore nodes, for <CMC_host> you can use the fully qualified
domain name (FQDN) or IP address of any node.

Note For load balancing CMC traffic (such as you would want to do if you expose the CMC to
regular users so that they can use the CMC's S3 client interface), you can use the CMC's service
endpoint rather than specifying a particular HyperStore node. By default this would be https://cm-
c.<your-domain>:8443/Cloudian

2. You will get an SSL certificate warning. Follow the prompts to add an exception for the certificate. You
should then see the CMC’s login screen.

196

5.1. Dashboard

3. Enter the system administrator user ID admin and the default password public. When you do so, the
login screen will display additional fields in which you must create a new password for the admin user.
After you create the new password and click Save you will be logged into the CMC..

Note The first time you try to log into the CMC the system requires you to create a new pass-
word for the admin user. On subsequent logins to the CMC as the admin user, use the password
that you created.

Note All user logins to the CMC are recorded in the CMC application log cloudian-ui.log.

5.1. Dashboard

5.1.1. Dashboard
The CMC Dashboard provides a summary view of your HyperStore system status. In a multi-region system
there is a separate dashboard tab for each region.

197

Chapter 5. Cloudian Management Console (CMC)

Capacity Managed

198

5.1. Dashboard

The Capacity Managed graphic shows the percentages of total disk space that are currently Used, Reserved,
or Free, across the whole service region in aggregate. To see the percentage numbers hold your cursor over
each portion of the tri-colored circle.

l The Used segment of the circle indicates what portion of your total system capacity is consumed by
stored data. This segment displays in green if less than 70% of total capacity is used; or in orange if
from 70% to 89% is used; or in red if 90% or more is used.

Note The Used capacity measurement here is raw usage and includes overhead from object
replication or erasure coding. For example a 1MB object that's replicated three times in the sys-
tem counts as 3MB toward the Used capacity measurement.

l The Reserved segment indicates the portion of total system storage capacity that is reserved and can-
not be used for data storage. The Reserved portion consists of the Linux "reserved blocks percentage"
plus the HyperStore stop-write buffer:

o By default in CentOS/RHEL the "reserved blocks percentage" for a file system (the portion of the
disk space that’s reserved for privileged processes) is 5% of disk capacity. In a HyperStore Appli-
ance it’s customized to 0%. See your OS documentation if you want to check or change the cur-
rent reserved blocks percentage for your HyperStore host machines.

o By default the HyperStore stop-write buffer is 10% of disk capacity. For information on this fea-
ture see "Automatic Stop of Writes to a Disk at 90% Usage" (page 157).

The Reserved segment always displays in gray.

l The Free segment indicates the portion of total system storage capacity that is neither used nor
reserved, and is therefore available for storing new data. The Free segment always displays in blue.

This graphic links to the Capacity Explorer page, where you can see a breakdown of your available capacity
by region, data center, and node.

Note If there are any nodes down in the system, the used, free, and total capacity associated with the
down node(s) will not be included in the totals shown in the Capacity Managed graphic.

Operation Status

The Operation Status section displays the status of any in-progress system operations that you have recently
launched from the CMC. This section of the Dashboard will not appear if there are no in-progress operations.

Status reporting in this section is supported for these operation types:

l Add Node

l Add Data Center

199

Chapter 5. Cloudian Management Console (CMC)

l Add Region

l Uninstall Node

l hsstool rebalance

l hsstool repair or repairec

l hsstool cleanup or cleanupec

For each operation the Operation Status section displays the operation name, the current status, the progress
(as an approximate percentage of completion), and the last update time (the last time that the CMC obtained
status information for the operation).

Clicking in this section takes you to the Operation Status page where you can view additional status inform-
ation for these in-progress operations as well as status information for operations that have recently completed.

Note For hsstool operations, the Dashboard's Operation Status section and the Operation Status
page show status only for hsstool operations that you initiate through the CMC's Node Advanced page
-- not for hsstool operations that you initiate on the command line. For commands that you launch on
the command line you can use hsstool opstatus to track the operation status.

Capacity Consumption Over Time

The Capacity Consumption Over Time graphic shows the recent and forecasted raw storage consumption for
the region, in GBs, TBs, PBs, or EBs (depending on the size of your system). For this graphic, storage capacity
is considered to be "consumed" if it is either used or reserved. That is, capacity "consumption" at any given
time is equal to "used" capacity plus "reserved" capacity. For more information on "reserved" capacity see
"Capacity Managed" (page 198).

The left side of the graph (in darker shades of color) shows the storage consumption level over the past 30
days. Consumption up to 69% of total disk space capacity is shown in green; consumption from 70% to 89% of
capacity (if applicable) is shown in orange, layered on top of the green portion; and consumption from 90% or
above of capacity (if applicable) is shown in red, layered on top of the green and orange portions.

The center and right of the graph show (in lighter shades of the same colors) the 120 day forecast of raw stor-
age consumption level for the region, based on trend analysis from the past 30 days.

200

5.1. Dashboard

For a numerical display of the storage consumption level at a particular point in time, hold your cursor over that
part of the timeline.

Links to the Cluster Usage page, where you can break this capacity consumption data down by data center
and node.

IMPORTANT ! If your cluster is projected to reach 90% usage in the next 120 days, it's time to plan for
a cluster expansion. See "Capacity Monitoring and Expansion" (page 71).

Note A "Critical" message will display at the top of the screen if your total disk space consumption is
forecasted to reach 95% of capacity in the next 90 days. The message indicates when this 95%
threshold is forecasted to be reached. If an 80% threshold is forecasted to be reached, a "Warning"
message displays.

Note If there have been any nodes down in the system at the times when the system collected capacity
statistics for the Capacity Consumption Over Time graph, the used and total capacity associated with
the down node(s) will not be included in the capacity consumption percentages calculated from those
times. This may give the appearance of temporary "dips" in the capacity consumption graph.

Cluster Health

The Cluster Health section displays high level status information for the cluster. This section displays one or
more condition messages, and an overall cluster status icon. The table below shows the possible condition
messages along with the cluster status icon that displays if that condition is the most severe condition currently
present in the cluster.

Cluster Status Icon Condition Message(s) Action to Take

"System is X% full"

(where X is 90 or more)

Click the condition message to go to the Capacity
Explorer page for more detail regarding system capa-
city usage. At this level of storage capacity utilization the
system may soon stop supporting new writes if it has not
done so already. It's urgent to add more nodes to your
system as soon as possible. For more information see
"Capacity Monitoring and Expansion" (page 71).

201

Chapter 5. Cloudian Management Console (CMC)

Cluster Status Icon Condition Message(s) Action to Take

Note The percentage shown in this message is
the used percentage plus the reserved per-
centage. For more information on "reserved"
capacity see "Capacity Managed" (page 198).

"Hardware issues" This message indicates that a data disk has errors or
has been disabled. Click the condition message to go to
the Data Centers page where you can determine the
node on which the bad disk is located. Then from there
click the node icon to go to the Node Status page to
determine which disk is bad. You may need to replace
the disk. For more information see "Replacing a Hyper-
Store Data Disk" (page 482).

"Service down" A HyperStore service is down on a node. Click the con-
dition message to go to the Data Centers page. By
reviewing the "Service Status" section of that page you
can determine which node has a service down, and
which service it is. Then in the "Service Status" section
click the node's hostname to go to the Node Status
page where you can start the service that's down (altern-
atively you can use the service initialization script to
start the down service as described in "Starting and
Stopping Services" (page 415)).

"Node stopped write" A node has stopped accepting writes -- and the system
has stopped directing S3 write requests to that node --
because all of the node's disks are nearly full. For more
information on this condition and how to remedy it see
"Automatic Stop of Writes to a Node at 90% Usage"
(page 158)

"License usage X%"

(where X is 90 or more)

Contact Cloudian to request a new license. For more
information see "Licensing and Auditing" (page 15).

Note Only your actually used capacity counts
toward this percentage -- "reserved" capacity
does not count toward this.

None This status icon displays if the system has been dis-
abled because your HyperStore license has expired
and your grace period (if any) has ended. Contact
Cloudian to request a new license. For more inform-
ation see "Licensing and Auditing" (page 15).

202

5.1. Dashboard

Cluster Status Icon Condition Message(s) Action to Take

"System forecast 90% full
in X days"

(where X is 90 or less)

Aggregate disk usage in the region is forecast to reach
90% of region's total storage capacity in 90 days or less
(based on usage trend analysis from the past 30 days).
Click the condition message to go to the Cluster Usage
page for more detail regarding current and forecasted
system capacity usage. Add more nodes to your system
as soon as possible. For more information see "Capa-
city Monitoring and Expansion" (page 71).

Note The percentage shown in this message is
the used percentage plus the reserved per-
centage. For more information on "reserved"
capacity see "Capacity Managed" (page 198).

"Node's Disks X% Full"

(where X is 80 or more)

A node's data disks are nearing capacity. Click the con-
dition message to go to the Capacity Explorer page for
more detail regarding that node's capacity usage.
Check also the capacity usage of other nodes as well,
since if one node is nearing capacity other nodes may
be approaching that level also. Add more nodes to your
system as soon as possible. See "Capacity Monitoring
and Expansion" (page 71).

Note The percentage shown in this message is
the used percentage plus the reserved per-
centage. For more information on "reserved"
capacity see "Capacity Managed" (page 198).

"Long proactive repair
queue"

A node has a long "Proactive Repair" (page 151)
queue. This warning is triggered if a node's proactive
repair queue has built up to the point that proactive
repair needs to write data for 10,000 or more objects to
the node. Click the condition message to go to the
Repair Status page to see which node has status "Pro-
active Repair Pending". Click that node's icon to see
detail about the proactive repair queue length. Then
click the node's hostname to go to the Node Status
page for that node to check whether any services are
down on the node. From that page you can start any
down services. Other possible explanations for a long
proactive repair queue are that the node is in main-
tenance mode or in a stop-write condition; if so then in
the Data Centers page the node's icon will be blue.

"License usage X%"

(where X is from 70 to 89)

Storage usage in the system as a whole is at 70% of
licensed usage or higher, but still below 90%. Contact
Cloudian to request a new license soon. For more
information see "Licensing and Auditing" (page 15).

203

Chapter 5. Cloudian Management Console (CMC)

Cluster Status Icon Condition Message(s) Action to Take

Note Only your actually used capacity counts
toward this percentage -- "reserved" capacity
does not count toward this.

None

or

"(X) Alerts"

(where X is the number of
alerts)

This status icon displays if none of the conditions noted
above apply.

Note that even if the system is considered to be Healthy,
there may be unacknowledged alerts in the system.
Click the condition message to go to the Alerts page
where you can review the alerts and acknowledge
them.

95th Percentile Request Latency

The 95th Percentile Request Latency MS graphic shows the region-wide 95th percentile latencies for S3 GET
and PUT transactions in milliseconds. New statistic values are calculated and plotted each five minutes, based
on the most recent approximately 1000 GET transactions and 1000 PUT transactions. Each plotted 95th per-
centile latency value indicates that of the last 1000 transactions of that type, 95% completed in that many mil-
liseconds or less.

PUT latency is shown in blue and GET latency is shown in green. Hold your cursor over any point in time to
view the specific PUT and GET latency 95th percentile figure for that point in time.

Note If request activity completely stops for some period of time -- such that there is no new raw data
going into the statistical calculation -- the graph will for a while continue to plot the statistic value from
the last-completed 1000 transactions (resulting in a perfectly horizontal line across part or all of the
inactive period) rather than the graph line immediately dropping down to zero.

Note In regard to the per-transaction latency measurements that go into calculating a 95th percentile
figure over a given time period, note that S3 uploads of very large objects are typically implemented as

204

5.1. Dashboard

multipart upload (MPU) operations, as S3 client applications use the S3 API calls for MPU. In terms of
PUT latency metrics, each part upload of an MPU is treated as a separate transaction -- that is, a
latency is recorded for each part upload rather than for the aggregate multipart upload operation. By
contrast a GET of a very large object is a single transaction with a single latency measurement recor-
ded.

System Stats

The System Stats graphic displays basic information about your HyperStore system:

Users

Number of users in your whole HyperStore system. If your system has multiple service regions, users are
registered to the system as a whole (they are not tied to a particular region). So if you toggle through the ser-
vice region tabs, this number will remain the same -- showing the number of users in the system as a whole.

Along with regular S3 service users, the total number includes system admin users and group admin users.

Links to the Manage Users page, where you can create new users or retrieve and edit existing users.

Groups

Number of user groups in your whole HyperStore system. If your system has multiple service regions, user
groups are registered to the system as a whole (they are not tied to a particular region). So if you toggle
through the service region tabs, this number will remain the same -- showing the number of user groups in the
system as a whole.

Links to the Manage Groups page, where you can create new groups or retrieve and edit existing groups.

Objects

Number of S3 objects stored in the service region. In a multi-region system, this count is for the region for which
the tab is selected at the top of the Dashboard.

This statistic counts each object, not each replica — for example, if an object is replicated three times across
your cluster (to protect data durability and availability), this counts as one object, not three.

In the case of versioned objects, each version of the object counts towards this stat.

205

Chapter 5. Cloudian Management Console (CMC)

S3 objects that have been auto-tiered to Amazon S3, Amazon Glacier, or other HyperStore regions or systems
do count toward this stat.

Links to the Object Locator page, where you can retrieve information about where a particular object is stored
within your cluster.

Nodes

Number of nodes in the service region. In a multi-region system, this count is for the region for which the tab is
selected at the top of the Dashboard.

Links to the Node Status page, where you can see status details for individual nodes, start and stop Hyper-
Store services on nodes, and review and acknowledge node alerts.

Data Centers

Number of data centers in the service region. In a multi-region system, this count is for the region for which the
tab is selected at the top of the Dashboard.

Links to the Data Centers page, where you can see your HyperStore node inventory in each of your data cen-
ters.

Version

HyperStore software version.

Links to the Cluster Information page, where you can view static information about your cluster such as
license information, the S3 service endpoint for your system, and the mapping of specialized service roles
(such as the Redis QoS database master role) to individual nodes.

5.2. Analytics
The CMC'sAnalytics tab contains the following functions:

l Cluster Usage

l Capacity Explorer

l Usage By Users & Groups

l Object Locator

5.2.1. Cluster Usage
Path: Analytics → Cluster Usage

206

5.2. Analytics

Supported tasks:

l View recent and forecasted cluster usage

In the CMC's Cluster Usage page you can view cluster usage graphs that cover the past 30 days of activity (or
less if the cluster has been in operation for less than 30 days). The time period is not editable. For storage capa-
city consumption, along with recent capacity consumption you can also view a forecast of future consumption.

207

Chapter 5. Cloudian Management Console (CMC)

IMPORTANT ! See "Capacity Monitoring and Expansion" (page 71) for guidance about capacity
management and the importance of early planning for cluster expansions.

The following graphs are displayed:

Capacity consumption over time

This graphic shows the recent and forecasted raw storage consumption for the region, in GBs, TBs, PBs, or
EBs (depending on the size of your system). For this graphic, storage capacity is considered to be
"consumed" if it is either used or reserved. That is, capacity "consumption" at any given time is equal to
"used" capacity plus "reserved" capacity. For more information on "reserved" capacity see "Capacity Man-
aged" (page 198).

The left side of the graph (in darker shades of color) shows the storage consumption level over the past 30
days. Consumption up to 69% of total disk space capacity is shown in green; consumption from 70% to 89% of
capacity (if applicable) is shown in orange, layered on top of the green portion; and consumption from 90% or
above of capacity (if applicable) is shown in red, layered on top of the green and orange portions.

The center and right of the graph show (in lighter shades of the same colors) the 120 day forecast of raw stor-
age consumption level for the region, based on trend analysis from the past 30 days.

For a numerical display of the storage consumption level at a particular point in time, hold your cursor over that
part of the timeline.

The drop-down list at the top of the graphic lists all the nodes in the service region. You can select from the list
to view recent and forecasted usage for a specific node.

IMPORTANT ! If your cluster is projected to reach 90% consumption in the next 120 days, it's time to
plan for a cluster expansion. See "Capacity Monitoring and Expansion" (page 71).

Object transactions/sec (GET & PUT)

This graph shows the number of S3 transactions processed per second. The graph shows the PUT transaction
activity in blue and the GET transaction activity in green. To highlight one or the other trend line, hold your
cursor over the "PUT" or "GET" label off to the right of the graph.

The transactions per second values are calculated and plotted each five minutes, based on the past five
minutes of activity.

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

Throughput MB/sec (GET & PUT)

This graph shows the S3 data throughput as KB or MB or GB per second. The graph shows the PUT trans-
action activity in blue and the GET transaction activity in green. To highlight one or the other trend line, hold
your cursor over the "PUT" or "GET" label off to the right of the graph.

The throughput per second values are calculated and plotted each five minutes, based on the past five minutes
of activity.

208

5.2. Analytics

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

95th percentile Request Latency ms (GET & PUT)

This graph shows the 95th percentile latencies for S3 GET and PUT transactions in milliseconds. The graph
shows the PUT transaction activity in blue and the GET transaction activity in green. To highlight one or the
other trend line, hold your cursor over the "PUT" or "GET" label off to the right of the graph.

New statistic values are calculated and plotted each five minutes, based on the most recent approximately
1000 GET transactions and 1000 PUT transactions. Each plotted 95th percentile latency value indicates that of
the last 1000 transactions of that type, 95% completed in that many milliseconds or less.

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

Note If request activity completely stops for some period of time -- such that there is no new raw data
going into the statistical calculation -- the graph will for a while continue to plot the statistic value from
the last-completed 1000 transactions (resulting in a perfectly horizontal line across part or all of the
inactive period) rather than the graph line immediately dropping down to zero.

Note S3 uploads of very large objects are typically implemented as multipart upload (MPU) oper-
ations, as S3 client applications use the S3 API calls for MPU. In terms of PUT latency metrics, each
part upload of an MPU is treated as a separate transaction -- that is, a latency is recorded for each part
upload rather than for the aggregate multipart upload operation. By contrast a GET of a very large
object is a single transaction with a single latency measurement recorded.

5.2.2. Capacity Explorer
Path: Analytics → Capacity Explorer

209

Chapter 5. Cloudian Management Console (CMC)

Supported task:

l View remaining free space for S3 object data storage

With the CMC's Capacity Explorer page you can view your remaining free storage capacity by region, by data
center, and by node. "Free" capacity here is capacity that is neither used nor reserved (that is, free capa-
city is what remains after deducting both used capacity and reserved capacity from total capacity). For more
information on "reserved" capacity see "Capacity Managed" (page 198).

First choose a region tab at the top of the page (if you have just region there will be just one tab). Then, in the
graphical display:

l The inner circle represents the service region as a whole

l The middle circle has one segment for each data center in the region

l The outer circle has one segment for each node in each data center

The circle segments are color-coded as follows:

l Green indicates that free space is 30% or more of total space for that region, data center, or node.
(Slightly different shades of green are used merely to differentiate the concentric circles from each
other. Green has the same meaning regardless of the particular shade of green.)

l Orange indicates that free space is between 10% and 29% of total space for that region, data center, or
node.

l Red indicates that free space is less than 10% of total space for that region, data center, or node.

210

5.2. Analytics

Hold your cursor over a segment to see specific storage space availability for that region, data center, or node,
expressed as "<Free space>/<Total capacity>". Click on a segment to have the space availability information
for that region, data center, or node display in the center of the circle, where it will include the free space per-
centage as well as the absolute numbers for free and total space. By default the free space information for the
region as a whole displays in the center of the circle.

The measurements in the Capacity Explorer page are exclusively for HyperStore data disks -- on which S3
object data is being stored -- and do not address drives that are storing only the OS and the Cassandra and
Redis databases (for system metadata). The HyperStore data disk utilization measured here is raw utilization
and includes overhead for replication or erasure coding. For example a 1MB object that's replicated three
times in the system results in 3MB of disk usage for the system.

IMPORTANT ! See "Capacity Monitoring and Expansion" (page 71) for guidance about capacity
management and the importance of early planning for cluster expansions.

Note If there are any nodes down in the system, the used, free, and total capacity associated with the
down node(s) will not be included in the totals shown in the Capacity Managed graphic.

5.2.3. Usage By Users &Groups
Path: Analytics → Usage By Users & Group

Supported tasks:

l "Create a Usage Report" (page 211)

l "Review Usage Report Output" (page 215)

Note For an overview of how the HyperStore system tracks service usage by groups and users, see
"Usage Reporting and Billing Feature Overview" (page 138)

5.2.3.1. Create a Usage Report

In the CMC’s Usage By Users & Group page you can generate service usage reports for individual users, for
user groups, and for the system as a whole.

211

Chapter 5. Cloudian Management Console (CMC)

Usage reporting complies with Amazon S3 in that data storage and data transfer activity are always attributed
to the bucket owner, regardless of who owns an individual object within the bucket, or who is submitting object-
related requests.

To create a usage report, choose your report filtering criteria:

Group Name

l ID of the Group to report on. For a system-wide report choose "All Groups".

User

l User ID, if you want the report to be limited to a specific user’s activity.

Operation

l Storage-Bytes— This report shows number of stored bytes. This is net bytes and excludes any storage
policy overhead. For example, in the case of a 1MB object that's protected by 3X replication, this counts
as 1MB toward Storage-Bytes -- not 3MB.

l Storage-Objects— This report shows number of stored objects.

l Data Transfer-In-Bytes— This report shows data upload activity.

l Data Transfer-Out-Bytes— This report shows data download activity.

l All Requests — This report shows HTTP PUT, GET, and DELETE activity.

l Get/Head Requests— This report shows HTTP GET and HEAD activity. In List form this report is
identical to the Data Transfer-Out-Bytes. In Graph form, Get/Head Requests graphs a request count
while Data Transfer-Out-Bytes graphs number of bytes.

l Put/Post Requests— This report shows HTTP PUT and POST activity. In List form this report is identical
to the Data Transfer-In-Bytes. In Graph form, Put/Post Requests graphs a request count while Data
Transfer-In-Bytes graphs number of bytes.

l Delete Requests— This report shows HTTP DELETE activity.

Note By default only the Storage-Bytes and Storage-Objects reports are enabled. To enable the other
types of reports, you must enable the "Track/Report Usage for Request Rates and Data Transfer
Rates" (page 344) setting on the CMC’s Configuration Settings page.

Report Granularity

l Hours— Break the report period down into hourly intervals. The report will show only hours that have
completed (to the top of the hour), not the currently in-progress hour.

l Days— Break the report period down into daily intervals. The report will show only days that have com-
pleted (midnight to midnight), not the currently in-progress day.

l Months— Break the report period down into monthly intervals. The report will show only months that
have completed, not the currently in-progress month. For example, if today is June 25th and you set a
Time Period from March 1st up through today, with Granularity of "Months", the report will show monthly
usage data for the months of March, April, and May (and not June, since June hasn't completed yet).

l Raw— List every report-relevant transaction individually, with timestamp. For raw granularity, you must
choose a custom Time Period that spans no more than 24 hours.

Time Period

l Current Billing Period— The current calendar month up to today’s date.

212

5.2. Analytics

l Previous Billing Period— The last completed calendar month.

l Last Week— The last completed calendar week (Monday to Sunday).

l Last Month— The last completed calendar month. This is equal to Previous Billing Period.

l Custom Period— This option opens a calendar tool in which you can specify a particular report begin
date and report end date.

Region

l The Cloudian HyperStore service region for which to report usage activity. Choose "All" to show aggreg-
ate activity across all regions. This field displays only if your HyperStore system has multiple service
regions.

Note "All" regions is a valid option only if you are generating a List report — not a Graph or CSV report.
Multi-region Graph or CSV reports are not currently supported.

Traffic Type

l Choose "Normal" or "Whitelist". "Whitelist" refers to request traffic that originates from white-listed
source IP addresses (traffic subject to special pricing), and is an option only if white-listing is enabled in
the system. "Normal" refers to all other traffic.

Note The Traffic Type option does not apply to reports with Report Granularity "Raw", nor to reports
with Storage-Bytes or Storage-Objects as the Operation. The Traffic Type field will not display if you
choose those types of reports.

After specifying your usage report parameters, click:

l List to display a traditional tabular report.

l Graph to display a graphical report.

Note Graphs are not supported for reports for which the selected Operation category is "All
Requests", reports for which the selected Report Granularity is "Raw", or reports for which the
selected Region is "All". For more on graphing functionality see Manipulating Graph Reports.

l Download CSV to download a comma-separated value version of the report to your computer.

Note In CSV-formatted report output, all data size values are expressed in bytes (rather than
KBs, MBs, or GBs).

5.2.3.1.1. Manipulating Graph Reports

When you generate a graph report you can manipulate the graph display.

213

Chapter 5. Cloudian Management Console (CMC)

In the small graph at the bottom of the page click and drag horizontally to create a dark grey block. You can
then click and drag the edges of the block to expand or contract the time period shown in the main graph. A nar-
rower block provides a more granular view while a wider block provides a less granular view. You can also
click the block’s center and drag the block to shift the main graph to an earlier or later time interval (within the
bounds of the Time Period that you selected when generating the graph).

For reports on usage for a single group, the graph will show a horizontal line that indicates the quality of ser-
vice (QoS) limit for that group, for the service metric that’s the focus of the report (storage bytes, for instance).
For reports on usage for a single user, two horizontal lines display in the graph — one indicating the user’s
QoS limit and one indicating the user’s group’s QoS limit. You can uncheck the QoS display boxes to hide
these lines.

214

5.2. Analytics

Note Hiding the QoS lines will be desirable if the current usage indicated by the graph is just a small
fraction of the QoS limit. When QoS lines are included, the graph’s Y axis will necessarily scale up to
include the QoS limit level, which can make it hard to view variation within the usage level if usage is
confined to just a small portion of the Y axis. Without the QoS lines the Y axis will scale appropriately to
the usage level.

The metric used on a graph’s Y-axis auto-scales to units that are most appropriate for the particular
quantities being conveyed. Specifically, for a given report the Y-axis may be expressed in terms of
bytes, KBs, MBs, or GBs, depending on the usage level during the full 30-day graphing interval. Pay
attention to the Y-axis label to see what metric is being used.

If your report is based on granular data but covers a long time period, the labels on the X-axis will be
less granular than the source data. For example, if you generate a report based on hourly granularity
and a month-long reporting period, the X-axis labels will indicate days not hours. However, the graph
content — the trend line itself — will be based on hourly data points. In a month with 30 days, 720
hourly data points (30 X 24) will go into determining and drawing the trend line. Note that if you use the
click-and-drag controls (below the graph) to zoom in on a shorter period of time — such as a day or a
portion of a day — then the X-axis labels will show hours rather than days.

5.2.3.2. Review Usage Report Output

This topic clarifies the meaning of the data that you will see in your Cloudian HyperStore S3 usage reports.
Below is an example of a "List" style report, with hourly granularity.

Starting from the left of "List" style reports, the first several columns have consistent meaning across the dif-
ferent types of usage reports:

Region

The HyperStore service region in which the usage occurred.

Date/Time

l For reports with hourly granularity, this field displays each hour for which activity occurred during the

215

Chapter 5. Cloudian Management Console (CMC)

reporting period. For example, in a row with Date/Time "Jan-14-2019 07:00 <UTC offset>" the reported
activity is from 07:00 through 07:59.

l For reports with daily granularity, this field displays the day as, for example, "Jan-14-2019 <UTC off-
set>", and the reported activity is from that day, from midnight to midnight.

l For reports with monthly granularity, this field displays the month as, for example, "Jan-2019 <UTC off-
set>", and the corresponding activity is from that calendar month.

l For reports generated with granularity "Raw", this fields displays the transaction timestamp.

Note Times are in the local time zone of your browser.

Note Usage reports show activity only for completed intervals, not in-progress ones. For example, an
hourly report shows activity only for completed hours, not the currently in-progress hour. Likewise, a
daily report shows activity for completed days, not the currently in-progress day.

User

l For a report on a specific user’s activity, this field displays the user’s ID. For system-wide or group-wide
reports, this field displays an asterisk.

Group

l Group ID. For a system-wide report this field displays "ALL".

Operation

Operation field values will be one of the following:

l HTTP PUT/POST

l HTTP GET/HEAD

l HTTP DELETE

l Storage Bytes

l Storage Objects

Additional columns display depending on the Operation that you selected when you chose your report para-
meters in the upper part of the screen:

For Storage reports ("Storage-Bytes" or "Storage-Objects" from the Operation selection menu), these
columns display on the right-hand side of the List report:

Average

l Average storage level during the time period specified in the Date/Time column (in bytes or num-
ber of objects depending on the report type).

Maximum

l Maximum storage level during the time period specified in the Date/Time column (in bytes or
number of objects depending on the report type).

Note In usage reports, Storage-Bytes are a measure of net bytes and exclude any storage

216

5.2. Analytics

policy overhead. For example, in the case of a 1MB object that's protected by 3X replication, this
counts as 1MB toward Storage-Bytes -- not 3MB.

For Data Transfer reports ("Data Transfer-In-Bytes" or "Data Transfer-Out-Bytes" from the Operation
selection menu -- which in the report results will show as "HTTP PUT/POST" or "HTTP GET/HEAD" in
the Operation column), these columns display on the right-hand side of the List report:

Data Transfer

l Amount of data transferred during the time period specified in the Date/Time column.

Average

l Average size of an individual data transfer during the time period specified in the Date/Time
column. For example in the case of "Data Transfer-In-Bytes" reports, this would be the total data
transferred in during the time period divided by the number of PUT and POST requests pro-
cessed during the time period, to arrive at the average size of an inbound data transfer during
the time period.

Maximum

l Maximum size of an individual data transfer during the time period specified in the Date/Time
column. For example in the case of "Data Transfer-In-Bytes" reports, this would be the largest
single PUT or POST processed during the time period.

For Requests reports ("Get/Head Requests", "Put/Post Requests", "Delete Requests", or "All Requests"
from the Operation selection menu), this column displays on the right-hand side of the List report:

HTTP Requests

l Request count for the time period specified in the Date/Time column.

5.2.4. Object Locator
Path: Analytics → Object Locator

Supported task:

l View storage location information for an S3 object

To view storage location information for an object:

217

Chapter 5. Cloudian Management Console (CMC)

1. Enter the bucket name. For example, bucket1. This field is case-sensitive.

2. Enter the full object name including "folder" path, if any. For example, file1.txt (for a file at the root level
of the bucket) or Videos/Vacation/Italy-2014.mpg. This field is also case-sensitive.

3. Optionally, if versioning is enabled on the bucket that contains the object, enter the version ID of a par-
ticular version of the object. Version IDs are system-generated hexadecimal values (for example,
fe1be647-5f3b-e87f-b433-180373cf31f5). If versioning has been used for the object but you do not spe-
cify a version ID in this field, location information will be retrieved for the most recent version of the
object.

4. Click Find.

This function executes the hsstool whereis command. The results that display are the same as those that dis-
play if you run the hsstool whereis command on the object (on the Cluster → Nodes → Advanced page). For
description of the result elements, see hsstool whereis.

5.3. Buckets
Path: Buckets & Objects → Buckets

Supported tasks:

l "Add a Bucket" (page 218)

l "Set Bucket Properties" (page 221)

l "Delete a Bucket" (page 244)

Note System administrators do not have their own S3 account credentials and therefore cannot use
the Buckets & Objects page for their own data storage purposes. However, system admins can
access the Buckets & Objects page on behalf of regular service users, via the Manage Users page.
System admins can also access the Buckets & Objects page by creating a regular user account for
themselves (in the Manage Users page) and then logging into the CMC as a regular user.

5.3.1. Add a Bucket
A "bucket" is a logical container in which you can store data objects — comparable to a root folder in a con-
ventional file system. You must create at least one bucket before you can store any data objects. Optionally you
can have more than one bucket.

218

5.3. Buckets

IMPORTANT ! Some atypical ways of organizing data within a bucket can result in sub-optimal per-
formance for certain S3 operations on that bucket. For detail see "Object Metadata Structure in Cas-
sandra" (page 167).

Note By default each user is allowed a maximum of 100 buckets. You can change this setting in the
CMC's Configuration Settings page.

To create a bucket:

1. In the Buckets list view, click Add New Bucket. This opens the bucket creation interface.

2. Enter a bucket name. Using underscores in bucket names is not recommended.

Bucket naming restrictions

Your bucket name must meet these restrictions:

l Must be globally unique across the HyperStore service. If you choose a bucket name
that’s already been taken, an error message will display in the UI.

l Must be at least 3 and no more than 63 characters long.

l Only lower case letters (a-z), numbers (0-9), dash (-), period (.), and underscore (_) are
allowed (although underscores are not recommended; see below). The use of the non-
alphanumeric characters -- dash, period, or underscore -- is subject to certain restrictions.
A valid bucket name:

o Must start with a letter or a number.

o Must not end with a dash or a period.

o Must not contain two or more adjacent periods.

o Must not contain dashes next to periods (e.g., "my-.bucket.com" and "my.-bucket"
are invalid).

o Must not be in the form of an IPv4 address (e.g "192.168.5.4").

o Must not contain underscores if the bucket is being created in a non-default region
of the S3 service. Underscores are allowed in bucket names for buckets created in
the default service region. However, if you use an underscore in a bucket name
you will not be able to use auto-tiering for the bucket (for transitioning objects to

219

Chapter 5. Cloudian Management Console (CMC)

Amazon or other remote destinations on a configurable schedule). It's best not to
use underscores when naming new buckets, in case you may want to enable
auto-tiering on the bucket immediately or in the future.

3. From the "Region" drop-down list, select the HyperStore service region in which you want the bucket to
be created. If you have only one service region, that will be the only region listed.

4. From the "Storage Policy" drop-down list, select a storage policy to apply to the data that will be stored
in this bucket. A storage policy is a method for protecting data against loss or corruption. The policies
are pre-configured by system administrators. When you select a policy from the drop-down list a brief
policy description displays.

If you do not select a storage policy the system default storage policy is automatically applied to the
bucket. In the list of policies, the system default policy is the one listed first and prefixed by an asterisk
(*).

Note After a bucket is created, its storage policy assignment cannot be changed. The storage
policy assigned to the bucket at bucket creation time will continue to be bucket’s storage policy
for the life of the bucket.

5. If Object Lock is supported in the system, you have the option to enable Object Lock on the new bucket.
Object Lock can guard against accidental or malicious deleting of objects after the objects have been
uploaded to the bucket.

Details about the Object Lock option

If you enable Object Lock on the bucket:

l Versioning will automatically be enabled on the bucket as well. When versioning is
enabled on a bucket, if you upload an object and then you later upload one or more mod-
ified versions of the same object (with the same object name), all the versions of the
object are stored in the bucket.

l After bucket creation you will be able to set a default Object Lock configuration for the
bucket that will enforce a retention period on each version of each object that gets
uploaded to the bucket. For details see "Configure Object Lock Properties for a
Bucket" (page 242).

l After bucket creation you will be able to set Object Lock attributes on individual objects
that you have uploaded to the bucket, which will override the default Object Lock con-
figuration for the bucket. For details see "Set Object Lock Attributes on an Object"
(page 255).

l This bucket will not be able to serve as the source bucket for auto-tiering or cross-region
replication.

Note
• For the requirements that your HyperStore system must meet in order for Object Lock
to be used in the system, see "Setting Up Object Lock" (page 123).
• Enabling Object Lock on a bucket is only supported as you create the bucket. You
cannot enable Object Lock on an already existing bucket, after you have completed the
creation of the bucket.
• Enabling Object Lock on a bucket does not by itself have the effect of locking

220

5.3. Buckets

objects that are subsequently uploaded into that bucket. For uploaded objects to be
locked, you must set a default Object Lock configuration for the bucket or set Object Lock
attributes on individual objects that you have uploaded to the bucket.

6. Click Create to create the bucket.

The newly created bucket will then appear in the Buckets list view. If you enabled Object Lock on the bucket, a
padlock icon will appear beside its name.

5.3.2. Set Bucket Properties
Path: Buckets & Objects → Buckets → Properties

In the Buckets page click the Properties link for the bucket that you want to work with.

Supported tasks:

l "Set Custom S3 Permissions for a Bucket" (page 222)

l "Set "Canned" S3 Permissions for a Bucket" (page 224)

l "View a Bucket's Storage Policy Information" (page 226)

l "Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration" (page 227)

l "Configure a Bucket as a Static Website" (page 235)

l "Configure Cross-Region Replication for a Bucket" (page 237)

221

Chapter 5. Cloudian Management Console (CMC)

l "Set Versioning for a Bucket" (page 239)

l "Set Logging for a Bucket" (page 240)

l "Configure Object Lock Properties for a Bucket" (page 242)

5.3.2.1. Set Custom S3 Permissions for a Bucket

Path: Buckets & Objects → Buckets → Properties → Bucket Permissions

As is the case with Amazon S3, the HyperStore S3 Service supports three different ways of managing per-
missions for S3 buckets and objects: IAM policies, bucket policies, and S3 ACLs.

l The CMC supports creating IAM users, groups, and policies as described in "IAM" (page 289).

l The CMC does not support creating bucket policies, but the HyperStore S3 Service API does support
this, so you can use a third party S3 client application to create a bucket policy for a HyperStore bucket
if you wish.

l The CMC supports configuring S3 ACLs for a bucket. You can do so in the Bucket Properties inter-
face, by using either:

o The Bucket Canned ACL tab, to select from a small set of pre-defined S3 ACL packages for a
bucket.

o The Bucket Permissions tab, for more granular, customizable configuring of S3 ACLs. This is
described in the instructions below.

As the owner of a bucket you always have full bucket-level permissions, which consist of:

l Permission to view a list of the contents of the bucket

l Permission to write to the bucket and delete objects from the bucket

l Permission to view and change the bucket's S3 ACL settings

To configure custom S3 ACLs that grant bucket permissions to other users, follow the instructions below.

222

https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/

5.3. Buckets

Note You can use the CMC to configure S3 ACL permissions on your bucket, but your grantees --
users to whom you grant S3 ACL-based permissions -- cannot use the CMC to exercise those per-
missions. The CMC only allows a bucket's owner to access the bucket. The CMC does not allow users
to access a bucket that they do not own, even if the bucket owner has granted them permissions on that
bucket. However, most other S3 client applications allow users to access buckets to which they have
been granted S3 ACL permissions by the bucket owner. So, your grantees can use S3 applications
other than the CMC to exercise S3 ACL permissions that you grant them.

In the Grantee column are the different persons or groups of persons to whom you can grant permissions for
the bucket.

Grantee Description

Public

The general public, including persons who are not registered users of the
Cloudian HyperStore service. This is essentially any person with an S3 client
application and knowledge of the Cloudian HyperStore service endpoint
(URL) and the bucket name.

Authenticated Users All registered users of the Cloudian HyperStore service.

Log Delivery
Give this grantee the "Writable" permission if you want the Cloudian Hyper-
Store system to store the bucket’s server access logs in the bucket. This is the
only use for this grantee.

Specific group or user

If you want to grant permissions to a specific Cloudian HyperStore group or
user, click Add New. A new grantee row appears, with an empty grantee name
box. In the name box do either of the following:

l If the new grantee is a group, enter the group name followed by a ver-
tical bar (with no space in between). For example, Engineering|. This is
to grant permissions to all users who belong to the group.

l If the new grantee is a user, enter the group name followed by a ver-
tical bar and then the user name (with no spaces in between). For
example, Engineering|Balaji. Note that this must be a HyperStore
account root user -- it cannot be an IAM user.

Note Group and user name matching are case-sensitive, so be sure
to use the correct case when specifying the grantee.

To configure permissions for multiple group or user grantees, click Add New
for each one.

For each grantee you can select one or more of the following bucket permissions:

Permission Description

Readable

With this bucket permission, the grantee can read a list of files that are in the
bucket.

Note The bucket permission "Readable" is not inherited by objects

223

Chapter 5. Cloudian Management Console (CMC)

Permission Description

within the bucket. Giving a grantee the bucket permission "Readable"
does not give the grantee permission to read (open or download)
objects in the bucket. It only gives the grantee permission to read a list
of the bucket contents.

By default an object can only be read by its owner (the user who
uploaded the object to the bucket). An object owner can grant other
users permission to read the object by setting S3 ACL permissions on
the object. If you own the object and you also own the bucket in which
the object is stored, you can use the CMC's Object Properties inter-
face to set per-object S3 ACL permissions (see "Set Object Prop-
erties" (page 248)).

To make large numbers of objects (or all the objects in a bucket) read-
able to users who don't own the objects, the most efficient way is to use
IAM policies (see "IAM" (page 289)) or bucket policies (which are not
supported by the CMC, but are supported by the HyperStore S3 Ser-
vice API and by most third party S3 client applications.)

Writable
With this bucket permission, the grantee can upload objects to the bucket,
replace existing objects in the bucket, and delete objects from the bucket.

ACP Readable
With this bucket permission, the grantee can view the current permission set-
tings for the bucket.

ACP Writable
With this bucket permission, the grantee can change the permission settings
for the bucket.

After making the permissions selections, click Save.

5.3.2.1.1. Editing Custom Bucket Permissions

After you've configured custom S3 permissions for a bucket, you can subsequently modify the permissions con-
figuration by returning to the Bucket Permissions tab for the bucket, selecting or deselecting permissions, and
then clicking Save.

If you had previously added a group or user grantee and you now want to delete that grantee, you can do so by
clicking Delete on the right of that grantee row and then clicking Save. Be sure to click Save after clicking
Delete -- otherwise the grantee will not actually be deleted (the grantee row will disappear when you click
Delete, but if you do not click Save the grantee will still have its permissions and if you leave the Bucket Per-
missions tab and then return to it, the grantee row will be there again).

5.3.2.2. Set "Canned" S3 Permissions for a Bucket

Path: Buckets & Objects → Buckets → Properties → Bucket Canned ACL

224

5.3. Buckets

As is the case with Amazon S3, the HyperStore S3 Service supports three different ways of managing per-
missions for S3 buckets and objects: IAM policies, bucket policies, and S3 ACLs.

l The CMC supports creating IAM users, groups, and policies as described in "IAM" (page 289).

l The CMC does not support creating bucket policies, but the HyperStore S3 Service API does support
this, so you can use a third party S3 client application to create a bucket policy for a HyperStore bucket
if you wish.

l The CMC supports configuring S3 ACLs for a bucket. You can do so in the Bucket Properties inter-
face, by using either:

o The Bucket Canned ACL tab, to select from a small set of pre-defined S3 ACL packages for a
bucket. This is described in the instructions below.

o The Bucket Permissions tab, for more granular, customizable configuring of S3 ACLs.

As the owner of a bucket you always have full bucket-level permissions, which consist of:

l Permission to view a list of the contents of the bucket

l Permission to write to the bucket and delete objects from the bucket

l Permission to view and change the bucket's S3 ACL settings

To set canned S3 ACLs that grant bucket permissions to other users, follow the instructions below.

Note You can use the CMC to configure S3 ACL permissions on your bucket, but your grantees --
users to whom you grant S3 ACL-based permissions -- cannot use the CMC to exercise those per-
missions. The CMC only allows a bucket's owner to access the bucket. The CMC does not allow users
to access a bucket that they do not own, even if the bucket owner has granted them permissions on that
bucket. However, most other S3 client applications allow users to access buckets to which they have
been granted S3 ACL permissions by the bucket owner. So, your grantees can use S3 applications
other than the CMC to exercise S3 ACL permissions that you grant them.

From the drop-down list, choose the canned ACL to assign to the bucket. You can only choose one.

Canned ACL Description

Private
This bucket canned ACL grants no one any permissions on the bucket
(so that only the bucket owner has permissions). This is the default.

Public Read This bucket canned ACL grants "the public" -- any S3 application user,

225

https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/

Chapter 5. Cloudian Management Console (CMC)

Canned ACL Description

regardless of whether or not the user is a registered user of the Cloudian
HyperStore service -- permission to read a list of files that are in the
bucket.

Note The bucket read permission is not inherited by objects
within the bucket. Giving a grantee the bucket read permission
does not give the grantee permission to read (open or down-
load) objects in the bucket. It only gives the grantee permission
to read a list of the bucket contents.

By default an object can only be read by its owner (the user who
uploaded the object to the bucket). An object owner can grant
other users permission to read the object by setting S3 ACL per-
missions on the object. If you own the object and you also own
the bucket in which the object is stored, you can use the CMC's
Object Properties interface to set per-object S3 ACL per-
missions (see "Set Object Properties" (page 248)).

To make large numbers of objects (or all the objects in a bucket)
readable to users who don't own the objects, the most efficient
way is to use IAM policies (see "IAM" (page 289)) or bucket
policies (which are not supported by the CMC, but are supported
by the HyperStore S3 Service API and by most third party S3 cli-
ent applications.)

Public Read Write

This bucket canned ACL grants the public permission to read a list of
files that are in the bucket, and also to upload files to the bucket or
delete files from the bucket.

See the Note in the "Public Read" description regarding the limits of the
bucket read permission.

Authenticated Read

This bucket canned ACL grants all registered Cloudian HyperStore
users permission to read a list of files that are in the bucket.

See the Note in the "Public Read" description regarding the limits of the
bucket read permission.

Log Delivery Write
This canned ACL enables the Cloudian HyperStore system to store the
bucket’s server access logs in the bucket.

After selecting a canned ACL for the bucket, click Save.

Note A bucket can have only one canned ACL attached to it at a time. If you apply one canned ACL to
a bucket, and then you later apply a different canned ACL, the first canned ACL will be removed.

5.3.2.3. View a Bucket's Storage Policy Information

Path: Buckets & Objects → Buckets → Properties → Storage Policy

226

5.3. Buckets

When you first create a bucket, you assign it a "storage policy" — a method by which data in the bucket will be
protected against loss or corruption. Subsequently you can select the Storage Policy tab of the Bucket Prop-
erties interface to view information about the storage policy that the bucket uses.

The display includes the storage policy name and description, whether data in the bucket is stored in one data
center or multiple data centers, and whether data in the bucket is replicated or erasure coded.

You can control which user types can view this tab -- system admins, group admins, and/or regular users --
with the "bucket.storagepolicy.showdetail.enabled" (page 592) setting in mts-ui.properties.erb. By default all
user types can view this tab.

Note You cannot change a bucket’s storage policy.

5.3.2.4. Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration

Path: Buckets & Objects → Buckets → Properties → Lifecycle Policy

The HyperStore system supports configuring bucket lifecycle policies so that objects are automatically moved
(auto-tiered) to a different object storage system on a defined schedule, or automatically deleted (expired) on a
defined schedule. You can also create combination lifecycle policies such that objects are auto-tiered to a dif-
ferent storage system and then later deleted from that system.

A lifecycle policy can apply to all objects in a bucket, or to a subset of objects as identified by object name pre-
fix. You also have the option of creating multiple lifecycle rules for a bucket, with each rule applied to a different
subset of objects based on object name prefix.

227

Chapter 5. Cloudian Management Console (CMC)

Note By default system configuration, the bucket lifecycle auto-tiering functions are disabled in
the CMC. For instructions on enabling these functions, and controlling which auto-tiering options are
presented to users, see "Setting Up Auto-Tiering" (page 180).

Note Auto-tiering is not supported for:
* Buckets that have an underscore in their name.
* Buckets for which object lock is enabled.
* Buckets that are source buckets for cross-region replication.

To create a bucket lifecycle rule:

1. In the Bucket Properties interface, select the Lifecycle Policy tab and then click Add New Rule. The
Add New Bucket Lifecycle Rule interface displays.

2. Enter a descriptive "Rule Name" for the rule you are creating. Spaces are allowed in the name.

3. Optionally enter the "Object Prefix" for the subset of objects for which you want to create a lifecycle rule.
To have the lifecycle policy apply to all objects in the bucket, leave the "Object Prefix" field empty.

Note If you intend to use "Bridge Mode" (whereby objects are auto-tiered immediately after
being uploaded to HyperStore), leave the "Object Prefix" field empty. Bridge Mode does not sup-
port filtering by prefix.

If entering an object prefix, the path should start from the root level of your bucket, and you do not need
to include a leading forward slash ("/"). You should however include a trailing forward slash to demarc-
ate the "folder" name from its "contents" (which will be subject to the lifecycle policy that you’re con-
figuring). For example:

Projects/archived/2016/

This object prefix would apply to all objects with names that start with Projects/archived/2016/, such as
Projects/archived/2016/01/JanuaryOverview.docx and Pro-
jects/archived/2016/02/FebruaryOverview.docx.

4. Select:

l The "Enable Tiering" checkbox, if you want objects to be moved to a different storage system on
a schedule

l The "Expire Objects" checkbox, if you want objects to be deleted on a schedule (and/or to con-
figure deletion of incomplete multipart uploads and expired object delete markers)

l Both checkboxes if you want to configure a rule that moves objects to a different storage system
and then later deletes them from that system.

5. Configure the rule parameters:

228

5.3. Buckets

Object Tiering

Current Version

Select this checkbox to set a tiering schedule for the current version of objects in the bucket. If your
bucket does not use versioning, then current versions are the only versions of objects in your bucket
and this is the appropriate type of schedule to set. If your bucket does use versioning, select this check-
box to set a tiering schedule specifically for the current version of objects in the bucket (you can set a
different schedule for non-current versions of objects as described in "Previous Version" below).

l If you want tiering of the objects to occur on a particular date, choose the "After Date" radio but-
ton and enter the desired tiering date.

l If you want tiering of the objects to occur a certain number of days after the objects were last
accessed (retrieved or modified) select the "Days After Last Access Date/Time" radio button and
enter the number of days.

l If you want tiering of the objects to occur a certain number of days after the objects were created,
at the bottom of the page choose the "Use Creation Date/Time" radio button, then back up in the
scheduling section choose the "Days After Creation Date" radio button and enter the number of
days.

Previous Version

This option is applicable only if the bucket uses versioning. Select this checkbox to set a tiering sched-
ule for non-current versions of objects (object versions that have been superseded by a newer ver-
sion). Tiering scheduling for non-current versions of objects is always based on the number of days
since the objects became non-current (the number of days since being superseded by a newer version
of the object). Enter the desired number of days.

For example, if you enter 365 here, then if version1 of an object is made non-current by the uploading of
version2 of that object on July 13, 2018, then version1 of the object will be auto-tiered a year later
(regardless of whether any additional versions of the object were uploaded during the intervening year).

Destination

The destination that objects will be transitioned to.

229

Chapter 5. Cloudian Management Console (CMC)

Depending on system configuration (as described in "Setting Up Auto-Tiering" (page 180)), you may
or may not have multiple options to choose from in this section. The system configuration may be such
that all auto-tiering goes to the same default destination, in which case you will see the destination
name displayed here and there will be no choice for you to make.

Alternatively, the system configuration may be such that you can choose a tiering destination from
among several options such as:

l AWS S3

l AWS Glacier

l Google Cloud Storage

l Microsoft Azure

l Spectra BlackPearl

Note The destinations and corresponding endpoint URLs that the interface displays here
are configurable in common.csv. For details see "Configure Tiering Destinations"
(page 181).

The system configuration may also be such that a "Tier to Custom Endpoint" option displays, in addition
to the destination types listed above. If you choose this Custom option, an editable "Endpoint" field dis-
plays in which you can enter the URL of an S3-compliant system you want to tier to (the field is pop-
ulated with https://s3.amazonaws.com by default but is editable). For example this could be an Amazon
S3 or Google URL, or the URL of a different HyperStore region or system. Note that the system does not
support specifying a Glacier, Azure or Spectra BlackPearl URL as a Custom endpoint -- the tiering oper-
ations will fail. To tier to one of those destination types select the radio button for that destination type,
not the Custom Endpoint radio button.

If you enter a custom tiering URL be sure to include the https:// part (or http:// if the system does not sup-
port SSL).

IMPORTANT ! After you Save your lifecycle policy, you will not be able to change the tiering
destination for this bucket. If you create multiple auto-tiering rules for a single bucket (for dif-
ferent object prefixes), all such rules must use the same tiering destination system. Even if you
subsequently delete all lifecycle rules for this bucket, for this bucket you will not be able to cre-
ate new lifecycle rules that use a different tiering destination.

IMPORTANT ! If you use a third party cloud service such as Amazon, Google, or Azure for stor-
age of auto-tiered objects you (or your organization) will incur charges from that provider per the
terms of your service agreement with them..

Note Auto-tiering restrictions based on destination type:
* The largest object size that can be auto-tiered to Amazon, Google, or other S3-compliant des-
tinations is 100GB. If you want to tier objects larger than this, consult with Cloudian Support.
This 100GB limit does not apply to tiering to Azure or Spectra BlackPearl.
* Tiering to Azure or Spectra BlackPearl is not supported for source buckets that have ver-
sioning enabled or that have had versioning enabled in the past.
* When auto-tiering to Spectra BlackPearl is used for a bucket, objects in the bucket will not be

230

5.3. Buckets

auto-tiered unless they are larger than 5MB. Objects 5MB or smaller will remain in HyperStore.
To change this limit consult with Cloudian Support.

Tiering Credential

For any tiering destination other than a system-default endpoint, you must enter your account security
credentials for accessing the destination system (your Access Key and Secret Key -- or if the destination
is Azure, your Account Name and Account Key). The system will then use these account credentials
when it transitions objects from the bucket to the destination account.

Note If you create multiple auto-tiering lifecycle rules for a single bucket (for different object pre-
fixes), all such rules must use the same destination account credentials.

Bucket Name (or Container Name, for Azure)

Optionally, the name of the bucket to transition objects into, in the tiering destination system. This can be
either:

l The name of a bucket that already exists in the destination system, and for which you have
access privileges. In this case HyperStore will use this existing bucket as the tiering destination.

l The name of a bucket that you want HyperStore to create in the destination system, to use
as the tiering destination. Be sure to choose a bucket name that is very likely to be unique in the
destination system. If your supplied bucket name is not unique in the destination system, Hyper-
Store will be unable to create the bucket and your bucket lifecycle configuration attempt will fail.

If you leave the Bucket Name field empty, then in the destination system HyperStore will create a tiering
bucket named as follows:

<origin-bucket-name-truncated-to-34-characters>-<28-character-random-string>

IMPORTANT ! After you Save your lifecycle policy, you will not be able to change the tiering
destination bucket. If you create multiple auto-tiering rules for a single source bucket (for dif-
ferent object prefixes), all such rules must use the same tiering destination bucket. Even if you
subsequently delete all lifecycle rules for this source bucket, for this source bucket you will not
be able to create new lifecycle rules that use a different tiering destination bucket.

Note Azure uses the term "Container" rather than bucket, and in the CMC the field is "Container
Name" rather than Bucket Name -- but the role of the field is the same as described above.

Retain Local Copy

Select the "Retain Local Copy" checkbox if you want to keep a local copy of auto-tiered objects for a cer-
tain number of days after the objects have been auto-tiered. If you select the checkbox, then a field
appears in which you can specify the number of days for which to retain the local copy.

For example, if you select this option and set the retention to 30 days, then each object in your bucket
that gets auto-tiered to the destination system will also be retained locally for 30 days. After the 30 days
the local copy of the object will be automatically deleted.

231

Chapter 5. Cloudian Management Console (CMC)

If you do not select the "Retain Local Copy" checkbox, then the local copies of objects will be deleted
immediately after the objects have been successfully tiered to the destination system.

Note Even after local copies of auto-tiered objects have been deleted, the system retains local
metadata that enables the system to retrieve a copy of the auto-tiered objects from the des-
tination system upon your request.

Bridge Mode (Proxy) (applicable only to AWS S3, Google, Azure, or Custom S3 destinations)

Select the "Bridge Mode (Proxy)" checkbox only if, starting from when you Save your auto-tiering rule,
you want all objects newly uploaded to the bucket to be immediately transitioned to the tiering des-
tination system. In this mode HyperStore essentially acts as a proxy service, with uploaded objects only
momentarily being held in storage before being automatically moved to the destination system.

If you select the "Bridge" checkbox, then any schedule-based tiering configuration that you set in the
object tiering "Schedule" section of the interface will be applied only to objects that are already in the
bucket at the time that you Save this auto-tiering rule.

For more information on bridge mode, see "Bridge Mode" (page 178).

GET Request Handling (applicable only to AWS S3, Google, Azure, or Custom S3 destinations)

If your tiering destination is AWS S3, Google, or Azure, choose how you want the local HyperStore sys-
tem to handle GET requests for objects that have been transitioned to the tiering destination system.
Options are:

l Stream -- The local HyperStore system GETs the object from the tiering destination system and
streams it through to the client. This is the default for tiering to AWS S3, Google, or Azure.

l Require Restore -- If you choose this option, the only way that S3 client applications will be
allowed to access tiered objects is to execute a "RestoreObject" (page 988) request in order to
temporarily restore a copy of the object in local HyperStore storage. For information about how
this works in the CMC’s Objects interface, see "Restore an Auto-Tiered Object" (page 258).

Note If the bucket uses versioning you should use Stream as the GET handling method. If you
use Require Restore you will not be able to retrieve auto-tiered non-current object versions
unless you first delete the current object version. For more information see "Restoring Auto-
Tiered Object Versions" (page 260)

Note If you create multiple auto-tiering lifecycle rules for a single bucket (for different object pre-
fixes), all such rules must use the same GET request handling method.

For objects tiered to destinations other than AWS S3, Google, and Azure, the "Require Restore" method
is always used.

Object Expiration

232

5.3. Buckets

Current Version

Select this checkbox to set an expiration (deletion) schedule for the current version of objects in the
bucket. The impact of deleting the current version of an object depends on whether the bucket uses ver-
sioning or not:

l If the bucket does not use versioning, then current versions are the only versions of objects in
your bucket and this is the appropriate type of schedule to set. According to your defined sched-
ule, current versions of objects will be permanently deleted from storage.

l If the bucket does use versioning, then schedule-based expiration of the current version of an
object will not actually result in the deletion of any object data from storage. Instead when the cur-
rent version of the object reaches its expiration date it will become a non-current version, and a
"delete marker" will be created for the object (such that there is no longer a "current version" of
the object). If you want to set a schedule for deleting non-current object versions from storage,
you can do so by scheduling "Previous Version" expiration (described further below).

When setting a Current Version expiration schedule:

l If you want deletion of the objects to occur on a particular date, choose the "After Date" radio but-
ton and enter the desired deletion date.

l If you want expiration of the objects to occur a certain number of days after the objects were last
accessed (retrieved or modified) select the "Days After Last Access Date/Time" radio button and
enter the number of days.

l If you want expiration of the objects to occur a certain number of days after the objects were cre-
ated, at the bottom of the page choose the "Use Creation Date/Time" radio button, then back up
in the scheduling schedule choose the "Days After Creation Date" radio button and enter the
number of days.

Note If you are configuring a lifecycle rule that includes both auto-tiering and expiration,
you cannot have one action use Last Access Date/Time as the basis for scheduling while
the other uses Creation Date/Time. This is true too if you plan to configure multiple life-
cycle rules for a bucket (applying to different object prefixes): all lifecycle rules for a given
bucket must use the same type of time reference point for objects -- either Last Access
Date/Time or Creation Date/Time.

233

Chapter 5. Cloudian Management Console (CMC)

Previous Version

This option is applicable only if the bucket uses versioning. Select this checkbox to set an expiration
(deletion) schedule for non-current versions of objects (object versions that have been superseded by
a newer version or by a "delete marker"). When a non-current version of an object reaches its sched-
uled expiration, the non-current version is permanently deleted from storage.

Expiration scheduling for non-current versions of objects is always based on the number of days since
the objects became non-current (the number of days since being superseded by a newer version or by
a "delete marker"). Enter the desired number of days.

Note If the bucket uses "Object Lock", non-current object versions will not be deleted prior to the
completion of their defined retention period. If a non-current object version's expiration date
(based on your configured expiration schedule) falls before the end of the object version's lock
period, the system will retain the non-current object version until the end of its lock period and
then will automatically delete the non-current object version shortly thereafter.

Clean Up Incomplete Multipart Uploads

When the CMC or other S3 client applications upload large objects into the HyperStore S3 storage sys-
tem, they use a method called multipart upload during which the large object is divided into multiple
parts and each part uploaded separately. In some cases a system problem may result in some of the
parts being successfully uploaded while others are not. In such cases an incomplete or partial object
consumes some storage space in your bucket but the partial object is not readable and will not appear
in your bucket contents list.

Select the "Clean Up Incomplete Multipart Uploads" option to have the system delete such incomplete
objects a certain number of days after the multipart upload was initiated. You can specify the number of
days.

Clean Up Expired Object Delete Markers

This option is applicable only if the bucket uses versioning and only if you haven't set a Current Version
expiration schedule. If in a versioning-enabled bucket you delete the current version of an object, a
"delete marker" takes the place of that object version while all of the object's older versions are retained
in the system (and are retrievable). If all the older versions are subsequently expired (by execution of
your expiration rule for Previous Versions), that orphaned delete marker remains. Select the "Clean Up
Expired Object Delete Markers" option to have the system automatically delete a "delete marker" if all
older versions of the object have been expired.

6. Click Save to save the rule.

To confirm that your new rule has been saved in the system, select the Lifecycle Policy tab of the CMC's
bucket properties interface. The new rule will display in a list along with any lifecycle rules you may have pre-
viously configured for the bucket.

Note You can create multiple lifecycle rules for a bucket (using the Add New Rule function each time),
with each rule applying to a different object prefix. You cannot, however, have more than one lifecycle
rule for the same object prefix.

234

5.3. Buckets

IMPORTANT ! Once objects have been auto-tiered to the destination system, do not overwrite or
delete tiered objects directly through the destination system's interfaces (such as the AWS Con-
sole in the case of tiering to AWS). Doing so will cause a discrepancy between the local metadata in
HyperStore and the actual data in the destination bucket. If you want to overwrite or delete tiered
objects, do so through HyperStore interfaces (such as the CMC or an S3 application accessing the
HyperStore S3 Service). In the case of auto-tiering from one HyperStore region to another HyperStore
region, any overwriting or deleting of objects should be done through the source bucket not the des-
tination bucket.

5.3.2.4.1. Editing, Disabling, or Deleting a Lifecycle Rule

To edit, disable, or delete an existing bucket lifecycle rule, select the Lifecycle Policy tab of the CMC's bucket
properties interface. This displays the current list of lifecycle rules for the bucket.

Here you can click the appropriate button or text to add a new rule for the bucket, or to edit, disable, or delete
an existing rule for the bucket.

Note that adding, editing, disabling, or deleting a lifecycle rule changes the behavior of the bucket from that
point forward— it doesn’t change the past behavior. So for example, if you disable an auto-tiering rule that
had been in place for your bucket, any objects that have already been transitioned to a tiering destination sys-
tem will remain in that system.

Also, there are these restrictions:

l You cannot change the tiering destination system or tiering destination bucket for an existing rule.
While other attributes of an existing rule are editable (such as the schedule), the tiering destination
system and destination bucket are not editable.

l If you add a new lifecycle rule for a bucket, it must apply to a different object prefix than any existing
rules. You cannot have multiple rules for the same object prefix.

l If you add a new tiering rule for a bucket, the new rule must use the same tiering destination system and
tiering destination bucket as any existing tiering rules for the bucket. You cannot have multiple tiering
destinations for the same source bucket.

5.3.2.5. Configure a Bucket as a Static Website

Path: Buckets & Objects → Buckets → Properties → Static Website Hosting

235

Chapter 5. Cloudian Management Console (CMC)

You can configure a bucket as a website in order to make its content available to public users using regular
web browsers (as opposed to S3 client applications). Only static websites are supported. A static website is a
website that serves the same content to all visitors -- there is no content personalization based on cookies or
other mechanisms. A static site does not use server-side scripting.

IMPORTANT ! For the static website feature to work on users' buckets, on your DNS server you must
create entries for these URIs:

s3-website-<region>.<your-domain>
*.s3-website-<region>.<your-domain>

For example:

s3-website-tokyo.enterprise.com IN A 10.1.1.1

*.s3-website-tokyo.enterprise.com IN A 10.1.1.1

For more information see "DNS Set-Up" in the HyperStore Installation Guide.

To configure a bucket as a static website, in the Bucket Properties interface for the bucket select the Static
Website Hosting tab. Then do the following:

1. Select the "Enable Website Hosting" checkbox.

2. By default, when you enable website hosting on a bucket, public read access is automatically granted
for all objects in the bucket. A message will pop up to warn you of this behavior -- click OK to close the
message. If you do not want this default configuration, deselect the "Grant automatic READ access to all
objects" checkbox that appears in the Static Website Hosting interface. You can do this if you prefer to:

l Grant public read permissions to individual objects in the bucket, one-by-one. You can do this
through the CMC's "Set Object Properties" (page 248) function.

OR

l Use the S3 API's "PUT Bucket Policy" method to grant public read access to some groups of
objects but not others -- such as objects that start with a certain prefix (directory path). For this
you would need to use a different S3 client application to do so, since the CMC does not cur-
rently support this capability.

236

5.3. Buckets

The more typical static website set-up would be to accept the default behavior and grant automatic read
access to all objects in the bucket.

3. Complete the "Index Document" field with the name of the file that should be served when site visitors
access the root URL of your site. This file is typically named "index.html".

4. Complete the "Error Document" field with the name of the file that should be served when site visitors
trigger an HTTP 4xx error (such as by requesting an object that does not exist). You might name this file
"404.html", for instance.

5. Click Save.

Note If you have not yet done so, you must upload both the index document file and the error doc-
ument file into the root level of your bucket, and make sure their names correspond exactly to those
you specified in the Static Website Hosting interface.

For a bucket configured as a static website, the root URL will be:

http://<bucketName>.<regionalS3WebsiteEndpoint>

Each Cloudian HyperStore service region has its own website endpoint, set by system configuration. To view
the website endpoint(s) for your system, go to the CMC's Cluster Information page.

Note The HyperStore S3 Service allows static website requests that use HTTPS (TLS). HyperStore
does not provide a mechanism for setting up TLS for static websites requests -- you would need to do
so outside of HyperStore, by appropriately configuring your TLS certificates. But the HyperStore S3 Ser-
vice does not prohibit HTTPS access to static websites.

5.3.2.6. Configure Cross-Region Replication for a Bucket

Path: Buckets & Objects → Buckets → Properties → Cross-Region Replication

You can configure a bucket so that any newly uploaded objects (objects uploaded after you configure this fea-
ture) are automatically replicated to your chosen destination bucket in a different service region within the
same HyperStore system. This feature enables you to enhance the protection of your data by having it stored in
two geographically dispersed service regions. The feature is also useful in cases where you want to have the
same set of data stored in two different regions in order to minimize read latency for users in those regions.

237

Chapter 5. Cloudian Management Console (CMC)

HyperStore also allows you to replicate to a destination bucket that’s in the same HyperStore service region as
the source bucket, if you want to. Note however that replicating from a source bucket to another bucket in the
same region will not provide the geographical dispersion of data copies that replicating across regions does.

Object metadata — including any access permissions assigned to an object — is replicated to the destination
bucket as well as the object data itself.

The cross-region replication feature does not replicate:

l Objects that were already in the source bucket before you configured the bucket for cross-region rep-
lication.

l Objects that are encrypted with user-managed encryption keys.

l Object version deletions (deletions of specific object versions.)

l Objects that are themselves replicas from other source buckets.

Requirements and restrictions on using cross-region replication:

l Both the source bucket and the destination bucket must have versioning enabled in order to activate
cross-region replication.

l Cross-region replication is not supported for a bucket that has object lock enabled.

l Cross-region replication is not supported for a bucket that has a bucket lifecycle policy enabled.

To configure a source bucket for replication, in the Bucket Properties interface for the bucket select the
Cross Region Replication tab. Then do the following:

1. Select the "Enable Cross Region Replication" checkbox.

2. If you want all new objects (objects uploaded after you configure this feature) in the source bucket to be
replicated, leave the "Prefix" field empty. If you only want to replicate objects whose full names (includ-
ing path) start with a particular prefix, enter that prefix in the "Prefix" field. You do not need to include a
leading forward slash at the start of the prefix. "Taxes/documents" is a valid example, or "pro-
file/images/headshots".

If you want to replicate objects associated with multiple prefixes, enter a comma-separated list of pre-
fixes, with no spaces between prefixes. For example "legal/docs,legal/audio,compliance/docs".

Note that if you are specifying multiple prefixes, all the replication must go to the same one destination
bucket (you can’t replicate from a single source bucket to multiple destination buckets). Note also that
the source prefixes will be included in the full name of the object replicas in the destination bucket (for
example, source object "legal/docs/briefing_04-17-2018" will be replicated as "legal/docs/briefing_04-
17-2018" in the destination bucket).

3. Specify the "Destination Bucket" name. This must be a bucket that you own, within the HyperStore sys-
tem.

4. Click Save.

After cross-region replication is enabled on a source bucket and has been active, the system does support the
option of editing the source bucket’s configuration so that a different destination bucket is used. After that
change, new data uploaded to the source bucket would replicate to the new destination bucket rather than to
the original destination bucket. However, after such a change, replicas already in the original destination
bucket would remain there — they would not migrate to the new destination bucket.

To disable cross-region replication for a source bucket, in the Bucket Properties interface for the bucket
select the Cross Region Replication tab. Then de-select the "Enable Cross Region Replication" checkbox and
click Save.

238

5.3. Buckets

The system will no longer replicate newly uploaded objects from the source bucket to the destination bucket.
However, any replicated objects already in the destination bucket -- from during the time period that you had
cross-region replication enabled on the source bucket -- will remain there unless you delete them.

5.3.2.7. Set Versioning for a Bucket

Path: Buckets & Objects → Buckets → Properties → Versioning

In the Bucket Properties interface you can use the Versioning tab to enable object versioning for a bucket, or
to suspend versioning if you enabled it previously. By default versioning is not enabled.

When versioning is enabled on a bucket, each version of objects in the bucket is retained -- not just the current
version but prior versions as well. For example, if you upload a newly created document called GreatIdeas.-
docx; and then later you revise the document and upload it again; and then later you revise it again and upload
it again -- the system will store all three versions of the document (the initial version, the next revised version,
and the current version).

Versioning protects you against losing an object due to accidentally overwriting it -- since the previous version
is retained as well as the (accidental) new version. Also, versioning allows you access to all the past versions
of an object throughout its history. For information about how this access appears in the CMC interface, see
"Download an Object" (page 258).

By contrast, when versioning is not enabled, only the current (most recently uploaded) version of the object is
retained in the system.

IMPORTANT ! If you enable versioning on your bucket, each version of an object will count toward
your storage space consumption for purposes of usage reporting and usage-based billing.

Note You cannot enable versioning on a bucket that is configured for auto-tiering to Amazon Glacier or
Spectra BlackPearl.

To enable versioning on a bucket, with the bucket properties Versioning tab selected, click the Enable button.

For information about downloading or deleting versions of an object see "Download an Object" (page 258)
and "Delete an Object" (page 261).

239

Chapter 5. Cloudian Management Console (CMC)

5.3.2.7.1. Lifecycle Management for Versioned Buckets

HyperStore supports configuring lifecycle rules regarding current and non-current versions of objects in buck-
ets for which versioning is enabled. For example you could have non-current object versions auto-tiered to a
different storage system -- or automatically deleted -- a certain number of days after they become non-current.
For more information see "Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration" (page
227).

5.3.2.7.2. Suspending Versioning on a Bucket

If versioning is currently enabled on a bucket, you have the option of suspending it by selecting the Versioning
tab in the CMC's bucket properties interface and then clicking Suspend. The behavior in a bucket for which ver-
sioning had been enabled and is then subsequently suspended is as follows:

l For new objects uploaded for the first time after versioning is suspended, no versioning is applied.
For example, if after suspending versioning you upload a new document TerribleIdeas.docx, and then
later you revise that doc and upload the revised version, only the most current version will be retained.

l For existing objects that had been uploaded during the period when versioning was enabled:

o All object versions that were already in the system are retained. In other words, when you sus-
pend versioning this does not purge any existing object versions. (If you want to purge old
object versions you can delete them.)

o Going forward, if you upload revised versions of objects that had been first uploaded during the
period when versioning was enabled, what will be retained is:

n All object versions from when versioning was enabled.

n The most current of the object versions uploaded after versioning was suspended.

For example, if while versioning was enabled you upload versions 1, 2, and 3 of
GreatIdeas.docx, and then after versioning is suspended you upload versions 4, 5, and 6 of the
document, the system will retain versions 1, 2, 3, and 6.

Note For a bucket that has object lock enabled, versioning is automatically enabled and cannot be
suspended.

5.3.2.8. Set Logging for a Bucket

Path: Buckets & Objects → Buckets → Properties → Logging

240

5.3. Buckets

In the Bucket Properties interface you can use the Logging tab to enable access logging for a bucket, or to dis-
able access logging if you enabled it previously. By default access logging is not enabled.

When logging is enabled on a source bucket, every 10 minutes the HyperStore system generates an access
log file for the bucket (if there has been access to the bucket during the past 10 minutes) and stores the log file
in a specified destination bucket. The destination bucket can be the source bucket itself -- for instance you can
have the system generate logs recording activity for bucket1, and store the log files in bucket1 -- or the des-
tination bucket can be a different bucket than the source bucket. You must be the owner of the destination
bucket.

The content of the bucket log files is compliant with Amazon S3's bucket logging feature. For detail about the
bucket log content, see the Amazon documentation topic Server Access Log Format.

Before you enable logging for a source bucket, you must establish the necessary access rights on the
destination bucket so that the HyperStore system can write log files into it. You can do this through the CMC's
Bucket page, by using the Properties interface for the destination bucket. You have two options for estab-
lishing the needed access rights on the destination bucket:

l Using the Bucket Canned ACL tab, set the canned ACL "Log Delivery Write" on the destination bucket.

OR

l Using the Bucket Permissions tab, give the "Log Delivery" grantee permissions for "Writable" and "ACP
Readable" on the destination bucket.

To enable logging for a source bucket, use the Properties interface for the source bucket, and go to the Log-
ging tab. Then:

1. Select the "Enable Logging" checkbox. When you do this, entry fields will display.

2. Enter the name of the "Destination Bucket". As discussed above, this can be the source bucket itself or
some other bucket that you own, and it must have the needed permissions already set on it.

3. In the "Target Prefix" field, optionally enter a text string that will be used as a prefix for all the bucket log
file names for this source bucket. Absent a prefix, the log files will simply be named by a timestamp
indicating the time of the log file generation. Using a prefix is recommended as it will make it easier for
you to view and manage the log files (including possibly configuring lifecycle management for the log
files). For example, if you enter "LogBucket1_" as the prefix, then all log files will be named as "LogBuck-
et1_<timestamp>".

Note If you wish you can enable bucket logging on multiple source buckets (working through
the Properties interface for each source bucket one at a time), and have all the logs written to
the same destination bucket. In this case you could use prefix values to distinguish the logs from
the different source buckets. For example, when enabling logging on bucket1, use "LogBuck-
et1_" as the prefix, and when enabling logging on bucket2, use "LogBucket2_" as the prefix.

4. Click Save.

Once you have set up bucket logging, you may wish to use the CMC's Bucket Lifecycle feature to configure
how the logs are handled as they age. For example you can configure it so that the log files are automatically
deleted once they reach a certain age. To set up a bucket lifecycle rule for the logs, you must have used a Tar-
get Prefix when you set up bucket logging (Step 3 above). You will need that prefix when you set up the bucket
lifecycle rule.

241

http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html

Chapter 5. Cloudian Management Console (CMC)

5.3.2.8.1. Editing or Disabling Bucket Logging

Once access logging is enabled for a source bucket, you can subsequently return to the bucket properties Log-
ging tab for that bucket if you want to:

l Edit the bucket logging configuration (by changing the destination bucket or the log file name prefix)

l Disable logging for the bucket (by deselecting the "Enable Logging" checkbox)

Don't forget to click Save.

Note If you make any changes to the bucket logging configuration, this will affect how bucket logging is
performed going forward. It will not retroactively impact log files that were previously generated.

5.3.2.9. Configure Object Lock Properties for a Bucket

Path: Buckets & Objects → Buckets → Properties → Object Lock

For a bucket that was created with Object Lock enabled, an Object Lock tab will appear in the bucket's Prop-
erties interface. Here you can set a default Object Lock configuration on the bucket that will by default be
applied to all objects that are subsequently added to the bucket. The default Object Lock configuration:

l Does not apply to any objects that are already in the bucket at the time that you set the default Object
Lock configuration. It applies only to objects uploaded after you set the default configuration.

l Can be overridden on a per-object basis (as described in "Set Object Lock Attributes on an Object"
(page 255)).

If you do not set a default Object Lock configuration on the bucket, then objects uploaded to the bucket will not
be locked unless they have Object Lock attributes set on them on a per-object basis.

To set a default Object Lock configuration on the bucket:

1. Choose a lock mode -- either Governance Mode or Compliance Mode.

242

5.3. Buckets

l Governance Mode: With this mode, you can remove the lock from a locked object before the
end of its retention period, if you wish. Once you've removed the lock from an object, you can
delete the object. This mode also allows you to shorten the retention period for individual locked
objects if you wish. These per-object controls are described in "Set Object Lock Attributes on
an Object" (page 255).

Note If IAM users that you have created will use third party S3 applications -- applications
other than the CMC -- to access this bucket, then Governance Mode will allow locked
objects to be deleted by IAM users to whom you have granted special permissions in
regard to Object Lock. For detail see Object Protection Under Governance Retention,
Compliance Retention, and Legal Hold. Note that the CMC does not allow IAM users to
log in and access buckets or objects.

l Compliance Mode: With this mode, you cannot remove the lock from a locked object before the
end of its retention period. Locked objects cannot be deleted by anyone -- not even by you as
the bucket owner -- until the end of their retention period. Also with this mode, you cannot
shorten the retention period for a locked object.

2. Specify a retention period in number of days or number of years.

The retention period will be applied to each object version starting upon its upload to the bucket. For
example, with a retention period of one year, each object version will be locked for one year starting
from the date that the object version is uploaded to the bucket.

3. Click Save.

Once a default Object Lock configuration has been set for the bucket, any objects subsequently uploaded into
the bucket will be locked in accordance with the terms of the default Object Lock configuration. In the bucket's
object list, locked objects have a padlock icon beside the object name. Note that versioning is automatically
enabled in a bucket that uses Object Lock and that each version of an object is locked.

243

Chapter 5. Cloudian Management Console (CMC)

Note Once you've set a default Object Lock configuration on the bucket, you still have the ability to
later change that default configuration if you wish (by once again using the Object Lock tab will appear
in the bucket's Properties interface). However, such a change will apply only to objects that are
uploaded after you've made the change. Any objects uploaded while your original default Object Lock
configuration was in place will continue to be controlled by the terms of that original Object Lock con-
figuration.

5.3.3. Delete a Bucket
To delete a bucket, first go to the Objects view and delete all the objects in the bucket. The system will not let
you delete a bucket that has objects in it.

After deleting all objects in the bucket, you can delete the bucket by going to the Buckets list view and clicking
the Delete button on the far right of the bucket’s display row.

5.4. Objects
Path: Buckets & Objects → Objects → <bucketname>

In the Objects interface you can select from the drop-down list of buckets that you own, and then work with
objects in that bucket. (Alternatively, in the Buckets interface, clicking on a bucket name will bring you to the
Objects interface for that bucket.)

Note The Objects tab does not display until you’ve created a bucket.

Supported tasks:

l "Create or Delete a "Folder"" (page 245)

l "Upload an Object" (page 246)

l "Set Object Properties" (page 248)

l "List or Search for Objects" (page 257)

l "Download an Object" (page 258)

l "Restore an Auto-Tiered Object" (page 258)

l "Delete an Object" (page 261)

244

5.4. Objects

Note In an object-based storage system, each data entity that you store in a bucket is known as an
"object". Within a bucket each object has a unique name. In most respects you can think of an object as
being a file. For some distinctions between object storage and conventional file systems, see "Note
about 'folders' in an object storage system" (page 245).

5.4.1. Create or Delete a "Folder"
In the Objects interface, first select the bucket that you want to work with and then click Create Folder. In the
pop-up dialog that displays, enter a folder name and then click OK. The new folder will then display in the
object list view.

For folder naming restrictions, see "Object Naming Restrictions" (page 248). These restrictions apply to
unusual naming schemes and are of no concern if you are using a simple alphanumeric folder name.

Note The CMC does not support renaming existing folders.

To delete a folder:

To delete a folder click Delete at the right side of the folder’s display row. You will be asked to confirm that you
want to delete the folder.

IMPORTANT ! Deleting a folder will also delete all files and sub-folders within the folder.

5.4.1.1. Note about 'folders' in an object storage system

In an object-based storage system, each data entity stored in a bucket is known as an "object". Within a bucket,
each object has its own unique name. In the storage layer -- the storage system back-end -- an object storage
system does not have a hierarchical directory structure like a conventional file system. Instead it is a "flat" struc-
ture with all objects existing in the root of the bucket. However, objects can be named in such a way as to imply
a hierarchy and allow a user interface such as the CMC to present a hierarchical view of the bucket contents.
For example, in a bucket there could be four objects named:

l Documents/resume.docx

l Documents/schedule.docx

l Images/birthday-party.png

l Images/sunset.png

The CMC makes it easy to create such hierarchies by enabling you to create "folders". From the example
above, through the CMC interface you could create a folder named "Documents", and then drill down into that
folder and upload files named "resume.docx" and "schedule.docx". Behind the scenes, in the object storage
layer, the objects are named as "Documents/resume.docx" and "Documents/schedule.docx". In the CMC inter-
face, you can then retrieve a list of the contents of the "Documents" folder: the display will list the "resume.docx"
and "schedule.docx" files.

Thus while the back-end is implemented differently, the CMC user experience is very similar to interacting with
a regular file system.

245

Chapter 5. Cloudian Management Console (CMC)

5.4.2. Upload anObject

Note If you haven’t yet done so, you must "Add a Bucket" (page 218) before you can upload any
objects.

1. In the Objects interface, first select the bucket that you want to work with and then click Upload File. The
Upload Files interface displays.

2. Click Add Files, then use the browse window that opens to browse to the file(s) on your computer. You
can select multiple files from within the same directory on your computer by using <Ctrl>-click or
<Shift>-click. After you’ve selected the files and clicked Open in the browse window, the list of selected
files displays in the Upload Files interface.

Note By default the maximum sized object that you can upload through the CMC interface is
5GB.

The maximum allowed S3 object name length — that is, the maximum length of the folder path
plus file name, combined — is 1024 characters. For additional naming restrictions see "Object
Naming Restrictions" (page 248). These additional restrictions pertain to unusual characters
or character combinations and so are of no concern if you are using simple alphanumeric file
names.

3. If you want the Cloudian HyperStore system to encrypt the file(s) in storage, click the "Store encrypted"
checkbox. The file(s) will be encrypted using a system-generated encryption key. If an encrypted file is

246

5.4. Objects

subsequently downloaded, the system will automatically decrypt the file before transmitting it to the
requesting client application.

Note If you are uploading objects into a bucket that's using a storage policy that requires object
encryption, then the objects will be automatically encrypted by the system regardless of whether
or not you select the "Store encrypted" checkbox.

4. To upload all the files click Start Upload at the top of the Upload Files interface. (Or if you want to
upload files one-by-one, click Start to the right of individual file names). When all files have uploaded, a
success message appears.

If you want to continue uploading more files, click Clear Finished to clear the Upload Files interface, then click
Add Files to add more files to upload. If you’re done uploading files, click the "X" in the upper right of the
Upload Files interface to close it.

If you upload a large object you can monitor its upload progress by watching the progress bar beside the file
name.

Objects that you have successfully uploaded appear in the Objects interface. If you chose to encrypt a file, a
padlock icon displays to the left of the file name.

Note For a large object over a certain size threshold (16MB by default), the CMC will upload the object
to the S3 Service in multiple separate parts, using multiple HTTP transactions. This is known as

247

Chapter 5. Cloudian Management Console (CMC)

multipart upload (MPU). In such cases, a Multipart Upload in Progress section displays at the bottom
of the Objects interface. This display indicates the time at which the multipart upload was initiated and
the object name (the "Key"). If the object appears to be taking too long to upload, this may indicate that
a problem has occurred while uploading the multiple parts. In this case you can use the Abort button to
abort the incomplete MPU operation. By aborting the MPU operation, you remove from storage any
object parts that had been uploaded before problems occurred with the operation. You can sub-
sequently try again to upload the object, starting over from Step 1 of the procedure above.

By default the CMC's Objects page will display upload progress for a maximum of 1000 multipart
upload objects simultaneously. This is configurable by the "list.multipart.upload.max" (page 583)
property in mts-ui.properties.

5.4.2.1. Object Naming Restrictions

The following control characters cannot be used anywhere in an object name and will result in a 400 Bad
Request response: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A ("\n"), 0x0B, 0x0C, 0x0D
("\r"), 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E,
0x1F

Also unsupported are:

l 0x09 ("\t") at the beginning of an object name

l 0xBF (inverted question mark) at the end of an object name

l Object names consisting only of "." or only of ".."

l Object names containing a combination of "." and "/", or a combination of ".." and "/"

5.4.3. Set Object Properties
Path: Buckets & Objects → Objects → <bucketname> → <find object> → Properties

248

5.4. Objects

In the Objects interface, first select the bucket that you want to work with. Then in the object list that displays for
that bucket, find the object for which you want to set properties. Then click Properties in the object’s display
row. This opens the properties interface for that object.

Supported tasks:

l "Set Custom S3 Permissions on an Object" (page 249)

l "Set "Canned" S3 Permissions on an Object" (page 252)

l "Set Public URL Permissions on an Object" (page 254)

l "Set Object Lock Attributes on an Object" (page 255)

Note For custom and canned S3 permissions, the CMC supports only setting permissions on indi-
vidual objects, one-by-one. If you want to make all objects within a bucket -- or a group of objects such
as those with a common prefix (directory path) -- readable to the public or to specified individuals or
groups, the best way to accomplish this is through creating a bucket policy. The S3 API supports this
(see "PutBucketPolicy" (page 977)), and some S3 client applications may support this, but the CMC
currently does not.

5.4.3.1. Set Custom S3 Permissions on an Object

Path: Buckets & Objects → Objects → <bucketname> → <find object> → Properties → General Per-
missions

249

Chapter 5. Cloudian Management Console (CMC)

As is the case with Amazon S3, the HyperStore S3 Service supports three different ways of managing per-
missions for S3 buckets and objects: IAM policies, bucket policies, and S3 ACLs.

l The CMC supports creating IAM users, groups, and policies as described in "IAM" (page 289).

l The CMC does not support creating bucket policies, but the HyperStore S3 Service API does support
this, so you can use a third party S3 client application to create a bucket policy for a HyperStore bucket
if you wish.

l The CMC supports configuring S3 ACLs for an object. You can do so in the "Set Object Properties"
(page 248) interface, by using either:

o The Object Canned ACL tab, to select from a small set of pre-defined S3 ACL packages for an
object.

o The General Permissions tab, for more granular, customizable configuring of S3 ACLs. This is
described in the instructions below.

As the owner of an object you always have full permissions to the object, which consist of:

l Permission to read the object (view or download it)

l Permission to view and change the object's S3 ACL settings

To configure custom S3 ACLs that grant object permissions to other users, follow the instructions below.

Note You can use the CMC to configure S3 ACL permissions on your object, but your grantees --
users to whom you grant S3 ACL-based permissions -- cannot use the CMC to exercise those per-
missions. The CMC only allows a bucket's owner to access the bucket and its contents. The CMC does
not allow users to access a bucket that they do not own, even if they have been granted permissions on
that bucket and its contents. However, most other S3 client applications allow users to access buckets
and objects to which they have been granted S3 ACL permissions by owner. So, your grantees can
use S3 applications other than the CMC to exercise S3 ACL permissions that you grant them.

In the Grantee column are the different persons or groups of persons to whom you can grant permissions for
the object.

Grantee Description

Public

The general public, including persons who are not registered users of the
Cloudian HyperStore service. This is essentially any person with an S3 client
application and knowledge of the Cloudian HyperStore service endpoint
(URL) and the bucket name and object name.

250

https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/

5.4. Objects

Grantee Description

Authenticated Users All registered users of the Cloudian HyperStore service.

Specific group or user

If you want to grant permissions to a specific Cloudian HyperStore group or
user, click Add New. A new grantee row appears, with an empty grantee name
box. In the name box do either of the following:

l If the new grantee is a group, enter the group name followed by a ver-
tical bar (with no space in between). For example, Engineering|. This is
to grant permissions to all users who belong to the group.

l If the new grantee is a user, enter the group name followed by a ver-
tical bar and then the user name (with no spaces in between). For
example, Engineering|Balaji. Note that this must be a HyperStore
account root user -- it cannot be an IAM user.

Note Group and user name matching are case-sensitive, so be sure
to use the correct case when specifying the grantee.

To configure permissions for multiple group or user grantees, click Add New
for each one.

For each grantee you can select one or more of the following object permissions:

Permission Description

Readable
With this object permission, the grantee can read (open or download) the
object.

ACP Readable
With this object permission, the grantee can view the current permission set-
tings for the object.

ACP Writable
With this object permission, the grantee can change the permission settings for
the object.

Note Write permissions for uploading, overwriting, and deleting objects are set at the bucket properties
level, not the object properties level. See "Set Bucket Properties" (page 221).

After making the permissions selections, click Save.

5.4.3.1.1. Setting Custom Permissions on an Object Version

If you have versioning enabled on your bucket, and you want to set permissions for a version of an object, in
the Objects interface click Show Versions. Under each object name, the interface will then list all stored ver-
sions of that object, ordered from the current (most recently uploaded) version to the oldest version. Each ver-
sion is identified by a system-generated alphanumeric identifier, and for each version the upload timestamp is
shown (the date and time that particular version of the object was uploaded to the system). To set custom per-
missions for an object version, in the CMC's Objects interface click Properties in the object version’s display
row. This opens the properties interface for that object version. Then follow the instructions above.

251

Chapter 5. Cloudian Management Console (CMC)

Note When you set permissions for a version of a versioned object, the permissions apply only to that
version of the object -- not to any past or future versions of the object. For example, if you set per-
missions for the current version of a versioned object, and then you later upload a revised version of
the object, the permissions that you set previously will not apply to the revised version of the object. If
you want there to be permissions on the revised version of the object, you must explicitly set the per-
missions on that object version after you upload it. This behavior is compliant with Amazon S3.

5.4.3.1.2. Editing Custom Object Permissions

After you've configured custom S3 permissions for an object, you can subsequently modify the permissions con-
figuration by returning to the General Permissions tab for the object, selecting or deselecting permissions, and
then clicking Save.

If you had previously added a group or user grantee and you now want to delete that grantee, you can do so by
clicking Delete on the right of that grantee row and then clicking Save. Be sure to click Save after clicking
Delete -- otherwise the grantee will not actually be deleted (the grantee row will disappear when you click
Delete, but if you do not click Save the grantee will still have its permissions and if you leave the General Per-
missions tab and then return to it, the grantee row will be there again).

5.4.3.2. Set "Canned" S3 Permissions on an Object

Path: Buckets & Objects → Objects → <bucketname> → <find object> → Properties → Object Canned
ACL

As is the case with Amazon S3, the HyperStore S3 Service supports three different ways of managing per-
missions for S3 buckets and objects: IAM policies, bucket policies, and S3 ACLs.

l The CMC supports creating IAM users, groups, and policies as described in "IAM" (page 289).

l The CMC does not support creating bucket policies, but the HyperStore S3 Service API does support
this, so you can use a third party S3 client application to create a bucket policy for a HyperStore bucket
if you wish.

l The CMC supports configuring S3 ACLs for an object. You can do so in the "Set Object Properties"
(page 248) interface, by using either:

o The Object Canned ACL tab, to select from a small set of pre-defined S3 ACL packages for an
object. This is described in the instructions below.

o The General Permissions tab, for more granular, customizable configuring of S3 ACLs.

As the owner of an object you always have full permissions to the object, which consist of:

252

https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/

5.4. Objects

l Permission to read the object (view or download it)

l Permission to view and change the object's S3 ACL settings

To set canned S3 ACLs that grant object permissions to other users, follow the instructions below.

Note You can use the CMC to configure S3 ACL permissions on your object, but your grantees --
users to whom you grant S3 ACL-based permissions -- cannot use the CMC to exercise those per-
missions. The CMC only allows a bucket's owner to access the bucket and its contents. The CMC does
not allow users to access a bucket that they do not own, even if they have been granted permissions on
that bucket and its contents. However, most other S3 client applications allow users to access buckets
and objects to which they have been granted S3 ACL permissions by owner. So, your grantees can
use S3 applications other than the CMC to exercise S3 ACL permissions that you grant them.

From the drop-down list, choose the canned ACL to assign to the object. You can only choose one.

Canned ACL Description

Private
This object canned ACL grants no one any permissions on the object
(so that only the object owner has permissions on the object). This is the
default.

Public Read
This object canned ACL grants "the public" -- any S3 application user,
regardless of whether or not the user is a registered user of the Cloudian
HyperStore service -- permission to read (open or download) the object.

Authenticated Read
This bucket canned ACL grants all registered Cloudian HyperStore
users permission to read a list of files that are in the bucket.

Bucket Owner Read

This bucket canned ACL grants the bucket owner read permission. If you
are the bucket owner and the object owner, you do not need to select
this permission -- as object owner you already have full permissions on
the object (including read permission).

Bucket Owner Full Control

This bucket canned ACL grants the bucket owner full permissions (per-
mission to read the object; to read the object's permissions; and to
change the object's permissions). If you are the bucket owner and the
object owner, you do not need to select this permission -- as object
owner you already have full permissions on the object.

Note Write permissions for uploading, overwriting, and deleting objects are set at the bucket properties
level, not the object properties level. See "Set Bucket Properties" (page 221).

After selecting a canned ACL for the object, click Save.

Note An object can have only one canned ACL attached to it at a time. If you apply one canned ACL to
an object, and then you later apply a different canned ACL, the first canned ACL will be removed.

5.4.3.2.1. Setting Canned Permissions on an Object Version

If you have versioning enabled on your bucket, and you want to set permissions for a version of an object, in
the Objects interface click Show Versions. Under each object name, the interface will then list all stored ver-
sions of that object, ordered from the current (most recently uploaded) version to the oldest version. Each

253

Chapter 5. Cloudian Management Console (CMC)

version is identified by a system-generated alphanumeric identifier, and for each version the upload timestamp
is shown (the date and time that particular version of the object was uploaded to the system). To set canned
permissions for an object version, in the CMC's Objects interface click Properties in the object version’s dis-
play row. This opens the properties interface for that object version. Then follow the instructions above.

Note When you set permissions for a version of a versioned object, the permissions apply only to that
version of the object -- not to any past or future versions of the object. For example, if you set per-
missions for the current version of a versioned object, and then you later upload a revised version of
the object, the permissions that you set previously will not apply to the revised version of the object. If
you want there to be permissions on the revised version of the object, you must explicitly set the per-
missions on that object version after you upload it. This behavior is compliant with Amazon S3.

5.4.3.3. Set Public URL Permissions on an Object

Path: Buckets & Objects → Objects → <bucketname> → <find object> → Properties → Public URL
Access

Setting public URL permissions on an object enables members of the public to access the object by using a
standard web browser (rather than an S3 client application). The system will generate for the object a web URL
which you can provide to whoever you want to have access to the object.

Note You cannot set public URL permissions on an object that the system has encrypted with a user-
provided encryption key. By contrast, public URL permissions are supported for files that the system
has encrypted with a system-generated encryption key, which is the more typical encryption method.

To set public URL permissions on an object, in the CMC's "Set Object Properties" (page 248) interface for the
object select the Public URL Access tab.

1. Click the "Enable Public URL Access" checkbox.

2. Configure the public URL access for the object:

l In the "Maximum Downloads" field, specify a maximum number of times that the object can be
downloaded in total (the maximum total downloads that you want to allow, by all users com-
bined). If you want to allow an unlimited number of downloads, set this to "-1" (negative one).
Note that after enabling public URL access for the object, you can subsequently return to this
interface and view the number of times the object has been downloaded to date (the "Current

254

5.4. Objects

Downloads" field).

l In the "Expiration Date/Time" field, choose an expiration date/time at which the public URL for
the object will expire. After this time the URL will no longer be valid and the object will not be
accessible via the URL. If you click in the field, a calendaring tool displays to make it easy to
choose the date and time.

l If you want HTTP access to the object to be SSL-secured, select the "Secure URL (HTTPS)"
checkbox.

3. Click Apply and the system-generated public URL for the object will display in the interface.

The public URL for an object has the following format:

http[s]://<defaultS3Domain>/<bucketName>/<objectName>?AWSAccesKeyId=<accessKeyOfObjectOwner>

&Expires=<expiryTimeInUnix>&Signature=<signatureString>&x-amz-

pt=<uniqueIDforMaxDownloadTracking>

The CMC interface makes it easy for you to share this public URL with others. Once the public URL is dis-
played in the interface, click Mail To to open your default email client with the public URL pre-populated into
the message body of a new email message. Just add recipients and optionally edit the subject line (which by
default is "Public URL Access Link") and then send the email message.

Note For the Mail To feature to work, your browser must be configured to be able to open your default
web-based email client.

If you want, you can make changes to an object’s public URL settings at a later point in time. For example, you
can change the maximum allowed downloads or the expiration time. Note that in the "Expiration Date/Time"
field the calendaring tool provides a Now button in case you want to terminate public URL access for the object
immediately. Be sure to click Apply to save your changes.

Note If you change the expiration date/time of a public URL and click Apply this will result in the gen-
eration of a new URL. This is because the expiration times is part of the URL -- so changing the expir-
ation time necessarily results in a new URL. By contrast, changing the maximum allowed downloads
does not result in a new URL.

5.4.3.4. Set Object Lock Attributes on an Object

Path: Buckets & Objects → Objects → <bucketname> → <find object> → Properties → Object Lock

255

Chapter 5. Cloudian Management Console (CMC)

For an object that has been uploaded to a bucket that has Object Lock enabled, an Object Lock tab will
appear in the object's Properties interface. Here you can set Object Lock attributes on the object. For an object
for which there are multiple versions in the bucket, each object version has its own Properties interface includ-
ing an Object Lock tab, and object lock attributes can be configured separately for each object version.

Note To access the Properties interfaces for older versions of an object, toggle the object list display
to Show Versions if it is not already showing all object versions. If the object list is toggled to Hide Ver-
sions you can only access the Properties interface for the current version of each object.

Within the limits described below, Object Lock attributes that you apply to an individual object version will over-
ride any default Object Lock attributes that had been automatically applied to the object version at its upload
time as a result of the bucket's configuration.

To set Object Lock attributes on an object version:

1. In the Object Lock tab of the object version's Properties interface, make your desired changes to the
object version's current lock attributes:

l Lock Mode. Changing the lock mode for an object is allowed only if the current lock mode is
Governance or None. You cannot change the mode if the current mode is Compliance. For more
information on Governance Mode and Compliance Mode see "Configure Object Lock Prop-
erties for a Bucket" (page 242).

l Retain Until Date.

o If the object's current mode is Governance, or if the object's current mode is None and
you are changing the mode to Governance or Compliance, you can set the Retain Until
Date to whatever date you desire.

o If the object's current mode is Compliance, you can change the Retain Until Date to a
later date than its current value. You cannot change the Retain Until Date to a sooner
date than its current value (you cannot shorten the object's retention period).

l Legal Hold. Legal Hold prevents the object from being deleted for an indefinite period of time,
until you explicitly remove the Legal Hold from the object. When the time comes that you want to

256

5.4. Objects

remove the Legal Hold, you can do so in the Object Lock tab of the object's Properties inter-
face.

Note If IAM users that you have created will use third party S3 applications -- applications
other than the CMC -- to access this bucket, then the Legal Hold could be removed by
IAM users to whom you have granted the necessary special permissions. For detail see
Object Protection Under Governance Retention, Compliance Retention, and Legal Hold.
Note that the CMC does not allow IAM users to log in and access buckets or objects.

2. Click Save.

Note Your change applies only to a specific version of the object:
• If you had the object list view toggled to Hide Versions rather than Show Versions, and you opened
an object's Properties interface and changed the object's lock properties, your change applies only to
the current version of the object, not to any older versions of the object.
• Your change does not apply to future versions of the object. If one or more additional versions of the
object are uploaded in the future, those versions will inherit the bucket's default Object Lock con-
figuration.

5.4.4. List or Search for Objects
If you have many objects in your bucket, in the Objects interface the objects will be listed alphabetically, across
multiple pages, with 10 objects per page (by default). Your "folders", if any, are also listed within this alpha-
betical listing. You can browse through the objects and folders list by clicking the page numbers at the bottom
of the Objects interface.

Alternatively, you can search for an object or objects by clicking Search by Prefix. In the pop-up dialog that dis-
plays, enter either:

l An object name prefix, including folder path (if applicable) -- to retrieve all objects that start with that pre-
fix. Examples:

o Video/ -- Retrieves all objects that start with prefix Video/ (or in common file system terminology,
all files under the Video "folder")

o Video/2019/InstallerDemo -- Retrieves all objects that start with prefix Video/2019/InstallerDemo
(or in common file system terminology, all files that are under the Video/2019 "folder" and have
file names starting with the string InstallerDemo)

l A full object name, including folder path (if applicable) -- to retrieve one specific object. Example:

o Video/2019/InstallerDemo_2019-05-22.mpg

For background information about how "folders" are implemented in an object storage system like HyperStore,
see "Note about 'folders' in an object storage system" (page 245).

Note The search matching is case sensitive. Be sure to use the correct case when entering your
search term.

257

Chapter 5. Cloudian Management Console (CMC)

5.4.4.1. Objects That Indicate an Error

On rare occasions an object in the display list may have a red "X" beside its name, and if you hold your cursor
over it a "Metadata Exception: 404" error message appears.

This indicates that there was a problem retrieving the object's metadata. You will not be able to download such
an object or edit its properties.

l If you previously deleted this object, delete the object again and then it should no longer appear in the
object list.

l If you did not previously delete this object, and if you have a copy of the object on your computer,
upload the object again and that should fix the error.

l If you did not previously delete this object, and if you do not have another copy of the object, contact
Support.

5.4.5. Download anObject
In the Objects interface, first select the bucket that you want to work with. Then in the object list that displays for
that bucket, find the object that you want to download. To download the object, click on the object name and
then choose whether to directly open the object or to save it to your computer.

Note In your object list display, certain object names may have beside them a left or right-pointing
arrow icon that indicates that the object has been subject to auto-tiering. For information about the
icons and about retrieving such objects, see "Restore an Auto-Tiered Object" (page 258).

5.4.5.1. Downloading an Object Version

If you have versioning enabled on your bucket, and you want to download a particular version of an object, in
the Objects interface click Show Versions (if object versions are not already showing in the object list). When
versions are shown, under each object name the interface lists all stored versions of that object, ordered from
the current (most recently uploaded) version to the oldest version. Each version is identified by a system-gen-
erated alphanumeric identifier, and for each version the upload timestamp is shown (the date and time that par-
ticular version of the object was uploaded to the system). To download a version of an object, click the
alphanumeric identifier.

5.4.6. Restore an Auto-TieredObject
In the Objects interface, first select the bucket that you want to work with. If the bucket that you’re browsing or
searching through has been configured for auto-tiering, any objects that have been auto-tiered will be marked
with a special icon. Because these objects are currently stored in a remote tiered storage system (such as
Amazon, Azure, or Google), you may not be able to directly download these objects. Whether they are directly
downloadable or not depends on where they are stored — for example, objects in Amazon Glacier are never
directly downloadable — and on the user-defined bucket lifecycle configuration that governed the auto-tiering

258

5.4. Objects

of the objects (specifically,whether the lifecycle configuration supports "streaming" GETs of tiered objects
rather than requiring a restore operation).

You can try directly downloading an auto-tiered object by clicking on its object name. If direct download
(streaming) is not supported for the object, a response message will indicate that you need to temporarily
restore a local copy of the object rather than directly downloading it.

To restore one or more auto-tiered objects:

1. Click the checkbox(es) to the left of the object name(s).

2. Click the Restore button.

3. In the dialog that pops up, use the "Restore" number of days field to enter the number of days for which
you want the restored object(s) to be locally available in your HyperStore S3 service.

Note The dialog also presents you the option to choose between Bulk retrieval, Standard
retrieval, and Expedited retrieval, but in the current HyperStore release these retrieval set-
tings have no effect on how the retrieval is implemented.

4. Click the OK button.

Note that restore does not happen instantly — it can take up to six hours before auto-tiered objects are restored
to your local HyperStore S3 service (or up to nine hours for objects that have been auto-tiered to Amazon Gla-
cier). In the interim, the object is marked with a special icon that indicates that it’s in the process of being
restored. During this stage you cannot download the object.

After an object has been restored (as indicated by a different special icon), you can download it in the normal
way.

Note For special considerations for versioned objects, see "Restoring Auto-Tiered Object Versions"
(page 260).

Note The Restore "number of days" duration is implemented specifically as follows: Starting from the
day and time at which you submit the restore request, the restore duration will end at the first midnight
after your specified number of days have passed. For example: If on the 15th of a month, in the morn-
ing, you submit an object restore request with a specified restore period of 3 days, then -- with 3 days
having passed by the morning of the 18th -- the object's restore duration will end at 00:00 (midnight) of
the 19th.

Note In the case of objects that have been tiered to Spectra BlackPearl, if the tape on which an object
resides has been ejected the restore attempt will fail and an error will be written to the S3 application
log. The logged error message will indicate the ID of the tape that needs to be reinserted in order to
restore the object.

5.4.6.1. Icons for Transitioned or Restored Objects

In your object list display, the document icon to the left of object names will indicate if an object is transitioned,
transitioning, restored, or restoring. The icons feature right-pointing or left-pointing red or blue arrows.

259

Chapter 5. Cloudian Management Console (CMC)

Icon Meaning

Object is in the process of transitioning to a remote tiered storage system.

Object has been transitioned to a remote tiered storage system.

A copy of the transitioned object is in the process of being restored to the local Hyper-
Store S3 service. Download of the object is not yet supported.

A copy of the transitioned object has been restored to the local HyperStore S3 service.
Download is supported.

5.4.6.2. Deleting an Auto-Tiered Object

If you want to delete an object that has been auto-tiered, you can do so by deleting the object through the
Objects interface, just like any other object. You do not need to restore the object first.

IMPORTANT ! Do not overwrite or delete tiered objects directly through the destination system's
interfaces. Doing so will cause a discrepancy between the local metadata in HyperStore and the
actual data in the destination bucket. If you want to overwrite or delete tiered objects, do so through
HyperStore interfaces (such as the CMC or an S3 application accessing the HyperStore S3 Service). In
the case of auto-tiering from one HyperStore region to another HyperStore region, any overwriting or
deleting of objects should be done through the source bucket not the destination bucket.

5.4.6.3. Restoring Auto-Tiered Object Versions

If you have versioning configured on your bucket as well as auto-tiering, then it may be that certain versions
of your objects have been auto-tiered to an external destination system. A common configuration is to have
object versions get auto-tiered after they become non-current. For example, the first version of an object would
get auto-tiered after a second version of that same object is uploaded to the local system; and the second ver-
sion would get auto-tiered after a third version of the object is locally uploaded.

If you have your bucket configured for auto-tiering of non-current object versions, retrieving object versions
works like this:

l In the Objects interface, click Show Versions so that all object versions display. If you are using auto-
tiering of non-current object versions, typically the newest version of each object will be in your local
bucket and older versions of each object will have been auto-tiered to the external destination system
(as indicated by the special icon next to transitioned object versions). You can retrieve the current
object version (stored locally) in the usual way, by simply clicking on the object version name.

l If your bucket's auto-tiering configuration allows for streaming GETs of auto-tiered objects (which is the
default configuration), you can retrieve auto-tiered non-current object versions by clicking on the ver-
sion name of the non-current object version that you want to retrieve.

l If your bucket's auto-tiering configuration does not allow for streaming GETs of auto-tiered objects, the
way to locally retrieve an auto-tiered non-current object version is to restore it by clicking the Restore

260

5.4. Objects

button to the right of the object version. In the number of days field that appears, enter the number of
days for which you want the restored object version to be locally available in your HyperStore S3 ser-
vice.

Note that restore does not happen instantly — it can take up to six hours before an auto-tiered object ver-
sion is restored to your local HyperStore S3 service (or up to nine hours for object versions that have
been auto-tiered to Amazon Glacier). In the interim, the object version is marked with a special icon that
indicates that it’s in the process of being restored. During this stage you cannot download the object ver-
sion.

After an object version has been restored (as indicated by a different special icon), you can download it
in the normal way.

5.4.7. Delete anObject
In the Objects interface, first select the bucket that you want to work with. Then in the object list that displays for
that bucket, find the object that you want to delete. To delete the object, click Delete at the right side of the
object's display row. After you click OK in the confirmation dialog, the object is deleted.

To delete multiple objects from storage, click on the checkboxes to the left of the object names, and then click
the Delete button at the bottom right of the Objects interface. After you click OK in the confirmation dialog, the
objects are deleted.

Note Deleting an object through the CMC interface (which on the back end calls the S3 DELETE
Object API method or the S3 DELETE Multiple Objects API method) results in the system marking the
object as having been deleted. However the actual deletion of object data from disk will not occur until
the next automatic running of the object deletion batch processing job. By default this batch processing
of object data deletes runs hourly on each node. The frequency with which the batch processing job
runs is configurable by the "cloudian.delete.queue.poll.interval" (page 566) property in mts.-
properties.erb.

5.4.7.1. Deleting an Object Version

If you have versioning enabled on your bucket, and you want to delete a particular version of an object, in the
Objects interface click Show Versions. When versions are shown, under each object name the interface lists
all stored versions of that object, ordered from the current (most recently uploaded) version to the oldest ver-
sion.. Each version is identified by a system-generated alphanumeric identifier, and for each version the
upload timestamp is shown (the date and time that particular version of the object was uploaded to the system).
To delete a version of an object, click Delete at the right side of the object version's display row. After you click
OK in the confirmation dialog, the object version is deleted.

Note Deleting any one version of any object -- including the newest version -- does not delete the
other versions of the object.

If you delete a versioned object when the Objects interface is in "Hide Versions" mode, it will appear
that the object has been entirely deleted. But in fact only the newest version is deleted, and all other ver-
sions of the object remain in the system. You can see this if you click Show Versions.

261

Chapter 5. Cloudian Management Console (CMC)

To delete multiple versions of an object, click on the checkboxes to the left of the object versions, and then click
the Delete button at the bottom right of the Objects interface. After you click OK in the confirmation dialog, the
object versions are deleted.

5.4.7.2. Deleting an Auto-Tiered Object

See "Deleting an Auto-Tiered Object" (page 260).

5.5. Users & Groups
The Users & Groups tab contains the following functions:

l Manage Users

l Manage Groups

l Rating Plan

l Account Activity

l Whitelist

5.5.1. Manage Users
Path: Users & Groups → Manage Users

Supported tasks:

l "Add a User" (page 263)

l Work with existing users:

o "Retrieve a User or List of Users" (page 265)

o "Edit or Suspend a User" (page 266)

o "View or Edit a User's Security Credentials" (page 268)

o "Set Quality of Service (QoS) Controls" (page 285)

o "Manage a User's Stored Objects" (page 269)

o "Delete a User" (page 270)

262

5.5. Users & Groups

5.5.1.1. Add a User

IMPORTANT ! For a user who belongs to a group that is enabled for LDAP-based authentication:

* If you want the user to be authenticated against the LDAP system when he or she logs in to the CMC,
do not create the user here. Instead, just have the user log into the CMC with their LDAP credentials
and upon that first log-in the CMC will automatically create the user in the HyperStore system. Note
however that the user name must meet the character restrictions described under "User ID" below. For
example, spaces are not allowed in user names.

* If you want the user to be authenticated by a CMC-based password rather than authenticating against
the LDAP system, create the user here. The CMC will not use LDAP-based authentication for users cre-
ated through the Add New User interface described below.

To add a user:

1. In the CMC's Manage Users page, click New User. This opens the Add New User panel.

2. In the Add New User panel, complete the following user information:

User ID (mandatory)

l Must be unique within the group.

l Only letters, numbers, dashes, and underscores are allowed. No spaces or special characters.

l By default the maximum length is 64 characters. This maximum is configurable by the setting
common.csv: "cloudian_userid_length" (page 514).

l The following user IDs are reserved for system use and are not available to individual users:
"anonymous", "public", "null", "none", "admin", "0".

Note The character rules for the user IDs of system administrators are more strict:
* Maximum length = 26 characters (this is not configurable)
* Only lower case letters, numbers, and underscores are allowed
* Must start with a letter
* Cannot end with an underscore

User Type (mandatory)

From the drop-down list select the type of user that you want to create:

263

Chapter 5. Cloudian Management Console (CMC)

l User -- A regular user of the storage service. He or she will be able to use the CMC to create
storage buckets, upload and download objects, display reports on their service usage, and man-
age their service access credentials.

l Group Admin -- An administrator of a particular group of storage service users. He or she will be
able to use the CMC to perform administrative functions for the group, such as adding users or
setting user-level QoS profiles. A group admin has a storage service account and can upload
their own objects to storage. A group admin can also manage stored objects on behalf of par-
ticular users within the group.

l System Admin -- A system administrator. He or she will be able to use the CMC to perform a
variety of system administration and service administration tasks. System admins do not have a
storage service account and cannot upload their own objects to storage. However, system
admins can manage stored objects on behalf of particular service users.

Group Name (mandatory)

From the drop-down list choose the group in which the new user will be created.

This field is hidden and not relevant if User Type is System Admin. All system admin users belong to the
System Admin group.

Password / Confirm Password (mandatory)

The user's password for logging into the CMC.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

Note You can optionally configure HyperStore to require a higher minimum password length.
You can also optionally configure additional password restrictions such as a password expir-
ation period, a restriction against a user's new password being too similar to their previous pass-
word, a restriction on password reuse, and a restriction against too-frequent password changes.
In common.csv, see "user_password_min_length" (page 527) and the subsequent settings.

More (optional; includes rating plan assignment)

When you click "More" these additional optional fields display:

* Full Name (maximum 64 characters by default. This maximum is configurable by the setting
common.csv: "cloudian_userid_length" (page 514).)

* Address and contact information

Rating Plan

Rating plan to assign the user for billing calculation purposes. A new user's rating plan assign-
ment defaults to whatever rating plan you've assigned to the group to which the user belongs. If

264

5.5. Users & Groups

you assign a user a different rating plan than the plan assigned to his or her group, the individual
plan assignment will be applied to that user rather than the group default plan.

If you don't choose a rating plan for the user, the user is automatically assigned the default rating
plan for the user's group.

If your HyperStore system has multiple service regions, rating plan assignment is on a per-region
basis. A "Region" drop-down list displays which includes each of your region names. For each
region, assign the user a rating plan that will apply to the user's service use within that region.

3. Click Save.

5.5.1.2. Retrieve a User or List of Users

In the CMC's Manage Users page you can retrieve a single user or a filtered list of users.

1. Select or enter your user list filtering criteria. You can filter by:

Search for User By ID

Specify a user ID prefix to retrieve a list of users whose IDs start with that prefix.

Specify a complete user ID if you want to retrieve just that one user.

This field is case-sensitive.

Leave this field blank if you want to filter exclusively by the other criteria.

Group Name

This is a drop-down list of group names in the system.

Note If you have more than 100 groups in your system this is implemented as a text input field
with auto-complete (rather than a drop-down list).

User Type

l User — Regular service users.

l Group Admin — Group admin users.

l All — Regular service users, group admin users, and system admin users.

User Status

l Active — Users who are currently allowed service access.

l Inactive — Users whose service access credentials have been deactivated but who have not
been deleted from the system. They may still have objects in storage.

l All — Active users and inactive users.

Note The CMC does not support retrieving a list of users who have been deleted from the sys-
tem. If you need to retrieve a list of deleted users, you can do so through the Admin API -- see
GET /user/list.

2. Click Search. Your filtered search results then display in the lower part of the page.

265

Chapter 5. Cloudian Management Console (CMC)

You can then take any of the following actions regarding the retrieved user(s):

l "Edit or Suspend a User" (page 266)

l "View or Edit a User's Security Credentials" (page 268)

l "Set Quality of Service (QoS) Controls" (page 285) for a user

l "Manage a User's Stored Objects" (page 269)

l "Delete a User" (page 270)

5.5.1.3. Edit or Suspend a User

1. Use the CMC's Manage Users page to "Retrieve a User or List of Users" (page 265).

2. In the "Actions" column for the user that you want to edit, click Edit. This drops down a panel for editing
the user’s attributes.

3. Make your desired changes to the user’s attributes:

Active User

The "Active User" checkbox is in the upper right corner of the Edit User panel.

l Active User checkbox checked — User is active. User has access to the storage service and the
CMC.

l Active User checkbox unchecked — User is suspended. User will be denied access to the stor-
age service and the CMC. However, the user will remain in the system and their objects will
remain in storage.

Note If you want to remove a user entirely and have the system delete the user's stored objects,
delete the user rather than just suspending the user.

User Type

l User -- Regular user of the storage service. He or she will be able to use the CMC to create stor-
age buckets, upload and download objects, display reports on their service usage, and manage

266

5.5. Users & Groups

their service access credentials.

l Group Admin -- An administrator of a particular group of storage service users. He or she will be
able to use the CMC to perform administrative functions for the group, such as adding users or
setting user-level QoS profiles. A group admin has a storage service account and can upload
their own objects to storage. A group admin can also manage stored objects on behalf of par-
ticular users within the group.

l System Admin -- System administrator. He or she will be able to use the CMC to perform a vari-
ety of system administration and service administration tasks. System admins do not have a stor-
age service account and cannot upload their own objects to storage. However, system admins
can manage stored objects on behalf of particular service users.

Note You cannot change a regular user’s or group administrator’s User Type to System
Admin. Also, you cannot change a system administrator’s User Type to anything other
than System Admin.

Canonical ID

The system automatically generates a unique canonical ID for every user. This ID cannot be edited.

Rating Plan

Use the "Rating Plan" drop-down list to assign the user a rating plan for billing calculation purposes. If
you assign a user a different rating plan than the plan assigned to his or her group, the individual plan
assignment will be applied to that user rather than the group default plan.

Since system administrator user IDs do not have their own S3 service accounts, the "Rating Plan" drop-
down list does not display if you are editing a system admin user.

Note for multi-region systems

If your HyperStore system has multiple service regions, rating plan assignment is on a per-region basis.
A "Region" drop-down list displays which includes each of your region names. For each region, assign
the user a rating plan that will apply to the user’s service use within that region, clicking Save each time.

Full name and contact information (click 'More' to display these fields)

User's full name (maximum length is 64 characters by default; This maximum is configurable by the set-
ting common.csv: "cloudian_userid_length" (page 514).) and contact information.

Note If the user is configured to be authenticated against an external LDAP system rather than
by a CMC-based password, the edit user interface will display some text indicating that the user
is LDAP-enabled. This is not editable. Whether or not a user is LDAP-enabled is determined at
the time that the user is created and this cannot be changed subsequently.

When LDAP is enabled for a user, the CMC authenticates the user against their password
stored in the LDAP server. The password that’s stored in the CMC for such a user is simply a sys-
tem-generated random string that is not actually used for authentication.

4. Click Save.

267

Chapter 5. Cloudian Management Console (CMC)

5.5.1.4. View or Edit a User's Security Credentials

1. Use the CMC's Manage Users page to "Retrieve a User or List of Users" (page 265).

2. In the "Actions" column for the user that you want to edit, click Security Credentials. This displays a
panel for changing the user's CMC sign-in password and viewing and managing the user's S3 access
credentials.

Note If the user is an LDAP-based user, in the CMC "Sign-In Credentials" section of the Secur-
ity Credentials page does not display. Instead you should manage the user's password in your
LDAP system.

3. Take the desired action:

l To set a new CMC sign-in password for the user, enter the password in the "New Password"
field and in the "Confirm Password" field, then click Change Password.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

268

5.5. Users & Groups

Note You can optionally configure HyperStore to require a higher minimum password
length. You can also optionally configure additional password restrictions such as a pass-
word expiration period, a restriction against a user's new password being too similar to
their previous password, a restriction on password reuse, and a restriction against too-fre-
quent password changes. In common.csv, see "user_password_min_length" (page
527) and the subsequent settings.

l To view the S3 secret access key that corresponds to an access key ID, to the right of the
access key ID click View Secret Key. A secret key display box appears which enables you to
view the user's secret key and to copy it using <Ctrl>-c if you want to. Note that the OK and
Cancel buttons have no effect other than to close the secret key display box.

l To activate or deactivate an S3 access key, to the right of the displayed access key ID click
Activate or Inactivate.

l To create a new S3 access key click Create New Key. A new access key ID then displays in
the access key list.

l To delete an S3 access key, to the far right of the displayed access key ID click Delete. You will
be asked to confirm that you want to delete the key.

4. When you're done click Close to close the User Credentials panel.

5.5.1.5. Manage a User's Stored Objects

The CMC supports allowing administrators to access and manage data stored by regular users. By default this
capability is disabled. To enable this capability, log into the Puppet master node, open the configuration file
common.csv, and set "cmc_view_user_data" (page 541) to true (to allow this capability to system admin-
istrators and also group administrators [in regard to their own group members]) or to SystemAdmin (to allow
this capability only to system administrators). Then use the installer to push your changes out to the cluster
and to restart the CMC. You can then access users' data via the CMC as follows:

1. Use the Manage Users page to "Retrieve a User or List of Users" (page 265).

2. In the "Actions" column for the user click View User Data. This opens the Buckets & Objects page for
that user.

You can then work with the user's buckets and objects:

l "Add a Bucket" (page 218)

l "Set Bucket Properties" (page 221)

l "Delete a Bucket" (page 244)

l "Create or Delete a "Folder"" (page 245)

l "Upload an Object" (page 246)

l "Set Object Properties" (page 248)

l "List or Search for Objects" (page 257)

l "Download an Object" (page 258)

l "Delete an Object" (page 261)

l "Restore an Auto-Tiered Object" (page 258)

269

Chapter 5. Cloudian Management Console (CMC)

Note The Buckets & Objects page will continue to be populated with a view of this user’s data
throughout your CMC login session, unless you use the Manage Users page to switch to viewing a dif-
ferent user’s data.

5.5.1.6. Delete a User

You can delete a HyperStore service user from the system.

IMPORTANT ! If you delete a user, the user's stored buckets and objects will be deleted from the
system. If you want to temporarily deny service access to a user without deleting their stored buckets
and objects, don’t delete the user. Instead, suspend the user by using the user Edit function.

To delete a user:

1. Use the CMC's Manage Users page to "Retrieve a User or List of Users" (page 265).

2. In the "Actions" column for the user that you want to delete, click Delete.

Note You cannot delete the default system administrator account. This is not allowed.

3. When prompted by the system, confirm that you want to delete the user.

5.5.2. ManageGroups
Path: Users & Groups → Manage Groups

Supported tasks:

l "Add a Group" (page 271)

l Work with existing groups:

o "Retrieve a Group or a List of Groups" (page 275)

o "Edit a Group" (page 276)

o "Set Quality of Service (QoS) Controls" (page 285)

o "Delete a Group" (page 277)

270

5.5. Users & Groups

5.5.2.1. Add a Group

1. In the CMC's Manage Groups page, click New Group. This opens the Add New Group panel.

2. In the Add New Group panel, complete the group information:

Group Name (mandatory)

l Must be unique within your entire HyperStore service.

l Only letters, numbers, dashes, and underscores are allowed.

l Maximum allowed length is 64 characters.

Note If you intend to enable LDAP authentication for this group (as described further below),
the "Group Name" should if possible be the exact name of the group as it exists in the LDAP sys-
tem. If the "Group Name" field's character restrictions prevent you from using the group's exact
name from LDAP, enter something similar as the "Group Name" and then use the "LDAP Org
Unit" field to specify the group's exact name from LDAP.

Group Description (optional)

l Maximum allowed length is 64 characters.

Rating Plan (optional)

l Rating plan to assign to the group for billing calculation purposes. This rating plan will apply to
each user in the group, with the exception of any users to whom you individually assign a dif-
ferent rating plan.

l If you don’t choose a rating plan for the group, the "Default Rating Plan" (page 281) (Default-
RP) is automatically assigned to the group.

If your service deployment has multiple service regions, rating plan assignment is on a per-
region basis. A "Region" drop-down list displays which includes each of your region names. For
each region, assign the group a rating plan that will apply to the group’s service use within that
region.

Enable S3 endpoints display filter (optional)

l Select this option if you want to filter the S3 endpoints (S3 service URLs) that this group's users

271

Chapter 5. Cloudian Management Console (CMC)

will see when they log into the CMC and they go to their Security Credentials page. If you
select this checkbox you will then be able to select which of the system's configured S3 HTTP
endpoints, S3 HTTPS endpoints, and S3 website endpoints will display for this group's users in
the Security Credentials page.

l If you do not select this option, then by default all of the system's S3 HTTP endpoints, S3 HTTPS
endpoints, and S3 website endpoints will display for this group's users when they view their
Security Credentials page.

Note If you enable the S3 endpoints display filter and choose the endpoints to display for this
group's users, and then at a later point in time you delete one of those S3 endpoints from the
HyperStore system configuration and replace it with a different endpoint (by using the installer's
function for changing service endpoints), then you must subsequently edit the group con-
figuration to update the group's S3 endpoint display filtering. Otherwise neither the original S3
endpoint nor the replacement S3 endpoint will display for the group.

3. Optionally, enable and configure LDAP authentication for the group, so that members of the group can
log into the CMC with their LDAP credentials. For more information see "Enabling and Configuring
LDAP Authentication for Group Members" (page 272) below.

4. Click Save.

5.5.2.1.1. Enabling and Configuring LDAP Authentication for Group Members

Optionally you can enable LDAP authentication for the group by selecting the "Enable LDAP Authentication"
checkbox. When LDAP authentication is enabled for a group, new users who belong to the group can log into
the CMC using their LDAP credentials and the CMC will automatically provision those users into Hyper-
Store (including establishing S3 access credentials for the users, for those who are not system admin users).
Subsequently whenever such users log in, the CMC will recognize them as registered HyperStore users but
will continue to authenticate them against the LDAP system rather than by reference to CMC-based pass-
words.

Note For more background information on the LDAP integration feature see "LDAP Integration"
(page 131).

When you select the "Enable LDAP Authentication" checkbox, additional fields display in which you can con-
figure how the CMC will authenticate this group's members against your Active Directory or other LDAP sys-
tem.

272

5.5. Users & Groups

LDAP Org Unit (optional)

The group's name from the LDAP system. This would typically be the group's "ou" (Organization Unit)
value in the LDAP system, but could also be for example the "l" (Location) value or "memberOf" value --
depending on which LDAP attribute is to be used to identify users' group membership when the
CMC authenticates them against the LDAP system.

If you use the variable {groupId} in any of the other LDAP authentication configuration attributes, when
implementing LDAP authentication HyperStore will automatically replace the variable with the LDAP
Org Unit value.

LDAP Server URL (mandatory)

Use this attribute to specify the URL that the CMC should use to access the LDAP Server when authen-
ticating users in this group. For example:

ldap://my.ldap.server:389

Note that if you use ldaps (LDAP secured by SSL/TLS), the LDAP server must use a CA-verified cer-
tificate not a self-signed certificate. HyperStore does not support connecting to an LDAP server that’s
using a self-signed SSL certificate.

LDAP User DN Template (mandatory)

Use this attribute to specify how users within this group will be authenticated against the LDAP system
when they log into the CMC. It is a template that defines how user names supplied during CMC login
will be mapped to user-identifying information in the LDAP system. Two typical ways of configuring this
template are:

l Distinguished Name. With this approach the template specification would include the LDAP attribute
"uid" set to equal the CMC token "{userId}" (as shown in the example below), the LDAP attribute "ou" set

273

Chapter 5. Cloudian Management Console (CMC)

to equal the group's organizational unit value from the LDAP system, and the domain components from
LDAP. For example:

uid={userId},ou=engineering,dc=my-company,dc=com

With the DN template above, LDAP-enabled users from this group will log in with their LDAP uid value
as their CMC user ID. During login the CMC will also verify that the ou value in the user's LDAP record
matches against the ou value from the template.

Note If you are configuring LDAP authentication for the System Admin group, use the Distin-
guished Name approach for the user DN template. Also, after enabling and configuring LDAP
authentication for the System Admin group in the CMC, see "Additional Configuration Step
Required for LDAP Authentication of System Admin Group Users" (page 275).

l userPrincipalName. With this approach the template would simply map the LDAP attribute "user-
PrincipalName" to the CMC token "{userId}", like this:

userPrincipalName={userId}

With the approach above LDAP-enabled users from this group will log in with their LDAP user-
PrincipalName value (such as <user>@<domain>) as their CMC user ID. Optionally, to implement addi-
tional LDAP-based authorization filters such as the users' group or location, you can use the "LDAP
Search", "LDAP Search User Base", and "LDAP Match Attribute" settings as described below.

LDAP Search attributes (optional)

If you want to establish a LDAP-based user authorization filter to complement the user authentication
template that you set with the "LDAP User DN Template" field, then use the "LDAP Search", "LDAP
Search User Base", and "LDAP Match Attribute" fields to configure the filter. If you do so, then LDAP-
enabled users from this group when logging in to the CMC will need to meet the requirements of the
authentication template and also the requirements of the filter.

LDAP Search

Use the "LDAP Search" field to specify the user identifier type that you used in the "LDAP User
DN Template" field, in format "(<LDAP_user_identifier_attribute>={userId})". This is used to
retrieve a user’s LDAP record in order to apply the filtering. Here are two examples:

l (uid={userId})

l (userPrincipalName={userId})

LDAP Search User Base)

Use the "LDAP Search User Base" field to specify the LDAP search base from which the CMC
should start when retrieving the user's LDAP record in order to apply filtering. For example,
dc=my-company,dc=com. Or for another example, uid={userId},ou=engineering,dc=my-com-
pany,dc=com .

LDAP Match Attribute

Use the "LDAP Match Attribute" field to specify an LDAP attribute value against which LDAP-
enabled users in this group must match in order to be authorized to log into the CMC. Use this
format: <attribute>=<value>. Here are two "LDAP Match Attribute" examples:

l l=California

l memberOf=Sales

274

5.5. Users & Groups

Remember to click Save after configuring LDAP authentication for the group.

Important Note About Provisioning of Users in a Group That Is Enabled for
LDAP Authentication

Within a HyperStore group that has LDAP authentication enabled you can have both LDAP-authenticated
users and (if you wish) users who are authenticated by a CMC-based password rather than LDAP:

l For users who you want to be authenticated by LDAP, do not manually create those users through
the CMC's Add New User interface (or the Admin API PUT /user method). Instead, let the CMC create
those users automatically when they log in for the first time and are successfully authenticated against
the LDAP system.

l Only use the CMC's Add New User interface (or Admin API PUT /user method) if you want to also have
some users who are not LDAP-authenticated. Users who you create through the Add New User inter-
face or Admin API will be authenticated by their CMC-based passwords -- not by the LDAP system.

Note If you want a group administrator to be authenticated by LDAP, have him or her log into the
CMC using their LDAP credentials. Once this occurs and the CMC automatically provisions them into
the system as a regular user, you can subsequently edit their user profile (using the CMC’s Edit User
function) to promote them to the group admin role.

Additional Configuration Step Required for LDAP Authentication of System Admin Group
Users

For LDAP authentication to work for system admin users when they log into the HyperStore Shell, along with
enabling LDAP for the System Admin group as described above you must also perform this additional con-
figuration step:

1. Log in to the Puppet Master node (as root or as a locally authenticated HyperStore Shell user).

2. Set the Distinguished Name for binding to your LDAP service, and the password:

hsctl config set hsh.ldap.bindDN=<bind Distinguished Name>
hsctl config set hsh.ldap.bindPassword=<bind password>
hsctl config apply hsh

5.5.2.2. Retrieve a Group or a List of Groups

In the CMC's Manage Groups page you can retrieve a single group or a filtered list of groups.

1. In the "Search for a Group By Name" field:

l To retrieve just one specific group, enter the full group name. This field is case-sensitve.

Note To retrieve the System Admin group, enter "0" as the group name.

l To retrieve a group list filtered by group name prefix, enter the prefix.

l To retrieve a list of all groups, leave this field empty.

2. Click Search. Your filtered search results then display in the lower part of the page.

275

Chapter 5. Cloudian Management Console (CMC)

5.5.2.3. Edit a Group

[CMC Interface]

You can change attributes of an existing group, such as the group's rating plan assignment, service status, or
LDAP integration.

1. Use the CMC's Manage Groups page to "Retrieve a Group or a List of Groups" (page 275).

Note If you want to retrieve the System Admin group in order to edit that group's attributes, the
group name is 0.

2. In the "Actions" column for the group click Edit. This displays a panel for editing group attributes.

Note If you are editing the System Admin group, only the LDAP Authentication settings will dis-
play. The other attributes are not applicable to the System Admin group.

3. Make your desired changes to the group attributes:

Active Group

l Active Group checkbox checked — Group is active. Group’s users have access to the storage
service and the CMC.

l Active Group checkbox unchecked — Group is suspended. All the users in the group — includ-
ing the group administrator(s) — will be denied access to the storage service and the CMC.
However, the group’s users will remain in the system and their objects will remain in storage.

Group Description

l Maximum allowed length is 64 characters.

Rating Plan

l Use the "Rating Plan" drop-down list to assign the group a rating plan for billing calculation pur-
poses. This rating plan will apply to each user in the group, with the exception of any users to
whom you individually assign a different rating plan.

Note for multi-region systems

If your service deployment has multiple service regions, rating plan assignment is on a per-

276

5.5. Users & Groups

region basis. A "Region" drop-down list displays which includes each of your region names. For
each region, assign the group a rating plan that will apply to the group’s service use within that
region.

Enable LDAP Authentication

l For information about this option, in the "Add a Group" section see "Enabling and Configuring
LDAP Authentication for Group Members" (page 272) (the LDAP configuration interface is the
same whether you're adding a group or editing an existing group).

Note If you enable LDAP Authentication for an existing group to which users have
already been added, those existing users will continue to be authenticated by reference
to their CMC-based passwords -- not by LDAP authentication. LDAP authentication will
be supported only for new users. For more details see "Enabling and Configuring LDAP
Authentication for Group Members" (page 272).

Enable S3 endpoints display filter (optional)

l Select this option if you want to filter the S3 endpoints (S3 service URLs) that this group's users
will see when they log into the CMC and they go to their Security Credentials page. If you
select this checkbox you will then be able to select which of the system's configured S3 HTTP
endpoints, S3 HTTPS endpoints, and S3 website endpoints will display for this group's users in
the Security Credentials page.

l If you do not select this option, then by default all of the system's S3 HTTP endpoints, S3 HTTPS
endpoints, and S3 website endpoints will display for this group's users when they view their
Security Credentials page.

Note If you enable the S3 endpoints display filter and choose the endpoints to display for this
group's users, and then at a later point in time you delete one of those S3 endpoints from the
HyperStore system configuration and replace it with a different endpoint (by using the installer's
function for changing service endpoints), then you must subsequently edit the group con-
figuration to update the group's S3 endpoint display filtering. Otherwise neither the original S3
endpoint nor the replacement S3 endpoint will display for the group.

4. Click Save.

5.5.2.4. Delete a Group

Note You cannot delete a group that currently has users in it. You must delete the users first, one by
one (the CMC does not currently support bulk deletion of users). After deleting all the users you can
delete the group.

1. Use the CMC's Manage Groups page to "Retrieve a Group or a List of Groups" (page 275).

2. In the "Actions" column for the group that you want to delete, click Delete.

3. When prompted by the system, confirm that you want to delete the group.

277

Chapter 5. Cloudian Management Console (CMC)

5.5.3. Rating Plan
Path: Users & Groups → Rating Plan

Supported tasks:

l "Add a Rating Plan" (page 278)

l "Edit a Rating Plan" (page 280)

l "Delete a Rating Plan" (page 282)

Note The Rating Plan page is for creating and maintaining rating plans. It is not for assigning a rating
plan to users. To assign a rating plan to a group of users, use the CMC's Manage Groups interface. To
assign a rating plan to a specific user, use the Manage Users interface.

For an overview of HyperStore user billing functionality, see "Usage Reporting and Billing Feature
Overview" (page 138).

5.5.3.1. Add a Rating Plan

Rating plans specify pricing for various types and levels of user activity, to facilitate billing. Through the CMC's
Rating Plan page you can create and configure new rating plans.

Note HyperStore includes a pre-configured Default Rating Plan named "Default-RP". If you wish you
can edit the contents of that plan. There is also a pre-configured plan named "Whitelist-RP" which sup-
ports the HyperStore whitelist feature.

To create a new rating plan:

1. In the Rating Plans page click Add Rating Plan. This opens the Add Rating Plan panel.

278

5.5. Users & Groups

2. Assign the plan a unique ID, and optionally a Name.

3. From the Currency drop-down list, choose the currency units on which the plan’s pricing structure will
be based (for example, USD for U.S. dollars).

4. Specify the billing rates that will constitute the rating plan. You can specify billing rates per:

l Average GBs of data in storage during the calendar month for which the bill is calculated ("Stor-
age-Size Rates")

l GBs of data uploaded to the system. ("Data-Transfer-IN Rates")

l GBs of data downloaded from the system. ("Data-Transfer-OUT Rates")

l 10,000 HTTP GET or HEAD requests. ("HTTP[S] GET/HEAD Rates")

l 10,000 HTTP PUT or POST requests. ("HTTP[S] PUT/POST Rates")

l 10,000 HTTP DELETE requests. ("HTTP[S] DELETE Rates")

IMPORTANT ! If you want to bill for data upload or download volume, or for HTTP request
volume, you must enable the "Track/Report Usage for Request Rates and Data Transfer
Rates" (page 344) setting on the CMC’s Configuration Settings page. By default this setting is
disabled and the system does not maintain per-user HTTP request counts and data transfer byte
counts.

Note For an example of these rates applied to a user’s bill, see "Example of a Rating Plan
Applied to Calculate a User’s Monthly Bill" (page 146)

For each rated activity you can establish either a single-tier or multi-tier pricing structure, based on activ-
ity level.

With single-tier pricing, the per-unit rate charged for the activity is not impacted by the activity level;
whether the activity level is low or high, the per-unit charge remains the same. The initial display for
each rated activity accommodates single-tier pricing.

For example, in the screen below, for Storage-Size Rates, a single-tier pricing structure can be estab-
lished by simply specifying a Rate Per GB Per Month. In this example, the rate is $2 per GB-month. That

279

Chapter 5. Cloudian Management Console (CMC)

same per GB-month rate applies whether a user stores, for instance, 10 GB-month ($20 charge) or 100
GB-month ($200 charge).

To create a multi-tier pricing structure for a rated activity, first click on the activity type (for example,
"Data-Transfer-IN Rates"). Then click Add once for each additional pricing tier that you want to specify,
beyond a single tier. For example, in the screen below, Add has been clicked twice to enable a three
tier pricing structure for Data-Transfer-IN Rates. In this example, the first five GB of data uploaded during
the billing period are priced at $2 per GB; the next five GB are priced at $2.50 per GB; and any uploads
beyond that level (above the 10 GBs encompassed by the first two tiers) are priced at $3 per GB.

Note that the numbers that you enter in the "Rate Per" column signify units of the currency that you
chose in the upper part of the Add Rating Plan panel. You can use decimals if you want; for example, if
your currency is dollars, you can enter ".1" in the "Rate Per" column to indicate a charge of 10 cents (.1
dollars) per unit of activity.

Note For HTTP request rates, the pricing is based on blocks of 10,000 requests. So for
example, if you want the first 50,000 requests to be charged at a certain price per block of
10,000, then in the "Number of 10,000 Requests" field for that tier, enter 5 — not 50,000.

5. When you’re done creating the new rating plan, click Save at the bottom of the Add Rating Plan panel.
The plan will then appear in the Rating Plans list.

5.5.3.2. Edit a Rating Plan

1. In the CMC's Rating Plan page click Edit to the right of the plan name. This opens a panel in which you
can edit the plan attributes.

280

5.5. Users & Groups

2. Edit the plan attributes. For attribute descriptions see .

3. Click Save.

Note When billing is calculated at the end of a month, the most current version of the rating plan is
applied to the whole month’s activity. For example, suppose you have a "Gold" rating plan. Late in Janu-
ary, you edit the pricing structure of the Gold plan. At the end of January when bills are generated for
customers on the Gold plan, all their January activities will be billed in a way that reflects the modified
pricing structure that you established in late January.

Note HyperStore includes a pre-configured Default Rating Plan named "Default-RP". If you wish you
can edit the contents of that plan. There is also a pre-configured plan named "Whitelist-RP" which sup-
ports the HyperStore whitelist feature.

5.5.3.3. Default Rating Plan

The Cloudian HyperStore system comes with a default rating plan (with unique ID "Default-RP". In the CMC's
Rating Plan page you can edit this plan but you cannot delete it.

Groups and users that you do not explicitly assign a rating plan will automatically be assigned the default rat-
ing plan.

The default rating plan’s currency is US dollars and the pricing structure is as follows:

l Storage billing

o First tier, up to 1 GB: $0.14 per GB-month

o Second tier, from 1+ GB to 6 GB: $0.12 per GB-month

o Third tier, above 6 GB: $0.10 per GB-month

l Data Transfer IN

o First tier, up to 1 GB: $0.20 per GB

o Second tier, above 1 GB: $0.10 per GB

281

Chapter 5. Cloudian Management Console (CMC)

l Data Transfer OUT

o First tier, up to 1 GB: $0.20 per GB

o Second tier, above 1 GB: $0.10 per GB

l HTTP GETs/HEADs

o First tier, up to 10 blocks of 10,000 (that is, up to 100,000 GETs/HEADs): $0.02 per 10,000
GETs/HEADs

o Second tier, above 10 blocks of 10,000 (above 100,000 GETs/HEADs): $0.01 per 10,000
GETs/HEADs

l HTTP PUTs/POSTs

o No tiering: $0.02 per 10,000 PUTs/POSTs

l HTTP DELETEs

o No charge for DELETEs

5.5.3.4. Delete a Rating Plan

In the CMC's Rating Plan page click Delete to the right of the name of the plan that you want to delete. After
you confirm that you want to take this action, the rating plan will be deleted from the system.

Note If you delete a plan that is currently assigned to some users, those users will be automatically
switched to their group default rating plan, or to the system Default Rating Plan ("Default-RP") if no
group default plan has been set.

You cannot delete the default rating plan, or the "Whitelist-RP" plan (which supports the HyperStore
whitelist feature).

5.5.4. Account Activity
Path: Users & Groups → Account Activity

Supported task:

l Generate a billable activity report for a specified user

282

5.5. Users & Groups

IMPORTANT ! Billing calculation is derived from hourly rollup usage data. The retention period for
hourly rollup usage data is configured by mts.properties.erb: "reports.rolluphour.ttl" (page 567). The
default retention period is 65 days. Once this rollup data is deleted it can no longer be used to generate
users' bills.

To generate a billable activity report for a user:

1. Choose a "Group Name" from the drop-down list and enter a "User ID" for the user.

2. Choose a "Time Period" from the drop-down list. The billing periods are calendar months. You can only
create a bill for a past, completed month; you cannot create a bill for the current, in-progress month. The
default is the most recent completed month.

3. Choose a "Region" from the drop-down list. Bills are calculated per service region. The CMC does not
currently support multi-region aggregate bill generation.

4. Choose a "Traffic Type" from the drop-down list. The options are "Normal" or "Whitelist". "Whitelist"
refers to request traffic that originates from white-listed source IP addresses (traffic subject to special pri-
cing), and is only an option if white-listing is enabled in the system. "Normal" refers to all other traffic.

5. Click Display Report to display activity and charges for the selected billing period.

The image below shows a sample report. The upper part displays summary report parameters including the
name of the rating plan that has been applied to the user’s activity. The lower middle shows the charging rules
from the rating plan (in this case, a three-tier charging structure for price per GB-month, based on the average
level of storage volume used), and the lower right shows the user’s usage level for the month (in this case 108
GB-months) and the resulting charges.

5.5.5. Whitelist
Path: Users & Groups →Whitelist

Supported tasks:

283

Chapter 5. Cloudian Management Console (CMC)

l Add or remove IP addresses from the whitelist

The Cloudian HyperStore billing whitelist feature enables service providers to specify a list of IP addresses or
subnets that are allowed to have free S3 traffic with the HyperStore system. For S3 requests originating from IP
addresses on the whitelist, a special rating plan is used that applies zero charge to all the traffic-related pricing
metrics:

l Price per GB data transferred in

l Price per GB data transferred out

l Price per 10,000 HTTP PUT requests

l Price per 10,000 HTTP GET requests

l Price per 10,000 HTTP DELETE requests

The billing whitelist feature affects only the pricing of traffic. It does not affect the pricing of data storage. For
data storage billing, users' regular assigned rating plan pricing is applied.

The special rating plan assigned to whitelisted addresses — the rating plan that prices traffic at "0" — has rat-
ing plan ID "Whitelist-RP". If you wish, you can edit this rating plan in the Rating Plan page of the CMC (for
example, if you want traffic originating from your whitelisted IP addresses to be specially priced but not free).

Note In the current release you can only have one whitelist, with only one rating plan applied to it.

Note If you are using load balancers in front of the HyperStore S3 Service, the whitelist feature will
only work if you use PROXY Protocol between the load balancers and the S3 Service. This protocol
allows the load balancers to pass the IP addresses of originating clients to the S3 Service along with
the S3 requests. For more information about enabling PROXY Protocol support on the S3 Service side,
see "s3_proxy_protocol_enabled" (page 530) in common.csv. For guidance on configuring the load
balancers consult with Cloudian Sales Engineering or Support.

Note that using the "X-Forwarded-For" HTTP header is not sufficient to support the whitelist feature.
You must use PROXY Protocol if you have load balancers in front of the S3 Service and want to use the
whitelist feature .

Note for multi-region systems

In a multi-region HyperStore deployment, the whitelist is applied the same across all regions. There is no sup-
port for region-specific whitelists.

To add or remove IP addresses from the whitelist:

1. In theWhitelist page, to the right of the whitelist name, click Edit. This opens the Edit Whitelist panel.

284

5.5. Users & Groups

2. If you want you can change the name of the whitelist ("Default Whitelist"), but you cannot change its ID
("Default-WL").

3. In the "IP/Subnet" box, enter IP addresses or subnets one at a time, pressing your keyboard’s Enter key
after each entry. You can enter as many as you want. (If you are editing a list that you created through
this dialog previously, you also have the option of removing IP addresses or subnets from the list.)

Note The system will validate IP addresses and subnets for correct syntax. The entire list will be
rejected if any address or subnet fails the syntax validation check.

4. After making your changes, click Save.

For billing purposes, changes that you make to the composition of the whitelist (by adding or deleting IP
addresses or subnets) will take effect starting with the next hourly roll-up of HyperStore usage data.

5.5.6. Set Quality of Service (QoS) Controls
Use the CMC’s Manage Users page and Manage Groups page to set Quality of Service (QoS) limits for users.

Note By default the HyperStore system’s enforcement of QoS restrictions is disabled. If you want to
use the QoS feature, then before setting specific QoS limits for users and groups you must go to the
CMC’s Configuration Settings page and enable QoS enforcement.

To set QoS limits:

1. Navigate to the QoS configuration panel for the type of QoS controls that you want to set. The table
below shows the path to each QoS panel. It also shows how each panel is pre-populated with default
settings.

QoS Task Path to Configuration Panel Configuration Panel Name Panel’s
Default
Values

Set a system
default user QoS
profile

In the Manage Users page, click
User QoS Default.

User QoS Limits: Defaults User QoS
Default.
Defaults to
"unlimited"
for all QoS

285

Chapter 5. Cloudian Management Console (CMC)

QoS Task Path to Configuration Panel Configuration Panel Name Panel’s
Default
Values

settings.

Set a default
user QoS profile
for members of a
group

In the Manage Groups page,
retrieve the group. Then for the
group click User QoS Group
Default.

User QoS Limits: Group
Defaults

Defaults to
system
default
user QoS
profile.

Set a user-spe-
cific QoS profile

In the Manage Users page,
retrieve the user. Then click Set
QoS for the user.

User QoS Limits: Overrides Defaults to
default
user QoS
profile for
the user’s
group.

Set a system
default group
QoS profile

In the Manage Groups page, click
Group QoS Default.

Group QoS Limits: Defaults Defaults to
"unlimited"
for all QoS
settings.

Set a group-spe-
cific group QoS
profile

In the Manage Groups page,
retrieve the group. Then click
Group QoS for the group.

Group QoS Limits: Overrides Defaults to
system
default
group
QoS pro-
file.

All QoS configuration panels have the same appearance and the same options, as shown in the sample
panel below:

2. Make your desired edits to the QoS limits. Note that if you deselect an "Unlimited" checkbox, a field
appears in which you can enter a numerical limit. The supported QoS limit types are described below.

Storage Quota (KB) — High Limit

Storage quota limit, in number of KBs

Implementation detail:

286

5.5. Users & Groups

l For user QoS— If a user’s total stored data reaches this limit, the user will be blocked from
uploading additional data until she deletes some of her currently stored data.

l For group QoS— If a group’s total stored data reaches this limit, all of the group’s users will be
blocked from uploading additional data until some of their currently stored data is deleted.

Storage Quota Count — High Limit

Storage quota limit, in total number of objects. Note that folders count as objects, as well as files

Implementation detail:

l For user QoS— If a user’s total stored data reaches this limit, the user will be blocked from
uploading additional data until she deletes some of her currently stored data.

l For group QoS— If a group’s total stored data reaches this limit, all of the group’s users will be
blocked from uploading additional data until some of their currently stored data is deleted.

Request Rate —Warning Limit

Request rate warning limit, in total number of HTTP requests per minute.

Implementation detail:

l For user QoS—On receipt of a first HTTP request from a user, a 60 second timer is started for
that user. If during the 60 seconds the total number of requests reaches the Request Rate Warn-
ing Limit, an INFO level message is written to the S3 Service’s application log. At the end of the
60 seconds, the request counter for the user is reset. Subsequently, the next request that comes
in from the user triggers the start of a new 60 second interval, and the process repeats. (Note
that the system does not inform the user that the warning threshold has been exceeded -- it only
writes the aforementioned log message.)

l For group QoS— The implementation is the same as for user QoS, except that it applies to
requests from all users in the group. For example, a request from any user in the group triggers
the start of the 60 second timer, and subsequent requests from any user in the group are coun-
ted toward the per-minute total.

HTTP DELETE requests are not counted toward Request Rate controls.

Request Rate — High Limit

Request rate maximum, in total number of HTTP requests per minute.

Implementation detail:

l For user QoS—On receipt of a first request from a user, a 60 second timer is started for that user
(the same timer described in Request Rate Warning Limit). If during the 60 seconds the number
of requests reaches Request Rate High Limit, the system temporarily blocks all requests from
the user. At the end of the 60 seconds the block on requests is released and the request counter
is reset. Subsequently, the next request that comes in from the user triggers the start of a new 60
second interval, and the process repeats.

l For group QoS— The implementation is the same as for user QoS, except that it applies to
requests from all users in the group. For example, a request from any user in the group triggers
the start of the 60 second timer, and subsequent requests from any user in the group are coun-
ted toward the per-minute total. If a block is triggered by the high limit being reached, the block
applies to all users in the group.

Data Bytes IN (KB/minute) — Warning Limit

Inbound data rate warning limit, in KBs per minute.

287

Chapter 5. Cloudian Management Console (CMC)

This works the same as described for the Request Rate Warning Limit, except what’s counted during
each timed 60 second interval is inbound kilobytes of data.

Data Bytes IN (KB/minute) — High Limit

Inbound data rate high limit, in KBs per minute.

This works the same as described for the Request Rate High Limit, except what’s counted during each
timed 60 second interval is inbound kilobytes of data. Note that if a block is triggered by the Data Bytes
IN (KB) High Limit being reached, the block applies to all HTTP request types (not just PUTs.)

Data Bytes OUT (KB/minute) — Warning Limit

Outbound data rate warning limit, in KBs per minute.

This works the same as described for the Request Rate Warning Limit, except what’s counted during
each timed 60 second interval is outbound kilobytes of data.

Data Bytes OUT (KB/minute) — High Limit

Outbound data rate high limit, in KBs per minute.

This works the same as described for the Request Rate High Limit, except what’s counted during each
timed 60 second interval is outbound kilobytes of data. Note that if a block is triggered by the Data Bytes
OUT (KB) High Limit being reached, the block applies to all HTTP request types (not just GETs.)

3. Click Save.

Deleting QoS Overrides to Restore Defaults
Each QoS configuration panel includes a Delete Overrides button. The table below shows what this button
does in each QoS panel.

QoS Configuration Panel What the Delete Overrides Button Does

User QoS Limits: Defaults Deletes all group-specific default user QoS profiles. Each
group’s default user QoS profile will revert to the system
default user QoS profile. (This action will not delete QoS
overrides set at the individual user level.)

User QoS Limits: Group Defaults Deletes all user-specific QoS profiles for users within a
group. All users in the group will revert to the default user
QoS profile for the group.

User QoS Limits: Overrides Deletes a user-specific QoS profile. The user will revert to
the default user QoS profile for the user’s group

Group QoS Limits: Defaults Deletes all group-specific group QoS profiles. All groups
will revert to the system default group QoS profile.

Group QoS Limits: Overrides Deletes a group-specific QoS profile. The group will revert
to the system default group QoS profile.

QoS Controls in a Multi-Region HyperStore System
In a multi-region HyperStore system, QoS controls are configured and enforced separately for each region.

288

5.6. IAM

If you have a multi-region system, a drop-down list of all your regions will display at the top of each QoS con-
figuration panel. Use the drop-down list to choose the region for which you are setting QoS controls. Be sure to
establish QoS limits for each region, clicking Save before moving on to the next region.

The QoS limits that you establish for a service region will be applied only to group and user activity in that par-
ticular region. For example, if you have a two-region HyperStore deployment with regions named "West" and
"East", you might set your QoS limits in the "West" region so that each user is allowed to store 20GB of data.
The 20GB storage cap applies only to user activity in your "West" region. You would also have a separate cap
configured for the "East" region. For example, users might also be allowed 20GB of storage in the "East" region
(for a total of 40GB per user across the entire multi-region system); or a different value might be configured for
the "East" region such as 10GB or 30GB.

5.6. IAM
The IAM tab contains the following functions:

l Manage IAM User

l Manage IAM Group

l Manage IAM Policy

Note For an overview of HyperStore's IAM feature, including limitations on the scope of HyperStore's
IAM support, see "HyperStore Support for the AWS IAM API" (page 991).

5.6.1. Manage IAM User
Path: IAM → IAM User

Supported tasks:

l "Add an IAM User" (page 290)

l "Select an IAM User to Work With" (page 291)

l "Manage an IAM User's S3 Access Keys" (page 291)

l "Manage an IAM User's Group Membership" (page 293)

289

Chapter 5. Cloudian Management Console (CMC)

l "Manage an IAM User's Permissions" (page 294)

l "Delete an IAM User" (page 296)

As a HyperStore account holder, you can create one or more IAM (Identity and Access Management) users
under your account. This is a way of enabling specified users to use the HyperStore S3 Service without giving
them the S3 access credentials associated with your root account and without giving them the full range of per-
missions associated with your root account. Note that all HyperStore S3 Service activity by IAM users under
your accountwill be counted toward your account usage.

5.6.1.1. Add an IAM User

Note When you create a new IAM user:
* The IAM user by default has no S3 service access or permissions. After creating an IAM user, gen-
erate an S3 access key for the user and grant the user whatever S3 permissions you wish to grant
them.
* IAM users are not allowed to log into the CMC. IAM users will need to use an S3 client application
other than the CMC to access the HyperStore S3 Service.

To create a new IAM user under your HyperStore user account:

1. In the Manage IAM User page, click Add New User. This opens the panel for adding a new IAM user.

2. In the new user panel, complete the user information:

User Name (mandatory)

l Only letters, numbers, dashes, and underscores are allowed.

l Each IAM user under a single parent HyperStore user account must have a unique IAM user
name.

Path (optional)

l The path is an optional way of identifying the user's location within an organizational structure.
For example you might specify a path such as "/MyCompany/London/".

l Specifying a path does not join the user into an IAM group -- you must do that as a separate
action regardless of whether you specify a path for the user or not -- and has no impact on the
user's privileges. It's simply a way of identifying the user's location within an organization.

l Leave this field blank if you don't want to use a path for the user.

3. Click Save.

290

5.6. IAM

5.6.1.2. Select an IAM User to Work With

In the Manage IAM User page, by default all your IAM users will be listed in alphabetical order, with 10 users
displayed at a time. You can navigate through the alphabetized list, 10 users at a time, by using the "Next" and
"Previous" links in the lower right.

Alternatively, you can use the "Search" field to retrieve a single IAM user or a filtered list of users. To retrieve
just one specific user, enter the user name. To retrieve a user list filtered by text string, enter the text string --
such as a user name prefix or a suffix. The text string filter will be applied to user names and also to user name
"paths" (if you've been using paths with your IAM user names).

Once the desired user is displayed in the list, click the user name. This opens the Manage IAM User detail
page for the user.

From this user detail page you can "Manage an IAM User's S3 Access Keys" (page 291) or "Manage an
IAM User's Group Membership" (page 293) or "Manage an IAM User's Permissions" (page 294).

Note You can also edit the user's user name or path, by clicking Edit User.

5.6.1.3. Manage an IAM User's S3 Access Keys

When you create a new IAM user, the user does not yet have any S3 access keys. The user needs an S3
access key (access key ID and corresponding secret key) to be able to use the HyperStore S3 Service.

In the lower half of the user's Manage IAM User detail page, the IAM Access Key tab displays by default. To
create a new S3 access key for the user, click Create New Key. You will then be shown the newly created
secret key.

291

Chapter 5. Cloudian Management Console (CMC)

Copy (ctrl-c) the secret key and put it in a secure location. Then click Done. The access key ID will then dis-
play at the bottom of the Manage IAM User detail page.

IMPORTANT ! Make sure to securely store the secret key if you have not already. If you refresh the
page or if you leave the page and then return to it, you will no longer be able to view the secret key.
You will only be able to view the access key ID.

By system default each IAM user is allowed a maximum of two S3 access keys (each of which is comprised of
an access key ID and a corresponding secret key). This limit is controlled by the "credentials.iamuser.max"
(page 571) setting in mts.properties.erb.

Along with creating keys, the IAM Access Key tab supports these actions

l To make an access key inactive, in the "Actions" column for the key click Inactivate. Note that inactive
keys count toward the maximum of two keys that each IAM user is allowed.

Note If an IAM user has no active access key he or she will not be able to access the Hyper-
Store S3 Service. Deactivating all of an IAM user's keys can be a means for you to temporarily
suspend the IAM user if you wish.

l To activate an inactive access key, in the "Actions" column for the key click Activate.

l To delete an access key , in the "Actions" column for the key click Delete.

292

5.6. IAM

5.6.1.4. Manage an IAM User's Group Membership

An IAM user can belong to one or more IAM groups that you have created. When an IAM user belongs to a
group the user inherits the permissions associated with that group. (For more information on permissions see
"Manage an IAM User's Permissions" (page 294)). You can manage a user's membership in a group either
from the user's Manage IAM User detail page or from the group's Manage IAM Group detail page.

To manage a user's group membership from the user's Manage IAM User detail page, select the IAM Groups
tab.

To add the user to an IAM group that you have created under your HyperStore account, click Add to Group.
Then click in the "Name of the IAM Group" field, and select the group from the drop-down list that displays. The
list shows all the IAM groups that the user does not already belong to.

If you have many IAM groups under your account and you want to filter the drop-down list, type a text string in
the "Name of the IAM Group" field. This will shorten the drop-down list by limiting it to groups whose group
names match against the text string.

After selecting a group from the list click Add. The group will then appear in the list of groups that the user
belongs to.

293

Chapter 5. Cloudian Management Console (CMC)

To remove the user from an IAM group: In the list of groups that the user belongs to, under the "Actions"
column for the group click Remove User from Group.

5.6.1.5. Manage an IAM User's Permissions

IAM users by default have no permissions -- they by default are not allowed to perform any of the actions asso-
ciated with the HyperStore S3 Service (such as creating buckets or uploading and reading objects) or any of
the actions associated with the HyperStore IAM Service (such as creating other IAM users or groups). An IAM
user gains permissions only by way of IAM "policies" that are either attached to a group that the user belongs to
or attached directly to the user.

The most common way to manage IAM user permissions is to attach policies to IAM groups, and IAM users
then inherit the permissions associated with whichever IAM groups they belong to. This is the most efficient
way to manage IAM user permissions, particularly if you have many IAM users. For information on attaching
policies to IAM groups, see "Manage IAM Group" (page 297).

The system also supports attaching one or more policies directly to an individual IAM user, as described below.
If multiple policies are associated with a user -- either directly or by way of the user's group membership(s) --
then the user gains the combined permissions associated with the multiple policies. If there are conflicts within
the policies such that one policy allows a certain action and the other policy denies permission to that same
action, the "deny" takes precedence and the user is not allowed to perform that action.

When adding a policy directly to a user, either you can attach an existing managed policy (an reusable policy
that you've already created in the Manage IAM Policy page) to the user or you can create an inline policy for
the user (a policy specifically for this user). Typically managed policies are a more efficient way to grant per-
missions to your IAM groups and users. However, an inline policy may be appropriate if you want to create a
policy just for a specific user and be certain that no other group or user will ever use that policy.

To add a policy to an IAM user:

1. In the user's Manage IAM User detail page, with the IAM Policies tab selected, click Add IAM Policy.
This opens the Add IAM Policy panel.

294

5.6. IAM

2. In the Add IAM Policy panel you can either:

l Attach an existing managed policy to the user, by selecting "Managed Policy", then clicking in
the "Managed Policy Name" field and selecting the policy from the drop-down list that displays,
and then clicking Add.

l Create a new inline policy for the user, by selecting "Inline Policy", giving a name to the policy,
and then clicking in the "Policy Document" field to open the Create Policy editor. For information
about working with the Create Policy editor, see Step 4 from "Add an IAM Managed Policy"
(page 304). Although that step is from the managed policy creation instructions, the functionality
of the Create Policy editor is the same if you're creating an inline policy.

After you've attached a managed or inline policy to the user, the policy's name will appear in the list of policies
that are currently attached to the user, and the user will gain the permissions defined by the policy.

295

Chapter 5. Cloudian Management Console (CMC)

5.6.1.5.1. Editing an Inline Policy for a User

In a user's Manage IAM User detail page, with the IAM Policies tab selected, a list of the policies currently
associated with the user displays at the bottom of the page. To edit an inline policy, to the right of the policy
name click View Document. The existing policy document will then be shown in an IAM Policy Document
Detail page.

To edit the policy, click in the "Policy Document" field, make your edits to the policy document, then click Save.
The user will have her permissions updated in accordance with the policy change.

Note The system does not support editing managed policies. Editing is only supported for inline
policies.

5.6.1.5.2. Removing a Policy from a User

In a user's Manage IAM User detail page, with the IAM Policies tab selected, a list of the policies currently
associated with the user displays at the bottom of the page. To remove a policy from the user, in the policy's
Actions column click Detach from user (for a managed policy) or Delete from user (for an inline policy).

When you remove a policy from an IAM user, the user loses whatever permissions had been defined in the
removed policy.

5.6.1.6. Delete an IAM User

This procedure is for deleting an IAM user. Note first that:

l Before deleting an IAM user you must delete the user's S3 credentials and remove the user from
any IAM groups that she is in.

l Deleting an IAM user will not delete the user's stored S3 buckets and objects from the system. The S3
data is considered to belong to the parent HyperStore user account

To delete an IAM user:

296

5.6. IAM

1. In the Manage IAM User page, if the user that you want to delete is not among those listed when you
first access the page, retrieve the user by typing the user name in the "Search" field.

2. In the "Actions" column for the user that you want to delete, click Delete.

3. When prompted by the system, confirm that you want to delete the user.

5.6.2. Manage IAM Group
Path: IAM → IAM Group

Supported tasks:

l "Add an IAM Group" (page 297)

l "Select an IAM Group to Work With" (page 298)

l "Manage an IAM Group's User Membership" (page 299)

l "Manage an IAM Group's Permissions" (page 300)

l "Delete an IAM Group" (page 303)

You can create one or more IAM groups under your HyperStore user account, as a convenient way to grant per-
missions to your IAM users. Any of your IAM users that you add to a group's membership will inherit the S3 and
IAM permissions that you have associated with the group.

5.6.2.1. Add an IAM Group

Note When you create a new IAM group, the IAM group by default has no S3 Service permissions.
After creating a group you can grant permissions to the group, and join users into the group.

To create a new IAM group under your HyperStore user account:

1. In the Manage IAM Group page, click Add New Group. This opens the panel for adding a new IAM
group.

297

Chapter 5. Cloudian Management Console (CMC)

2. In the new group panel, complete the group information:

Group Name (mandatory)

l Only letters, numbers, dashes, and underscores are allowed.

l Each IAM group under a single parent HyperStore user account must have a unique IAM group
name.

Path (optional)

l The path is an optional way of identifying the group's location within an organizational structure.
For example if the group name is "Quality_Assurance" you might specify a path such as
"/MyCompany/Engineering/" (if the QA group is part of the Engineering division of your com-
pany).

l The path has no impact on group privileges or on which users can be put in the group. It's simply
a way to help you identity the group within a broader organizational context, if you choose to do
so.

l Leave this field blank if you don't want to use a path for the group.

3. Click Save.

5.6.2.2. Select an IAM Group to Work With

In the Manage IAM Group page, by default all your IAM groups will be listed in alphabetical order, with 10
groups displayed at a time. You can navigate through the alphabetized list, 10 groups at a time, by using the
"Next" and "Previous" links in the lower right.

Alternatively, you can use the "Search" field to retrieve a single IAM group or a filtered list of groups. To retrieve
just one specific group, enter the group name. To retrieve a group list filtered by text string, enter the text string -
- such as a group name prefix or a suffix. The text string filter will be applied to group names and also to group
name "paths" (if you've been using paths with your IAM group names).

Once the desired group is displayed in the list, click the group name. This opens the Manage IAM Group
detail page for the group.

298

5.6. IAM

From this page you can "Manage an IAM Group's User Membership" (page 299) or "Manage an IAM
Group's Permissions" (page 300).

Note You can also edit the group's group name or path, by clicking Edit Group.

5.6.2.3. Manage an IAM Group's User Membership

An IAM user can be a member of one or more IAM groups. When an IAM user belongs to a group the user
inherits the permissions associated with that group. (For more information on permissions see "Manage an
IAM Group's Permissions" (page 300)). You can manage a user's membership in a group either from the
group's Manage IAM Group detail page or from the user's Manage IAM User detail page.

To manage a group's user membership from the group's Manage IAM Group detail page:

1. Select the IAM Users tab.

2. To add a user to the IAM group, click Add IAM User. Then click in the "Name of the IAM User" field, and
select the user from the drop-down list that displays. The list shows all the IAM users that have been

299

Chapter 5. Cloudian Management Console (CMC)

created under your HyperStore account that do not currently belong to this IAM group.

If you have many IAM users under your account and you want to filter the drop-down list, type a text
string in the "Name of the IAM User" field. This will shorten the drop-down list by limiting it to users
whose user names match against the text string.

3. After selecting a user from the list click Add. The user will then appear in the list of users that belong to
the group.

To remove a user from the IAM group: In the list of users that belong to the group, under the "Actions" column
for the user click Delete from Group.

5.6.2.4. Manage an IAM Group's Permissions

The purpose of having an IAM group is to grant permissions to the group and have those permissions be inher-
ited by all of the users in the group. This is an efficient way of granting permissions to IAM users, rather than
granting permissions to one user at a time.

For each IAM group you can attach one or more IAM "policies", with each policy defining a particular set of per-
missions. If multiple policies are attached to a group, then the members of the group get the combined per-
missions associated with the multiple policies. If there are conflicts within the attached policies such that one
policy allows a certain action and the other policy denies permission to that same action, the "deny" takes pre-
cedence and users are not allowed to perform that action.

Note IAM users by default have no permissions. They gain only those permissions that are explicitly
granted by IAM policies that are attached to the user or to the group(s) to which the user belongs.

When adding a policy to a group, either you can attach an existing managed policy (an reusable policy that
you've already created in the Manage IAM Policy page) to the group or you can create an inline policy for the

300

5.6. IAM

group (a policy specifically for this group). Typically managed policies are a more efficient way to grant per-
missions to your IAM groups and users. However, an inline policy may be appropriate if you want to create a
policy just for a specific group and be certain that no other group will ever use that policy.

To add a policy to an IAM group:

1. In the group's Manage IAM Group detail page, with the IAM Policies tab selected, click Add
IAM Policy. This opens the Add IAM Policy panel.

2. In the Add IAM Policy panel you can either:

l Attach an existing managed policy to the group, by selecting "Managed Policy", then clicking in
the "Managed Policy Name" field and selecting the policy from the drop-down list that displays,
and then clicking Add.

l Create a new inline policy for the group, by selecting "Inline Policy", giving a name to the policy,
and then clicking in the "Policy Document" field to open the Create Policy editor. For information
about working with the Create Policy editor, see Step 4 from "Add an IAM Managed Policy"
(page 304). Although that step is from the managed policy creation instructions, the functionality
of the Create Policy editor is the same if you're creating an inline policy.

After you've attached a managed or inline policy to the group, the policy's name will appear in the list of
policies that are currently attached to the group, and users in the group will gain the permissions defined by the
policy.

301

Chapter 5. Cloudian Management Console (CMC)

5.6.2.4.1. Editing an Inline Policy for a Group

In a group's Manage IAM Group detail page, with the IAM Policies tab selected, a list of the policies currently
associated with the group displays at the bottom of the page. To edit an inline policy, to the right of the policy
name click View Document. The existing policy document will then be shown in an IAM Policy Document
Detail page.

To edit the policy, click in the "Policy Document" field, make your edits to the policy document, then click Save.
Users in the group will have their permissions updated in accordance with the policy change.

Note The system does not support editing managed policies. Editing is only supported for inline
policies.

302

5.6. IAM

5.6.2.4.2. Removing a Policy from a Group

In a group's Manage IAM Group detail page, with the IAM Policies tab selected, a list of the policies currently
associated with the group displays at the bottom of the page. To remove a policy from the group, in the policy's
Actions column click Detach from group (for a managed policy) or Delete from group (for an inline policy).

When you remove a policy from an IAM group, the group's members lose whatever permissions had been
defined in the removed policy.

5.6.2.5. Delete an IAM Group

Before deleting an IAM group you must:

l Remove any IAM users who are currently in the group. You cannot delete an IAM group that currently
has IAM users in it. You do not need to delete the IAM users from the system -- you only need to remove
them from the group.

l Delete any inline policies that are configured for the group.

To delete an IAM group:

1. In the Manage IAM Group page, if the group that you want to delete is not among those listed when you
first access the page, retrieve the group by typing the group name in the "Search" field.

2. In the "Actions" column for the group that you want to delete, click Delete.

3. When prompted by the system, confirm that you want to delete the group.

5.6.3. Manage IAM Policy
Path: IAM → IAM Policy

Supported tasks:

l "Add an IAM Managed Policy" (page 304)

l "Select an IAM Managed Policy to Work With" (page 306)

l "Attach or Detach an IAM Managed Policy to Groups and Users" (page 307)

l "Delete an IAM Managed Policy" (page 309)

The CMC's Manage IAM Policy page is for creating and working with IAMmanaged policies -- not inline
policies. For background:

303

Chapter 5. Cloudian Management Console (CMC)

l An IAM managed policy is an independent, reusable policy that you can attach to multiple IAM groups
and/or to multiple individual IAM users. In most circumstances managed policies are the best way to
grant permissions to your IAM groups and users.

l An IAM inline policy is a policy that you create for one specific IAM group or one specific IAM user. The
policy exists solely as a part of that group's profile or that user's profile, and cannot be applied to any
other groups or users. The one circumstance where you might want to create an inline policy is if you
want to be certain that the policy is used only for one particular group or user and not for any other
groups or users. To create an inline policy you use the Manage IAM User page or the Manage
IAM Group page -- not the Manage IAM Policy page.

5.6.3.1. Add an IAM Managed Policy

Note When you create a new IAM managed policy, the policy by default is not attached to any of your
IAM groups or users. After creating a policy you can attach it to your IAM groups or users.

To create a new IAM managed policy under your HyperStore user account:

1. In the Manage IAM Policy page, click Add New Policy. This opens the panel for adding a new IAM man-
aged policy.

2. In the new policy panel, enter a Policy Name for the policy. Only letters, numbers, dashes, and under-
scores are allowed in the policy name, and the name must be unique within your HyperStore user
account. Optionally you can also enter a Path (to identify the policy's location within an organizational
structure -- for example "/MyCompany/Engineering/") and/or a Policy Description.

3. Next, click in the "Policy Document" field. This opens the Create Policy editor.

304

5.6. IAM

4. Use the Create Policy editor to specify the permissions that will comprise this policy.

l The editor provides both a Visual Editor tab (appropriate for most users creating a policy) and a
JSON editor tab (for power users who prefer to write a policy directly with JavaScript Object Nota-
tion).

Note If you want to create an IAM policy that includes permissions to perform HyperStore
administrative actions, you must use the JSON editor rather than the Visual Editor. For
more information on HyperStore admin permissions see "IAM Extensions for Role-
Based Access to HyperStore Admin Functions" (page 1027).

l In the Visual Editor:

o By using the "Switch to [S3/IAM]" toggle in the upper right of the Visual Editor you can
choose to define S3 action permissions (such as creating buckets and uploading objects)
or IAM action permissions (such as creating IAM groups and users). More commonly you
would be defining S3 permissions, but the interface does support defining IAM per-
missions if you desire.

Because the HyperStore S3 and IAM actions listed in the editor are compatible with the
Amazon Web Services (AWS) S3 and IAM APIs, you can refer to AWS online doc-
umentation if you need a definition of a particular action:

n Actions, Resources, and Condition Keys for Amazon S3

n Actions, Resources, and Condition Keys for Identity And Access Management

o By clicking "Add Additional Permission" at the bottom of the Visual Editor you can con-
figure multiple permission "statements" within a single policy. Each statement:

n Can be directed toward either S3 actions or IAM actions. (You cannot combine S3
permissions and IAM permissions within the same statement. You can, however,
combine S3 permission statements and IAM permission statements within the

305

https://docs.aws.amazon.com/AmazonS3/latest/dev/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions

Chapter 5. Cloudian Management Console (CMC)

same policy.)

n Can either Allow or Deny permission to perform the actions that you specify. (Use
the Effect: Allow/Deny toggle).

n Can define a resources scope. (Use the Resources toggle that lets you apply the
statement to all applicable resources [the default] or only to a specified resource
or resources).

Note The current HyperStore release does not support editing an IAM managed policy after you
finish creating it, so as you create this policy be sure that you configure the permission defin-
itions exactly as you want them.

5. When you're done configuring the policy's permission definitions, in the Create Policy editor click
Save. This closes the Create Policy editor and returns you to the Manage IAM Policy page.

6. Back in the Manage IAM Policy page, click Add.

The IAM managed policy's name will then appear in the list of your existing policies.

5.6.3.2. Select an IAM Managed Policy to Work With

In the Manage IAM Policy page, by default all your IAM managed policies will be listed in alphabetical order,
with 10 policies displayed at a time. You can navigate through the alphabetized list, 10 policies at a time, by
using the "Next" and "Previous" links in the lower right.

Alternatively, you can use the "Search" field to retrieve a single IAM managed policy or a filtered list of man-
aged policies. To retrieve just one specific policy, enter the policy name. To retrieve a policy list filtered by text
string, enter the text string -- such as a policy name prefix or a suffix. The text string filter will be applied to
policy names and also to policy name "paths" (if you've been using paths with your IAM managed policy
names).

Once the desired managed policy is displayed in the list, click the policy name. This opens the Manage
IAM Policy detail page for the policy.

306

5.6. IAM

From this page you can "Attach or Detach an IAM Managed Policy to Groups and Users" (page 307).

Note You can also view the policy details in JSON format by clicking View Document. However, the
current version of HyperStore does not support editing the contents of an existing IAM policy.

5.6.3.3. Attach or Detach an IAM Managed Policy to Groups and Users

You can attach an IAM managed policy to an IAM group, in which case all the IAM users who belong to that
group will inherit the permissions defined by that IAM managed policy. Alternatively you can attach an IAM man-
aged policy to a specific IAM user, in which case just that user will inherit the permissions defined by that
IAM managed policy.

You can also attach a managed policy to multiple groups and/or multiple specific users. To do this, you will
need to execute the attachment process one group or user at a time (for example, attach the policy to a group
and then attach it to another group and so on).

You can attach an IAM managed policy to an IAM group by using either the policy's Manage IAM Policy detail
page or the group's Manage IAM Group detail page. Likewise you can attach an IAM managed policy to an
IAM user by using either the policy's Manage IAM Policy detail page or the user's Manage IAM User detail
page.

To attach an IAM managed policy to a group from the policy's Manage IAM Policy detail page, select the IAM
Groups tab.

307

Chapter 5. Cloudian Management Console (CMC)

Next, click Attach to Group. Then click in the "Select the Group to attach the Policy to" field, and select the
group from the drop-down list that displays. The list shows all the IAM groups that have been created under
your HyperStore account that do not currently have this IAM managed policy attached.

If you have many IAM groups under your account and you want to filter the drop-down list, type a text string in
the "Select the Group to attach the Policy to" field. This will shorten the drop-down list by limiting it to groups
whose group names match against the text string.

After selecting a group from the list click Attach. The group will then appear in the list of groups to which this
IAM managed policy is attached.

To detach the policy from an IAM group: In the list of groups to which the policy is attached, under the
"Actions" column for the group click Detach from Group.

308

5.7. Cluster

To attach the policy to a specific IAM user: Follow the instructions above, except in the policy's Manage
IAM Policy detail page, select the IAM Users tab rather than the IAM Groups tab.

5.6.3.3.1. Checking an IAM Managed Policy's Current Attachments

At any time you can see which groups and specific users an IAM managed policy is currently attached to by
accessing the policy's Manage IAM Policy detail page and then selecting the IAM Groups tab or IAM Users
tab.

5.6.3.4. Delete an IAM Managed Policy

Before deleting an IAM managed policy you must detach the policy from any of your IAM groups or users to
which it is currently attached.

To delete an IAM managed policy:

1. In the Manage IAM Policy page, if the policy that you want to delete is not among those listed when you
first access the page, retrieve the policy by typing the policy name in the "Search" field.

2. In the "Actions" column for the policy that you want to delete, click Delete.

3. When prompted by the system, confirm that you want to delete the policy.

5.7. Cluster
The Cluster tab contains the following functions:

l Data Centers

l Node Status

l Node Activity

l Node Advanced

l Cluster Information

l Configuration Settings

l Storage Policies

l Repair Status

l Operation Status

5.7.1. Data Centers
Path: Cluster → Data Centers

309

Chapter 5. Cloudian Management Console (CMC)

Supported tasks:

l View Status of All Nodes in a Data Center (below)

l Adding Nodes — For the full procedure including important steps to take before you add nodes, see
"Adding Nodes" (page 420).

l Adding a Data Center — For the full procedure including important steps to take before you add a data
center, see "Adding a Data Center" (page 430).

l Adding a Region — For the full procedure including important steps to take before you add a region,
see "Adding a Region" (page 437).

5.7.1.1. View Status of All Nodes in a Data Center

The upper part of the Data Centers page displays a panel for each data center in your HyperStore system. For
each data center, each HyperStore node in the data center is represented by a color-coded cube:

Red with question mark indicates that the node is unreachable due to a network problem.

Red with "X" indicates that the node has experienced disk errors. Click the node icon to jump to
the Node Status page for the node, then check that page's Disk Detail Info panel for more inform-
ation.

310

5.7. Cluster

Red with disk stack indicates the node has stopped accepting writes -- and the system has
stopped directing S3 write requests to that node -- because all of the node's disks are nearly full.
For more information on this "stop-write" condition and how to remedy it see "Automatic Stop of
Writes to a Node at 90% Usage" (page 158)

Orange with disk stack indicates the node's data disks are in aggregate more than 80% full.
Click the node icon to jump to the Node Status page for the node, then check that page's Disk
Detail Info panel for more information.

Note For this status "more than 80% full" means that more than 80% of the node's total
capacity is either used or "reserved". For more information on "reserved" capacity see
"Capacity Managed" (page 198).

Orange with exclamation mark indicates that the node has Medium, High, or Critical level alerts
that have not yet been acknowledged by a system administrator. This status will not display if a
node has only Low level alerts. Click the node icon to jump to the Node Status page for the node,
then at the bottom of that page see the Alert List panel for more information.

Blue with gear indicates that the node is under maintenance. This means either that you or
another administrator put the node into maintenance mode (see "Start Maintenance Mode" (page
329)) in which case the node is not currently supporting S3 writes or reads.

Green with check mark indicates that the node has no unacknowledged alerts nor any of the con-
ditions listed above.

Note If multiple of the above conditions apply to one node, that node's icon will reflect just the highest
priority condition, with the conditions prioritized in this order: "Under Maintenance" > "Unreachable" >
"Has Disk Error" > "Disks Above 80% Full" > "Has Alerts".

To view a node’s hostname and summary node statistics, hold your cursor over a cube.

311

Chapter 5. Cloudian Management Console (CMC)

The hover text shows the same summary node status information as is available on the upper part of the
CMC's Node Status page. For description of the status items, see "View a Node's Summary Status" (page
314) from the Node Status page documentation.

To check the status of individual services on every node in a data center, in the lower part of the Data Centers
page view the Services Status panel.

For each service on each node, one of the following service status icons is displayed:

The service is up and running.

The service is down.

The service status is unknown because the node is unreachable due to a network problem.

312

5.7. Cluster

Note The service statuses are automatically checked and updated each minute.

Status is shown for the following services:

l Admin Service

l IAM Service (if enabled)

l Cassandra

l HyperStore Service

l Redis Monitor

l Redis Credentials

l Redis QoS

l S3 Service

For Redis Monitor, Redis Credentials, and Redis QoS, the service status icon includes a red asterisk (*) if it is
the master or primary instance of the service. For Redis Credentials or QoS, if the master instance of the ser-
vice goes down, one of the slave instances becomes the new master (and that new master instance will be
marked with an asterisk in the display). By contrast, if the Redis Monitor primary instance goes down, the
backup instance takes over the Redis monitoring duties but it does not become the primary instance (and there-
fore the backup instance will not be marked with an asterisk -- instead the asterisk remains attached to the
primary instance even though it's down).

5.7.2. Node Status
Path: Cluster → Nodes → Node Status

313

Chapter 5. Cloudian Management Console (CMC)

Supported tasks:

l "View a Node's Summary Status" (page 314)

l "View a Node's Disk Detail" (page 317)

l "Locate a Disk on a HyperStore Appliance" (page 319)

l "View a Node's Memory Usage" (page 320)

l "View a Node's Services Status" (page 321)

l "Start, Stop, or Restart Services On a Node" (page 321)

l "View and Acknowledge Node Alerts" (page 322)

Note If your HyperStore system has multiple service regions, a drop-down list displays at the top of the
page so you can select a region first before selecting a node for which to view status.

5.7.2.1. View a Node's Summary Status

The upper part of the CMC's Node Status page provides a dashboard view of the health and performance of
an individual node within your HyperStore system. A drop-down list lets you choose a node for which to display

314

5.7. Cluster

information.

For the selected node, the Node Status page displays current information for the status and performance items
described below.

Note The Node Status page — and the status and performance information displayed on the page —
automatically refreshes once each minute. In the event that the node cannot be reached by the Hyper-
Store Monitoring Data Collector due to a network problem, the top of the Node Status page displays a
message saying "Node is not reachable. Information on this page may not be accurate."

Node Capacity Usage

The Node Capacity Usage graphic shows the percentages of total disk space that are currently Used,
Reserved, or Free, on the node as a whole. To see the percentage numbers hold your cursor over each portion
of the tri-colored circle.

l The Used segment of the circle indicates what portion of the node's total disk capacity is currently con-
sumed by stored object data. This segment displays in green if less than 70% of total capacity is used;
or in orange if from 70% to 89% is used; or in red if 90% or more is used.

l The Reserved segment indicates the portion of the node's total disk capacity that is reserved and can-
not be used for data storage. The Reserved portion consists of the Linux "reserved blocks percentage"
plus the HyperStore stop-write buffer.

o By default in CentOS/RHEL the "reserved blocks percentage" for a file system (the portion of the
disk space that’s reserved for privileged processes) is 5% of disk capacity. In a HyperStore Appli-
ance it’s customized to 0%. See your OS documentation if you want to change the current
reserved blocks percentage for your HyperStore host machines.

o By default the HyperStore stop-write buffer is 10% of disk capacity. For information on this fea-
ture see "Automatic Stop of Writes to a Disk at 90% Usage" (page 157).

The Reserved segment always displays in gray.

l The Free segment indicates the portion of the node's total disk capacity that is neither used nor
reserved, and is therefore available for storing new data. The Free segment always displays in blue.

IMPORTANT ! See "Capacity Monitoring and Expansion" (page 71) for guidance about capacity
management and the importance of early planning for cluster expansions.

Disk Reads per second

Across all of the node’s disks, the average disk read throughput per second during the past minute. The metric

315

Chapter 5. Cloudian Management Console (CMC)

will auto-scale from B (bytes) to KB or MB or GB as appropriate.

This system stat is recalculated each minute, based on the most recent minute of data.

Disk Writes per second

Across all of the node’s disks, the average disk write throughput per second during the past minute. The metric
will auto-scale from B (bytes) to KB or MB or GB as appropriate.

This system stat is recalculated each minute, based on the most recent minute of data.

CPU Utilization %

Current CPU utilization on the node. In the icon that graphically shows disk usage percentage, the disk used
portion of the icon displays in green if disk usage is less than 70%; in yellow if usage is between 70% and
89%; or in red if usage is 90% or higher.

Network Traffic

The aggregate network interface throughput (received and transmitted) for the node during the past minute, for
all types of network traffic including but not limited to S3 request traffic. For example, data transmission asso-
ciated with cluster maintenance operations would would count toward these statistics. The metric will auto-
scale from B (bytes) to KB or MB or GB as appropriate.

These system stats are recalculated each minute, based on the most recent minute of data.

Request Throughput

For just this node, the data throughput for S3 GET transactions and S3 PUT transactions, expressed as MB per
second.

These S3 stats are recalculated each five minutes, based on the most recent five minutes of S3 transaction
activity.

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

Transactions/sec

For just this node, the number of S3 GET transactions and S3 PUT transactions processed per second.

These S3 stats are recalculated each five minutes, based on the most recent five minutes of S3 transaction
activity.

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

95th Percentile Request Latency (ms)

For just this node, the 95th percentile latencies for S3 PUT and S3 GET transactions in milliseconds.

These S3 stats are recalculated each five minutes, based on the most recent approximately 1000 GET trans-
actions and 1000 PUT transactions. Each 95th percentile latency value indicates that of the last 1000 trans-
actions of that type, 95% completed in that many milliseconds or less.

316

5.7. Cluster

Note HEAD transactions are counted toward the GET stat, and POST transactions are counted toward
the PUT stat.

5.7.2.2. View a Node's Disk Detail

To check the status of a node’s disks, on the CMC's Node Status page open the Disk Detail Info panel.

The panel displays the information described below.

Status

This field displays an icon that indicates the disk's summary status.

Icon Meaning

OK— The green disk icon indicates that there are no errors for the disk.

Error— The orange disk icon indicates that the disk is in an error state.

For a HyperStore data disk drive ("Use Type" = "HS"), an Error status indicates that read/write
errors related to this disk are appearing in the HyperStore Service application log (cloudian-
hyperstore.log), but not in excess of the configurable error rate threshold that would trigger the
automatic disabling of the disk (hyperstore-server.properties.erb: "disk.-
fail.error.count.threshold" (page 551)).

For an SSD storing the OS and metadata ("Use Type" = "Cassandra"), an Error status is
triggered if cassandra.log messages appear that include the string "No space left on device".
For HyperStore Appliances only, an Error status is also triggered if the drive fails or is no
longer part of the software RAID mirroring.

If a disk is in an Error state, a Clear Error History button appears toward the bottom of the
Detail Disk Info panel. You can click this button to clear the disk’s Error status and return the

317

Chapter 5. Cloudian Management Console (CMC)

Icon Meaning

disk status to "OK". If the error occurs again, the disk status display will revert back to showing
an Error status for the disk.

Note A disk will also show as being in an Error status if you unmount the disk without
the disk having first been marked as disabled by the HyperStore system.

The red disk icon means one of two things depending on whether the disk is a HyperStore
data disk or an OS disk:

l Disabled (data disk) — For a data disk the red icon indicates that the HyperStore sys-
tem has disabled the disk (so HyperStore doesn’t try to write to or read from it any
more), unmounted the disk, and transferred all of the disk's tokens to other disks on the
host. A data disk can be put into Disabled status in either of two ways:

o You or another administrator disabled the disk using the HyperStore dis-
ableDisk function. For background information see "Disabling a HyperStore
Data Disk" (page 479).

o The HyperStore system detected indications of disk failure and automatically dis-
abled the disk, in accordance with the HyperStore Disk Failure Action con-
figuration setting.

Note For recovering from a disabled disk, see "Enabling a HyperStore Data
Disk" (page 480) or -- if the disk is bad -- "Replacing a HyperStore Data Disk"
(page 482).

l Disk Failure Under RAID-1 (OS disk) — For an OS disk on a HyperStore Appliance
node, the red icon indicates that one of the two mirrored disks storing the OS and sys-
tem metadata has failed and been marked as Offline. This status detection and report-
ing is supported only for HyperStore Appliance machines, not for software-only
deployments of HyperStore.

Note If this occurs, the disk will also be marked by a red exclamation mark in
the appliance disk map.

As part of the Smart Support feature, if a data disk fails (becomes disabled), information
about the failed disk is automatically sent to Cloudian Support within minutes. This triggers
the automatic opening of a Support case for the failed disk. For HyperStore Appliances, auto-
matic case creation is also performed for failed OS disks.

Device

Disk drive device.

Mount Point

File system mount point for each disk.

Use Type

For each disk, this will be one or more of the following use types:

318

5.7. Cluster

l "HS" — The disk is storing the HyperStore File System (HSFS). The HSFS is where S3 object data is
stored (in the form of object replicas and/or erasure coded fragments). Disks with mount points spe-
cified by the configuration file setting common.csv: hyperstore_data_directory are HS disks. In a typical
configuration there will be multiple HS disks on each node.

l "Cassandra" — The disk is storing Cassandra data (the directory specified by the configuration file set-
ting common.csv: cassandra_data_directory) and/or the Cassandra commit log (the directory specified
by the configuration file setting common.csv: cassandra_commit_log_directory).

l "Redis" — The disk is storing Redis data (the directory specified by the configuration file setting com-
mon.csv: redis_lib_directory).

l "Log" — The disk is storing application logs (the directories specified by the common.csv settings cloud-
ian_log_directory, cassandra_log_directory, and redis_log_directory).

l "UNAVAIL" -- The disk is in an error status due to having been unmounted, or is in a disabled or failed
status. See the description of Status above.

Disk Usage

This colored bar graphic indicates what portion of the disk's capacity is used (in blue) and what portion is
reserved (in gray). For more information about "reserved" capacity see "Node Capacity Usage" (page 315)

The blue portion of the graphic turns to:

l Orange if the reserved space and used space together consume 70 percent or more of the disk's total
capacity (but less than 90 percent of total capacity)

l Red if the reserved space and used space together consume 90 percent or more of the disk's total capa-
city.

Note Below the bar graphic, in the summary text display that says for example "X GB of Y TB used", the
reserved capacity is counted as "used".

5.7.2.3. Locate a Disk on a HyperStore Appliance

The Appliance section of the CMC's Node Status page is available only if the node is a HyperStore appliance.
In the event of a disk problem (as indicated in the Disk Detail section) you can open the Appliance section for
information and tools to help you physically locate the disk within your hardware environment.

The Appliance panel displays a drive table that shows the drive usage type ("OS" for drives that store the OS
and metadata, or "Data" for drives that storage object data), device name, serial number, and slot number of
each drive on the appliance. For each drive in the table, in the right-most column there is a button that you can
use to turn the ID light of the drive on the appliance to amber color (rather than the default of blue which indic-
ates a healthy drive). First look through the drive table to find the device name that you're looking for, then click
the button for that drive.

Note The following are exceptions to the drive light turning amber:
• On a HyperStore 40xx appliance, the drive light for an OS drive will blink blue for three minutes,
rather than turning amber.
• On a Lenovo Storage DX8200C appliance, the drive light for any drive (OS drive or data disk drive)
will blink blue for three minutes, rather than turning amber.

319

Chapter 5. Cloudian Management Console (CMC)

Note If a red exclamation mark appears beside a device name in the drive table, this means that the
device is offline (not running). A script monitors the /sys directory on the appliance to detect devices
that have gone offline.

5.7.2.3.1. Locating the Appliance in a Rack or Cage

If along with help in finding the drive you also want help finding the appliance itself among multiple machines
in a rack or cage, you can click Blink Chassis in the upper part of the Appliance section and the appliance’s
chassis light will blink blue for three minutes.

5.7.2.4. View a Node's Memory Usage

To check a node’s memory usage, in the CMC's Node Status page open the Memory Usage panel.

The panel displays the following information:

Service

Service name. This will be one of the HyperStore system’s four major Java-based services: Admin, Cassandra,
HyperStore, and S3.

Heap Usage

This column shows each service’s current JVM heap memory usage and also the maximum JVM heap size
allocated to each service.

GC Info

Statistics for garbage collection (GC), the recurrent automatic process within a JVM whereby memory is freed
up from Java objects that are no longer in-use. These statistics are provided only for the Cassandra service.
The supported statistics are:

l G1YoungGenCount — The number of G1GC (Garbage First Garbage Collector) young generation
garbage collections executed since the last start-up of the Cassandra service on this node.

l G1YoungGenTime — The aggregate time (in milliseconds) spent on executing G1GC young gen-
eration garbage collections since the last start-up of the Cassandra service on this node.

l G1OldGenCount — The number of G1GC old generation garbage collections executed since the last
start-up of the Cassandra service on this node.

l G1OldGenTime — The aggregate time (in milliseconds) spent on executing G1GC old generation
garbage collections since the last start-up of the Cassandra service on this node.

320

5.7. Cluster

5.7.2.5. View a Node's Services Status

To check on the status of individual services on a node, in the CMC's Node Status page open the Services
Status panel.

For each service, one of the following service status icons is displayed:

The service is up and running.

The service is down.

Status is shown for the following services:

l Admin Service

l Cassandra

l HyperStore Service

l Redis Credentials (if installed on the node)

l Redis QoS (if installed on the node)

l Redis Monitor (if installed on the node)

l S3 Service

Note The node’s status is automatically checked and updated each minute, as indicated by the "Last
Update" column.

5.7.2.6. Start, Stop, or Restart Services On a Node

To stop, start, or restart individual services on a node, in the CMC's Node Status page open the Services
Status panel.

321

Chapter 5. Cloudian Management Console (CMC)

For services that are currently up and running, Restart and Stop buttons display in the "Action" column. If you
click either button, you will be asked to confirm that you want to proceed and then upon your confirmation the
restart or stop operation will execute. If the operation succeeds you will see a success message — for
example, "Stopping Redis QoS…[OK]".

For services that are not currently running, a Start button displays in the "Action" column. If you click Start, the
service starts up and you should see a success message — for example, "Starting Redis QoS…[OK]".

At the bottom right of the Services Status section a Restart All button displays. If you click Restart All and con-
firm, then:

l Services that are running will be restarted.

l Services that are down will be started.

Note In a single-region HyperStore system, the Node Status page does not support stopping the
Admin Service or S3 Service. In a multi-region HyperStore system, the Node Status page does not
support stopping the Admin Service or S3 Service in the default region.

On a single-node system, in addition to the above restrictions the Node Status page also does not sup-
port stopping the Cassandra Service (the screen shot above is from a single-node system). In a multi-
node system the Node Status page does support stopping Cassandra, but doing so may cause certain
CMC functions to no longer work — depending on your configured consistency requirements for ser-
vice metadata and the status of your other Cassandra nodes.

If you want to stop a service that you cannot stop on the Node Status page you can do so with the
HyperStore installer tool or with the HyperStore initialization scripts. However, the CMC may not
function properly while these services are down.

5.7.2.7. View and Acknowledge Node Alerts

At the bottom of the CMC's Node Status page is an Alert List section that displays a list of node alerts (for the
one node that you’ve selected at the top of the page). In this section you can review and acknowledge node
alerts.

322

5.7. Cluster

This section has the same functionality as the CMC’s Alerts page, except that the information is limited to the
one node that you’ve selected. For more guidance on understanding and working with this display, see
"Alerts" (page 385).

Note Acknowledged alerts are automatically deleted from the system after a time period configured
by the mts.properties.erb: "events.acknowledged.ttl" (page 568) setting. By default this period is
86400 seconds (one day). After they are deleted acknowledged alerts will not display in the Alert List
even if you click Show Acknowledged. If you wish you can reduce the configurable time-to-live for
acknowledged alerts to as little as 1 second (so that they are deleted from your system right after
acknowledgment). Note that regardless of your configured time-to-live for acknowledged alerts, a
record of your system's alert history will persist in the Smart Support logs that by default are uploaded
to Cloudian Support each day.

5.7.3. Node Activity
Path: Cluster → Nodes → Node Activity

Supported task:

323

Chapter 5. Cloudian Management Console (CMC)

l Check a node’s recent activity

In the CMC's Node Activity page you can view a variety of health and performance statistics for individual
HyperStore nodes. For each node, statistics from the past 30 days are available, and within that time period
you can flexibly drill down into whatever specific interval you’re interested in.

Select a node in the "Host" field and then in the "Operation" field you can choose any one of the statistics listed
below.

CPU Utilization

CPU utilization percentage for the node. This is measured once per every five minutes.

Disk Available

Disk space available on the node. Note that:

l Only disks that store HyperStore data directories (as configured by common.csv: "hyperstore_data_dir-
ectory" (page 517)) or the Cassandra data directory (as configured by common.csv: "cassandra_
data_directory" (page 535)) count toward this stat. This stat does not count disks that are being used
only for OS or application files, for example.

l This stat calculates disk usage in a way that counts a disk’s "reserved-blocks-percentage" (the portion
of the disk space that’s reserved for privileged processes) as used space. Consequently this stat may
indicate a higher degree of disk usage than would the Linux df command, which does not count
reserved space towards a disk’s used space. By default in Linux systems the configurable "reserved-
blocks-percentage" for a file system is 5% of disk capacity.

Disk Reads/Writes

Across all the node’s disks that are being used for S3 object storage, the average disk read and write through-
put per second. These stats are measured each minute, based on the most recent minute of activity.

Network Throughput Outgoing/Incoming

The node’s outgoing and incoming network interface throughput per second. This encompasses all types of
network traffic including but not limited to S3 request traffic. For example, data transmission associated with
cluster maintenance operations would count toward these statistics. These stats are measured each minute,
based on the most recent minute of activity.

For throughput specifically of S3 request traffic, see the Request Throughput stats.

Transactions (GET/PUT)

Number of S3 transactions processed per second by the node. This is broken out to GET transactions and PUT
transactions.

HEAD transactions are counted toward the GET stat, and POST transactions are counted toward the PUT stat.

These stats are measured each five minutes, based on the most recent five minutes of activity.

Request Throughput (GET/PUT)

For S3 transactions, the data volume throughput per second for the node. This is broken out to GET trans-
actions and PUT transactions.

HEAD transactions are counted toward the GET stat, and POST transactions are counted toward the PUT stat.

These stats are measured each five minutes, based on the most recent five minutes of activity.

Average Request Latency (GET/PUT)

324

5.7. Cluster

For S3 transactions, the 95th percentile request latency for the node, in milliseconds. This is broken out to GET
transactions and PUT transactions.

New statistic values are calculated each five minutes, based on the most recent approximately 1000 GET trans-
actions and 1000 PUT transactions. The latency values indicate that of the last 1000 transactions of that type
(GET or PUT), 95% completed in that many milliseconds or less.

HEAD transactions are counted toward the GET stat, and POST transactions are counted toward the PUT stat.

<Service> Memory Heap Usage

The current JVM heap memory usage (in number of bytes) by each of the HyperStore system’s major Java-
based services on the node: Admin, Cassandra, HyperStore, and S3.

These stats are measured each five minutes.

S3 Error Count

Running count of the S3 service errors (5xx status responses) returned to S3 client applications by the node.
This is a cumulative count since the last restart of the S3 Service on the node.

By default, when you choose a statistic from the "Operation" drop-down list, a graph of the statistic’s movement
over the past 24 hours displays. The interface provides you two methods for adjusting this graphing interval:

l In the upper right of the page, you can click to change the graph to a 7 day or 30 day view.

l In the small graph at the bottom of the page — which shows a compressed 30 day view — you can
manipulate the gray block to control the time period that’s shown in the main graph. With your mouse
you can click and drag the left or right edges of the block to expand or contract the time period shown in
the main graph. You can also click the block’s center and drag the block to shift the main graph to an
earlier or later time interval (within the bounds of the past 30 days).

325

Chapter 5. Cloudian Management Console (CMC)

Note For statistics that measure quantities of data, the metric used on a graph’s Y-axis auto-scales to
units that are most appropriate for the particular quantities being conveyed. Specifically, for a given stat-
istic the Y-axis may be expressed in terms of bytes, KBs, MBs, or GBs, depending on the activity level
during the full 30-day graphing interval. Pay attention to the Y-axis label to see what metric is being
used.

Note for multi-region systems

If your HyperStore system has multiple service regions, a drop-down list displays at the top of the page so you
can select a region first before selecting a node for which to view activity.

5.7.4. Node Advanced
Path: Cluster → Nodes → Advanced

Supported tasks:

l "Info Commands" (page 326)

l "Maintenance Commands" (page 327)

l "Redis Monitor Commands" (page 327)

l "Disk Management Commands" (page 327)

l "Collect Diagnostics" (page 328)

l "Start Maintenance Mode" (page 329)

l "Uninstall Node" (page 330)

5.7.4.1. Info Commands

In the CMC’s Node Advanced page, with Command Type "Info" selected, you can execute any of the following
hsstool commands which retrieve information about your system:

l ring— View vNode info for whole cluster (see "hsstool ring" (page 712))

l info— View vNode and data load info for a physical node (see "hsstool info" (page 658))

l status— View summary status for whole cluster (see "hsstool status" (page 714))

326

5.7. Cluster

l opstatus— View status of repair or cleanup operations (see "hsstool opstatus" (page 666))

l proactiverepairq— View status of proactive repair queues (see "hsstool proactiverepairq" (page
674))

l repairqueue— View auto-repair schedule (see "hsstool repairqueue" (page 707))

l ls— View vNode and data load info per mount point (see "hsstool ls" (page 660))

l whereis— View storage location information for an S3 object (see "hsstool whereis" (page 721))

l metadata— View metadata for an S3 object (see "hsstool metadata" (page 662))

l trmap— View a list of active token range map snapshots (see "hsstool trmap" (page 717))

5.7.4.2. Maintenance Commands

In the CMC’s Node Advanced page, with Command Type "Maintenance" selected, you can execute any of the
following hsstool commands for acting on the data and metadata in your system:

l cleanup—Clean a node of replicated data that doesn’t belong to it (see "hsstool cleanup" (page
644))

l cleanupec—Clean a node of erasure coded data that doesn’t belong to it (see "hsstool cleanupec"
(page 651))

l autorepair— Enable or disable auto-repair (see "hsstool repairqueue" (page 707))

l proactiverepair -- Enable or disable or stop or start proactive repair (see "hsstool proactiverepairq"
(page 674))

l repair—Repair the replicated data on a node (see "hsstool repair" (page 686))

l repairec—Repair the erasure coded data on a node (see "hsstool repairec" (page 697))

l repaircassandra—Repair the system and object metadata on a node (see "hsstool repair-
cassandra" (page 695))

l rebalance—Rebalance some data from the cluster to a newly added node (see "hsstool rebalance"
(page 679))

5.7.4.3. Redis Monitor Commands

In the CMC’s Node Advanced page, with Command Type "Redis Monitor Operations" selected, you can
execute any of the following commands for the Redis Monitor Service:

l setClusterMaster—Move the Redis Credentials master role or the Redis QoS master role (see
"Move the Redis Credentials Master or QoS Master Role" (page 458))

l getClusterInfo—Get information about the Redis Credentials cluster or the Redis QoS cluster (see
"get cluster" (page 727))

Note The Redis Monitor supports additional commands that can only be executed on the command
line, not through the CMC. For more information see "Redis Monitor Commands" (page 726).

5.7.4.4. Disk Management Commands

In the CMC’s Node Advanced page, with Command Type "Disk Management" selected, you can execute any
of the following commands for managing HyperStore data disks:

327

Chapter 5. Cloudian Management Console (CMC)

l disableDisk— Temporarily disable a disk (see "Disabling a HyperStore Data Disk" (page 479))

l enableDisk—Re-enable a disk that is currently disabled (see "Enabling a HyperStore Data Disk"
(page 480))

l replaceDisk—Replace a disk (see "Replacing a HyperStore Data Disk" (page 482))

5.7.4.5. Collect Diagnostics

When you are experiencing system problems, Cloudian Support is best able to help you if you provide them
with comprehensive diagnostic information. Through the CMC you can easily generate a package of dia-
gnostic information for a specified node or nodes. Each node's diagnostics package will be created on the
node itself, at path /var/log/cloudian/cloudian_sysinfo/<hostname>_<YYYYMMDDmmss>.tar.gz. The package
will include log files, configuration files, statistics, and command outputs for that particular node. Optionally, you
can have the diagnostics package file get automatically uploaded via S3 to Cloudian Support or an alternative
S3 destination of your choosing.

To generate diagnostics for a node or nodes:

1. In the CMC’s Node Advanced page, from the Command Type menu select "Collect Diagnostics":

2. In the "Target Node" section, select one or more nodes for which to collect diagnostics data.

3. Select from among the diagnostics processing options:

Collect Logs Modified in the Last X Days

Use this to specify how many days' worth of system, application, and transaction logs should be col-
lected from the target node(s). The default behavior is to collect the last 5 days' worth of logs.

Upload to Cloudian Support via S3

Select this checkbox if you want the diagnostics from the target node(s) to be automatically uploaded to
Cloudian Support, immediately after creation of the diagnostics package.

Note Optionally, you can have the automatic upload go to a different S3 destination rather than
Cloudian Support. To do so requires that you first implement a system configuration change. For
more information see "Configuring Smart Support and Node Diagnostics" (page 192).

328

5.7. Cluster

Remove SysInfo Logs After Uploading

This option is applicable only if you are having the diagnostics automatically uploaded to an S3 des-
tination. If you select the "Upload to Cloudian Support via S3" checkbox then the "Remove SysInfo Logs
After Uploading" becomes checked also by default. With this option checked, then after the upload to
the S3 destination the local copy of the diagnostics package file will be automatically deleted. If you
want to retain the local copy of the diagnostics package (under a /var/log/cloudian/cloudian_sysinfo dir-
ectory on the target node[s]) as well as uploading a copy to the S3 destination, then uncheck the
"Remove SysInfo Logs After Uploading" checkbox.

Note If the "Remove SysInfo Logs After Uploading" checkbox is not selected when you perform
the diagnostics collection operation, then the diagnostics package is retained on the target node
(s) for 15 days before being automatically removed. This retention period is configurable by the
"cleanup_sysinfo_logs_timelimit" (page 516) setting in common.csv.

4. Click Execute.

5. In the confirmation dialog that displays, confirm that you want to proceed with the operation.

Once you confirm, the Result section of the page displays a message indicating the command has been sent.
After the operation completes, the Result section displays a brief summary of the operation outcome.

5.7.4.6. Start Maintenance Mode

Through the CMC you can place a node into "maintenance mode" so that no S3 write or read requests will be
directed to the node and the node will not generate any alerts. If the node is hosting a Redis master, the master
role will be temporarily shifted to a different node.

Within a service region, you can have no more than one node in maintenance mode at a time. While the node
is in maintenance mode, in the CMC's Data Centers page a special blue icon will indicate that the node is in
maintenance mode. In the CMC's Node Status page, most detailed status information will not be available for
the node while it is under maintenance.

You can subsequently use the CMC to take the node out of maintenance mode and put it back into regular ser-
vice.

Note For you to put a node into maintenance mode, all other nodes in the region must be up, and all
services on those other nodes must be up. The system will not allow you to put a target node into main-
tenance mode if other nodes are down in the system, or if some services are down on other nodes in
the system.

When a node is in maintenance mode, the system supports using fallback consistency levels for S3
write or read requests for which the node is an endpoint (if you have configured "Dynamic Con-
sistency Levels" (page 39).)

To put a node into maintenance mode:

1. In the CMC’s Node Advanced page, from the Command Type menu select "Start Maintenance Mode":

329

Chapter 5. Cloudian Management Console (CMC)

2. From the "Target Node" list, select the node that you want to put into maintenance mode.

3. Click Execute.

After confirming that all other nodes and services are up in the region, the system will put the target node into
maintenance mode.

Note If any S3 requests are in processing on the target node when you submit the Start Maintenance
Mode command, the processing of those requests will be completed before the node goes into main-
tenance mode.

5.7.4.6.1. Stopping Maintenance Mode

To take a node out of maintenance mode and put it back into regular service:

1. In the CMC’s Node Advanced page, from the Command Type menu select "Stop Maintenance Mode".

2. From the "Target Node" list, select the node that you want to take out of maintenance mode

3. Click Execute.

The target node is put back into regular service.

5.7.4.7. Uninstall Node

In the CMC’s Node Advanced page, you can use the Command Type "Uninstall Node" to remove a node from
your cluster.

For the full procedure including important steps to take before removing a node, see "Removing a Node"
(page 443).

5.7.5. Cluster Information
Path: Cluster → Cluster Config→ Cluster Information

330

5.7. Cluster

Supported tasks:

l View Cluster Information (below)

l "Renew and Install a License" (page 337)

The Cluster Information page displays summary information about your HyperStore system. The page shows
the summary information items below.

5.7.5.0.1. Version Information

Application Version

Your current HyperStore software version

5.7.5.0.2. License Information

Expire Date

Date on which your license expires.

If you reach the warning period preceding your license expiration, then when you use any part of the CMC, the
top of the interface displays a warning that your license expiration date is approaching.

331

Chapter 5. Cloudian Management Console (CMC)

If you reach your license expiration date you enter a grace period, per the terms of your contract. During the
grace period:

l In the CMC, the top of the console screen displays a warning indicating that your license has expired.

l The system still accepts and processes incoming S3 requests, but every S3 response returned by the
S3 Server includes an extension header indicating that the system license has expired (header name:
x-gemini-license; value: Expired: <expiry_time>)

If you reach the end of your grace period after the license expiration date:

l No S3 service is available for end users. All incoming S3 requests will be rejected with a "503 Service
Unavailable" error response. The response also includes the expiry header described above.

l You can still log into the CMC to perform system administration functions (including applying an
updated license), but you will not be able to access users' stored S3 objects.

For information on renewing your license, see "Renew and Install a License" (page 337).

Licensed Max Net/Raw Storage

The maximum amount of object data storage your HyperStore system license allows for. This will be in terms of
either Net storage or Raw storage, depending on your particular license terms.

With a license based on Net storage, the limit is on total object storage bytes excluding overhead from object
replication or erasure coding. For example if a 1GB object is replicated three times in your system it counts as
only 1GB toward the Net Storage limit.

With a license based on Raw storage, the limit is on total bytes stored on formatted disks in your system. This
encompasses object storage bytes including overhead from object replication or erasure coding, as well as
bytes of stored metadata. Note that with this type of storage limit, if a 1GB object is replicated three times in
your system it counts as 3GB toward the limit.

In a multi-region HyperStore system, the licensed storage limit is for the system as a whole (all regions com-
bined).

For more information on licensing see "Licensing and Auditing" (page 15).

Licensed Max Tiered Storage

The maximum amount of tiered data storage your HyperStore system license allows for.

All auto-tiered data stored in any destination system other than HyperStore counts toward this limit. Data auto-
tiered from one of your HyperStore regions to another region, or from your HyperStore system to an external
HyperStore system, does not count toward this limit.

If this value is "Unlimited" then the license places no limit on tiered data volume.

For more information on licensing see "Licensing and Auditing" (page 15).

Net Storage Used / Raw Storage Used

If your HyperStore license is based on Net storage, this field is "Net Storage Used" and the number displayed
is your current total storage usage excluding overhead from object replication or erasure coding. For example
if a 1MB S3 object is replicated three times in your system it counts as only 1MB toward the "Number of Stored
Bytes" count.

If your HyperStore license is based on Raw storage, this field is "Raw Storage Used" and the number dis-
played is your current total raw storage including overhead from object replication or erasure coding. For

332

5.7. Cluster

example if a 1MB S3 object is replicated three times in your system it counts as 3MB toward the "Raw Storage
Used" count.

The storage usage count for your system is updated at the top of each hour. In a multi-region HyperStore sys-
tem, the count is for the system as a whole (all regions combined).

This field displays a warning message if your current bytes count exceeds 70% of your licensed usage max-
imum; and a critical message if your current bytes count exceeds 90% of your licensed usage maximum

Note If some users have versioning enabled on their buckets -- so that the system retains rather than
overwriting older versions of an object when the user uploads a new version of the object -- then each
stored object version (the older versions as well as the current version) counts toward your system
usage count.

Also, if some users use the cross-region replication feature to replicate objects from one HyperStore
bucket to another HyperStore bucket in the same HyperStore system, then the original source objects
and the object replicas in the destination bucket both count toward your system bytes count. For more
information see "Cross-Region Replication Feature Overview" (page 186)

Tiered Storage Used

The current tiered storage usage level in external systems other than HyperStore.

Data auto-tiered from one of your HyperStore regions to another region in the same HyperStore system, or
from your HyperStore system to an external HyperStore system, does not count toward this figure. Auto-tiered
data stored in any other type of external system -- such as the Amazon, Azure, or Google clouds -- does count
toward this figure.

Note A warning message displays here if this figure exceeds 70% of your licensed maximum tiered
storage limit, or a critical message if this figure exceeds 90% of your licensed maximum tiered storage
limit.

Object Lock License

Your HyperStore license's support or non-support of the WORM (Object Lock) feature:

l Disabled -- Your license does not support the Object Lock feature.

l Enabled -- Your license supports the Object Lock feature.

Note To use the Object Lock feature, along with having a license that supports this feature you
must enable the HyperStore Shell (HSH) and disable the root password on your HyperStore
nodes. For more information see "Enabling the HSH and Managing HSH Users" (page 90) and
"WORM (Object Lock)" (page 121).

HyperIQ License

Cloudian HyperIQ is a solution for dynamic visualization and analysis of HyperStore monitoring data. HyperIQ
is a separate product available from Cloudian that deploys as virtual appliance on VMware or VirtualBox and
integrates with your existing HyperStore system. For more information about HyperIQ contact your Cloudian
representative.

333

Chapter 5. Cloudian Management Console (CMC)

The HyperIQ License field in the CMC's Cluster Information page indicates what level of HyperIQ functionality
will be available to you if you acquire and set up HyperIQ.

l Basic -- HyperIQ dashboards for OS and service status monitoring are supported indefinitely.

l Enterprise <expiration date> -- HyperIQ dashboards for OS and service status monitoring are supported
indefinitely, and also an S3 analytics dashboard is supported until the Enterprise expiration date. The
presence of the S3 analytics dashboard is what distinguishes Enterprise level HyperIQ support from
Basic HyperIQ support.

5.7.5.0.3. Service Information

Note If you have a multi-region HyperStore system, a drop-down list lets you choose a region for
which to view Service Information.

For information about moving service roles from one HyperStore node to another, see "Change Node
Role Assignments" (page 457).

CMC Admin Server Host

Admin Service endpoint to which the CMC connects in order to submit Admin Service calls. The CMC makes
calls to the Admin Service when you use the CMC to perform administrative tasks like adding users, con-
figuring rating plans, or viewing system monitoring data. In a multi-region system there is just one Admin Ser-
vice endpoint for the whole system.

All of the HyperStore nodes in the default service region should service requests to this endpoint. In a pro-
duction environment, typically you would have the Admin service endpoint resolve to the virtual IP(s) of one or
more load balancers in the default service region, and the load balancers would in turn distribute traffic across
all the HyperStore nodes in the default region. For more information see "DNS Set-Up" in the HyperStore Install-
ation Guide.

Note The label "CMC Admin Server Host" is somewhat misleading. In the current version of Hyper-
Store this is a service endpoint, not a single host or IP address as it was in earlier HyperStore versions.

Cassandra Cluster Name

Name of the Cassandra cluster in this service region. In a multi-region HyperStore system, each region has an
independent Cassandra cluster. The system automatically derives a Cassandra cluster name from the local
region name.

S3 Endpoint (HTTP) and S3 Endpoint (HTTPS)

S3 endpoint(s) for this service region. In a multi-region system, each region has its own S3 endpoint -- for
HTTP (port 80), and optionally HTTPS (port 443). S3 client applications connect to these endpoints to submit
S3 API calls.

For each region's S3 endpoint, all of the HyperStore nodes within that region should service requests to the
endpoint. In a production environment, typically you would have the S3 service endpoint resolve to the IP
addresses of one or more load balancers within the region, and the load balancers would in turn distribute
traffic across all the HyperStore nodes in the region. For more information see "DNA Set-Up" in the HyperStore
Installation Guide

334

5.7. Cluster

Note HTTPS for the S3 Service is not implemented by default. To set this up, see "HTTPS Support
(TLS/SSL)" (page 114).

S3 Website Endpoint

S3 website endpoint for this service region. Web browsers use the S3 website endpoint to access content in
buckets that are configured as static websites. In a multi-region system, each region has its own S3 website
endpoint. For S3 website endpoints, only HTTP is supported -- not HTTPS.

For each region's S3 website endpoint, all of the HyperStore nodes within that region should service requests
to the endpoint. In a production environment, typically you would have the S3 website endpoint resolve to the
IP addresses of one or more load balancers within the region, and the load balancers would in turn distribute
traffic across all the HyperStore nodes in the region. For more information see "DNA Set-Up" in the HyperStore
Installation Guide

Redis Credentials Master Host

Host on which the Redis Credentials master node is located. In a multi-region system, there is just one Redis
Credentials master for the whole system.

If the one Redis Credentials master is located in a service region other than the one that you are currently view-
ing, the display will show "Not installed".

Redis Credentials Slave Host(s)

Hosts on which the Redis Credentials slave nodes are located. This is typically two nodes per data center.

Note If you upgraded from a HyperStore version older than 6.0, then by default you will have just one
Redis Credentials slave node per data center.

Redis QoS Master Host

Host on which this service region's Redis QoS master node is located. In a multi-region system, each region
has its own Redis QoS master.

Redis QoS Slave Host(s)

Hosts on which the Redis QoS slave nodes are located. This is typically one node per data center.

Redis Monitor Primary Host

Host on which the primary Redis Monitor instance is located. This is just one host per whole system, even for a
multi-region system.

If the one Redis Monitor primary instance is located in a service region other than the one that you are currently
viewing, the display will show "Not installed".

Redis Monitor Backup Host

Host on which the backup Redis Monitor instance is located. This is just one host per whole system, even for a
multi-region system. If the Redis Monitor primary instance fails, the Redis Monitor services automatically fail
over to the backup host.

If the one Redis Monitor backup instance is located in a service region other than the one that you are currently
viewing, the display will show "Not installed".

335

Chapter 5. Cloudian Management Console (CMC)

System Monitoring / Cronjob Primary Host

In this service region, the host on which the primary instance of the HyperStore Monitoring Data Collector and
the primary instance of the HyperStore system maintenance crontab are located. In a multi-region system,
each region has one System Monitoring / Cronjob Primary Host.

System Monitoring / Cronjob Backup Host

In this service region, the host on which the backup instance of the HyperStore Monitoring Data Collector and
the backup instance of the HyperStore system maintenance crontab are located. In a multi-region system,
each region has one System Monitoring / Cronjob Backup Host. If the System Monitoring / Cronjob Primary
Host fails, the system monitoring and cron job services automatically fail over to the backup host.

External NTP Host(s)

In this service region, the external NTP servers to which the HyperStore cluster’s internal NTP servers connect.
For information about how HyperStore automatically implements a robust time-synchronization set-up using
NTP, see "NTP Automatic Set-Up" (page 598).

Internal NTP Host

In this service region, the hosts acting as internal NTP servers. There will be four internal NTP hosts per data
center. (If a HyperStore data center has only four or fewer nodes, then all the nodes in the data center are con-
figured as internal NTP servers.) For information about how HyperStore automatically implements a robust
time-synchronization set-up using NTP, see "NTP Automatic Set-Up" (page 598).

Puppet Master Host

Host on which the active Puppet Master is located. This is just one host per whole system, even for a multi-
region system.

Puppet Master Backup Host

Host that is configured to be the backup host for the Puppet Master. This is just one host per whole system,
even for a multi-region system. If the node on which the active Puppet Master is located fails, you can manually
fail over the Puppet Master role to the backup host. Automatic fail-over of this role is not supported. For instruc-
tions see "Move the Puppet Master Primary or Backup Role" (page 468).

If the one Puppet Master backup host is located in a service region other than the one that you are currently
viewing, the display will show "Not installed".

Installation Staging Directory on Puppet Master

On the Puppet Master host, the installation staging directory path. In this directory resides the cloudianInstall.sh
script, which you can use for certain cluster management tasks such as pushing configuration file edits out to
the cluster or restarting services. By default the installation staging directory for HyperStore version 7.2.3is
/opt/cloudian-staging/7.2.3.

Number of Datacenters

Number of data centers in which you are running the HyperStore system.

Number of Hosts in Each Datacenter

Number of HyperStore hosts in each data center, in format <DCName>: <#hostsInDC>.

336

5.7. Cluster

5.7.5.1. Renew and Install a License

In the CMC's Cluster Information page you can request a HyperStore license renewal, and install a new or
renewed license file.

5.7.5.1.1. Request a License Renewal

Click Request License to send an email to cloudian-license@cloudian.com to initiate the process of obtaining
a new license file. Clicking this button should open your default email application (for instance, Gmail).

If nothing happens when you click Request License, your browser is not configured for launching your email
application. You can instead open your email application manually and send a license renewal request to
cloudian-license@cloudian.com.

5.7.5.1.2. Install a New License File

Note This feature is for installing a cluster-wide license, not a license specific to a particular Hyper-
Store Appliance machine.

After you’ve obtained a new license file from Cloudian, you need to apply the new license file to your Hyper-
Store system. You can do so through the Cluster Information page:

1. Put the license file on the computer from which you are accessing the CMC (the computer on which
your browser is running).

2. On the left side of the Cluster Information page, click Browse (if your browser is Firefox) or Choose
File (if your browser is Chrome). On your local machine, browse to and select the license file.

3. Click Update License.

The CMC pushes the license file to the Puppet master node, which in turn propagates the file to all your Hyper-
Store nodes. The Puppet master then uses JMX to trigger your HyperStore nodes to dynamically reload the
license file. You do not need to restart any services.

After the process completes, if you refresh the Cluster Information page you should see updated information
in the License Information section.

Note The system saves your old license file on the Puppet master node as <old-license-file-name>.<-
timestamp> (in directory /etc/puppet/modules/baselayout/files).

5.7.6. Configuration Settings
Path: Cluster → Cluster Config→ Configuration Settings

337

Chapter 5. Cloudian Management Console (CMC)

Supported task:

l Edit HyperStore configuration settings

When you change settings in the CMC’s Configuration Settings page the system applies your configuration
changes dynamically — no service restart is required. The system also automatically updates and pushes the
relevant configuration file settings so that your configuration changes persist across any future restarts of Hyper-
Store services.

You can edit any of the following types of settings. Be sure to click Save at the bottom of the page to save
your changes.

l "SMTP/Email Settings for Alerts/Notifications" (page 338)

l "SNMP Trap Destination Settings" (page 341)

l "System Settings" (page 342)

l "Usage Tracking Settings" (page 343)

l "Quality of Service Settings" (page 345)

l "Auto-Tiering Settings" (page 346)

l "S3 Request Restriction Settings" (page 349)

l "Auto-Repair Schedule Settings" (page 350)

Note In a multi-region system, the CMC’s Configuration Settings page does not support selecting a
region. Instead, these settings apply to the whole system. They are not region-specific.

5.7.6.1. SMTP/Email Settings for Alerts/Notifications

The settings in this section of the CMC’s Configuration Settings page pertain to the SMTP service that you
want the HyperStore system to use when it sends alert notification emails to system administrators. Providing
the system with this information is essential for proper system monitoring and administration.

338

5.7. Cluster

To use this feature you will need information about your organization's mail server, and at least one system
administrator email account must have already been set up and be able to receive email.

After making any edits in the SMTP/Email Settings section, click Save at the bottom of the page to dynamically
apply the configuration change to the cluster. Then open the SMTP/Email Settings section again and click
Send Test SMTP Notification to send a test email to the system administrator email address that you con-
figured. Then confirm that the test email was received at that address. (In the event of a failed test, on the CMC
node on which you conducted the test check /var/log/cloudian/cloudian-ui.log for error messages.)

Note You can set alert notification triggers in the Alert Rules page.

Note Alert emails are sent by the HyperStore System Monitoring / Cron Job host, using your spe-
cified SMTP server.

SMTP Server FQDN

Fully qualified domain name (FQDN) of the SMTP service that the HyperStore system should utilize for sending
alert notification emails to system administrators.

Default = smtp.notification.configure.me

SMTP Port

Listening port of the SMTP service that the HyperStore system should utilize for sending alert notification
emails to system administrators.

339

Chapter 5. Cloudian Management Console (CMC)

Default = 465

SMTP Protocol

Protocol to use when sending alert notification emails. Options are smtp or smtps.

The HyperStore system uses the default SMTP ports (25 for smtp or 465 for smtps). If you want to use non-
default SMTP ports, consult with Cloudian Support.

Default = smtps

SMTP Enable STARTTLS

Whether to use STARTTLS when sending alert notification emails. Options are Yes or No.

If you enable this option you should also set the SMTP Protocol setting to "smtp" (not "smtps") and set the
SMTP Port setting to 587 (if your email server is using the typical STARTTLS port).

Default = No

Note Even if you enable STARTTLS, if the recipient email account is a Gmail account the account user
will still need to set the 'Allow less secure apps' option on the Gmail dashboard.

SMTP From Address

The "From" address to use when sending alert notification emails.

Default = noreply@smtp.notification.configure.me

Notification Message Subject Header

The "Subject" to use when sending alert notification emails.

Default = Cloudian HyperStore Notification Alert

Default Email Address to Receive Notifications

Default system administrator email address(es) to which to send alert notification emails. If you want alert noti-
fication emails to go to multiple email addresses, enter the addresses as a comma-separated list.

Default = admin@mycloudianhyperstore.com

SMTP Service Requires Authorization

Whether the SMTP service that the HyperStore system will use to send alert notification emails requires clients
to use SMTP Authentication. Options are Yes or No.

Default = No

User Name for SMTP Server

If SMTP Authentication is required by the SMTP server, the username to submit with requests to the server.
Comma (,) and double-quote (") are not supported in this setting’s value.

Default = No default

Password for SMTP Server

If SMTP Authentication is required by the SMTP server, the password to submit with requests to the server.
Comma (,) and double-quote (") are not supported in this setting’s value.

340

5.7. Cluster

Default = No default

5.7.6.2. SNMP Trap Destination Settings

The settings in this section of the CMC’s Configuration Settings page configure an SNMP trap destination, in
support of having system alerts sent as SNMP traps.

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Note For information about enabling SNMP trap sending for alerts, see "Alert Rules" (page 390).

In the traps that HyperStore generates and sends to your specified destination, the OID is enter-
prises.16458.4.1.1.1. The trap payload also indicates the specific HyperStore host on which the trap-
triggering event occurred. HyperStore uses SNMP version 2c. Trap are sent by the HyperStore Sys-
tem Monitoring / Cron Job host.

Destination IP Address

IP address of the SNMP manager to which the CMC will send system alerts (for alert types for which you’ve
enabled SNMP trap sending). Do not enter multiple IP addresses.

Default = None

Destination Port

Listening port used by the SNMP manager.

Default = 162

341

Chapter 5. Cloudian Management Console (CMC)

5.7.6.3. System Settings

The settings in this section of the CMC’s Configuration Settings page configure storage system operations.

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

HyperStore Disk Failure Action

The automated action for the system to take in the event that read or write errors occur for a particular Hyper-
Store data disk. Supported automated actions are:

l Disable Disk + Move its Tokens—With this setting, if disk errors are detected the system will auto-
matically unmount the disk and mark it as disabled. The system will also automatically transfer all of the
disabled disk’s storage tokens to the remaining disks on the host, in an approximately balanced way.
The data from the disabled disk will not be recreated on the other disks (repair operations will not be
automatically triggered, and even if you triggered repair operations manually the data from the disabled
disk would not be recreated on the other disks because with this disk disabling approach the moved
tokens are assigned updated timestamps).

When a disk is disabled in this way, writes of new or updated S3 object data that would have gone to
the disabled disk will go to the other disks on the host instead. Meanwhile existing S3 object data will be
unreadable on the host. Whether the system as a whole can still provide S3 clients with read access to
the affected S3 objects depends on the storage policies with which the objects are associated, and on
the availability of other replicas or erasure coded fragments within the cluster.

When a disk is disabled in this way, an alert is generated and the disk will show as disabled in the Disk
Detail Info section of the Node Status page.

342

5.7. Cluster

Note When you subsequently perform the "Enabling a HyperStore Data Disk" (page 480)
operation or the "Replacing a HyperStore Data Disk" (page 482) operation, the tokens will
automatically be moved back to the re-enabled or replacement disk. Data written in association
with the tokens when they were on the other disks will remain on those other disks and does not
need to be moved to the re-enabled or replacement disk. For information on how HyperStore
tracks token location over time so that objects can be written to and read from the correct disks,
see "Dynamic Object Routing" (page 160).

l None—With this option the system will not automatically disable a disk for which errors have occurred.
Each disk error will trigger an alert, however.

By default, your configured automatic disk failure action will be triggered if 10 "HSDISKERROR" error mes-
sages for the disk occur in the HyperStore Service application log within a 5 minute span. This threshold is con-
figurable by these settings in hyperstore-server.properties.erb:

l "disk.fail.error.count.threshold" (page 551)

l "disk.fail.error.time.threshold" (page 552)

Your configured automatic disk failure action will also be triggered if the HyperStore drive audit feature detects
that a disk is in a read-only condition.

Default = Disable Disk + Move Its Tokens

Note The automatic disk disabling feature works only if you have multiple HyperStore data disks on
the host. If there is only one HyperStore data disk on the host, the system will not automatically disable
the disk even if errors are detected.

Also, the automatic disk failure handling feature does not work correctly in Xen, Logical Volume Man-
ager (LVM), or Amazon EC2 environments. Contact Cloudian Support if you are using any of these
technologies.

5.7.6.4. Usage Tracking Settings

The settings in this section of the CMC’s Configuration Settings page configure the HyperStore system’s func-
tionality for tracking service usage by users and groups.

343

Chapter 5. Cloudian Management Console (CMC)

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Note For an overview of the HyperStore usage reporting feature, see "Usage Reporting and Billing
Feature Overview" (page 138).

Track/Report Usage for Request Rates and Data Transfer Rates

Whether to have the system maintain counts for number of HTTP requests, number of bytes-in, and number of
bytes-out for each user and for each user group. By default this functionality is disabled, and the system only
tracks and reports on stored bytes and stored object counts per user and group.

You must change this setting to "Enabled" if you want the system to support usage reports that report on num-
ber of HTTP requests (GETs, PUTs, and DELETEs), bytes-in (upload) volume, and bytes-out (download)
volume per user and group. This is important if you want to bill or charge-back users or groups based in part on
request volume and/or data transfer volume.

Note that enabling this feature does not produce request counts and data transfer counts for user activity that
occurred during the period when the feature was disabled. Rather, if you enable this feature then request track-
ing and data transfer tracking starts from that point forward.

Default = Disabled

Note This setting applies only to per-user and per-group usage statistic tracking. It does not apply to
per-bucket usage tracking. If you have enabled per-bucket usage tracking, then all usage types --
including request rates and data transfer rates -- are available on a per-bucket basis regardless of this
setting.

344

5.7. Cluster

Note If you enable this setting, then the retention period for raw usage data in Cassandra is auto-
matically reduced from seven days to one day. This is due to the large amount of raw usage data that
can accumulate quickly if request and data transfer usage tracking is enabled. See "reports.raw.ttl"
(page 567) in mts.properties.erb. Note that each hour, raw usage data gets automatically rolled into
hourly roll-up usage data -- which has a default retention period of 65 days.

5.7.6.5. Quality of Service Settings

The settings in this section of the CMC’s Configuration Settings page configure the HyperStore system’s qual-
ity of service (QoS) feature.

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Note For an overview of the HyperStore QoS feature, see "Quality of Service (QoS) Feature Over-
view" (page 135).

Enforce Configured QoS Limits for Storage Utilization

If this setting is enabled the system will enforce Quality of Service (QoS) limits for number of stored bytes and
number of stored objects, if you have set such limits for users and groups.

If this setting is disabled the system will not enforce any QoS limits, even if you have set such limits for users
and groups.

345

Chapter 5. Cloudian Management Console (CMC)

Note To enforce QoS limits for stored bytes and number of stored objects but not QoS limits for HTTP
request rate, bytes-in rate, and bytes-out rate, set:

Enforce Configured QoS Limits for Storage Utilization = enabled
Enforce Configured QoS Limits for Request Rates and Data Transfer Rates = disabled

To enforce QoS limits for stored bytes and number of stored objects and alsoQoS limits for HTTP
request rate, bytes-in rate, and bytes-out rate, set:

Enforce Configured QoS Limits for Storage Utilization = enabled
Enforce Configured QoS Limits for Request Rates and Data Transfer Rates = enabled

Enforcing QoS for traffic rates but not for stored bytes and objects is not supported at the system configuration
level. If you want to use QoS in this way, set both of the QoS enforcement settings to enabled, then when you’re
configuring QoS limits for groups and users set the stored bytes and objects controls to unlimited and the rate
controls to your desired levels.

Default = Disabled

Enforce Configured QoS Limits for Request Rates and Data Transfer Rates

If this setting is enabled the system will enforce QoS limits for HTTP request rate, bytes-in rate, and bytes-out
rate, if you have set such limits for users and groups.

If this setting is disabled, then the system will not enforce HTTP request rate, bytes-in rate, and bytes-out rate
limits, even if you have set such limits for users and groups.

Enabling this setting is supported only if the Enforce Configured QoS Limits for Storage Utilization setting is
also enabled.

Default = Disabled

5.7.6.6. Auto-Tiering Settings

The settings in this section of the CMC’s Configuration Settings page configure the HyperStore system’s auto-
tiering feature.

346

5.7. Cluster

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Note For an overview of the HyperStore auto-tiering feature, see "Auto-Tiering Feature Overview"
(page 176). For a high level view of how these settings work together in combination -- or if you want to
support auto-tiering to a HyperStore region or to a different HyperStore system -- see "Setting Up
Auto-Tiering" (page 180).

Enable Auto-Tiering

This setting controls whether or not the CMC will support configuring auto-tiering rules for buckets. If you set
"Enable Auto-Tiering" to Enabled, then the CMC interface for configuring a bucket lifecycle will include an
option for configuring an auto-tiering rule. If "Enable Auto-Tiering" is set to Disabled (as it is by default), then
the bucket lifecycle configuration interface will not display an option for configuring an auto-tiering rule.

Note that this setting only controls whether bucket lifecycle rules for auto-tiering can be configured through the
CMC. Even if you have this setting disabled, bucket lifecycle rules for auto-tiering can still be configured
through HyperStore extensions to the S3 API method "PutBucketLifecycle" (page 969), by other S3 client
applications that call that API method.

If you set "Enable Auto-Tiering" to Enabled then additional settings (described below) will display in the "Auto-
Tiering" section of the Configuration Settings page, allowing you control over the specific auto-tiering options
that will be available to users configuring bucket lifecycle auto-tiering rules through the CMC.

Default = Disabled

Enable Per Bucket Credentials

347

Chapter 5. Cloudian Management Console (CMC)

This setting displays only if "Enable Auto-Tiering" is set to Enabled.

If "Enable Per Bucket Credentials" is Enabled (as it is by default), then users configuring bucket lifecycle auto-
tiering rules through the CMC will be able to choose from several different options for tiering destination, and
they will provide (through the CMC interface) their own security credentials for their selected tiering destination.
By default the tiering destinations that will be available to users are:

l AWS S3 (default endpoint = https://s3.amazonaws.com)

l AWS Glacier (default endpoint = https://s3.amazonaws.com)

l Google Cloud Storage (default endpoint = https://storage.googleapis.com)

l Azure (default endpoint = https://blob.core.windows.net)

l Spectra BlackPearl (default endpoint = https://bplab.spectralogic.com) (note that Spectra BlackPearl is
in the default list of tiering destinations only if you have upgraded from a HyperStore version older than
7.1.4 -- it is not in the default list for new installs of HyperStore 7.1.4 or later).

Note You can change this list of destinations and/or their endpoints if you wish. For details see "Con-
figure Tiering Destinations" (page 181).

If you set "Enable Per Bucket Credentials" to Disabled, then all users configuring bucket lifecycle auto-tiering
rules through the CMC will be presented with just one, system-default tiering destination, and all tiering to that
destination will use a default set of security credentials that you supply to the system. You set this one default
tiering destination and the one set of security credentials with the "Default Tiering URL" and "Default Tiering
Credentials" settings that will display if you set "Enable Per Bucket Credentials" to Disabled. These settings are
described further below.

Default = Enabled

Enable Custom Endpoint

This setting displays only if "Enable Auto-Tiering" and "Enable Per Bucket Credentials" are both set to Enabled.

If you set "Enable Custom Endpoint" to Enabled, then users configuring bucket lifecycle auto-tiering rules
through the CMC will be able to choose from among the several tiering destinations described above under
"Enable Per Bucket Credentials" and also they will have the option to enter an endpoint URL for an S3-com-
pliant destination of their own choosing. Users will enter their own security credentials for their specified tiering
destination. HyperStore will attempt to connect to the specified custom domain using the user's supplied cre-
dentials, and if the connection is successful the user will be able to auto-tier to that domain.

If "Enable Custom Endpoint" is Disabled (as it is by default), then users configuring bucket lifecycle auto-tiering
rules through the CMC will not be able to specify a custom tiering destination endpoint. Instead they will
choose among the several system-configured destinations (the default list of destination is described under
"Enable Per Bucket Credentials" above).

Default =Disabled

Default Tiering URL

This setting displays only if "Enable Auto-Tiering" is set to Enabled and "Enable Per Bucket Credentials" is set
to Disabled.

Configure a "Default Tiering URL" if you want all users setting bucket lifecycle auto-tiering rules through the
CMC to tier to the same tiering destination, using the same account credentials. For example, if you want all
users to tier to the same corporate account with Amazon S3 you could set the "Default Tiering URL" to

348

5.7. Cluster

https://s3.amazonaws.com -- or if your organization is based in California, USA, https://s3.us-west-1.amazon-
aws.com. Be sure to include the https:// part when configuring your default tiering URL.

If you use the "Default Tiering URL" feature, you must set default tiering credentials.

Also, if you have a multi-region HyperStore system, note that the "Default Tiering URL" will apply to all of your
service regions.

Note If you set "Enable Per Bucket Credentials" to Disabled and set a "Default Tiering URL", this con-
figuration will override the list of destinations configured in the "cmc_bucket_tiering_default_des-
tination_list" (page 541) setting in common.csv. Only your specified "Default Tiering URL" will display
for users who are using the CMC to configure auto-tiering for their buckets.

Default Tiering Credentials

This setting displays only if "Enable Auto-Tiering" is set to Enabled and "Enable Per Bucket Credentials" is set
to Disabled.

Default tiering credentials (access key and secret key) to use with the "Default Tiering URL". If you configure a
default tiering URL you must also configure default tiering credentials. HyperStore will then use those cre-
dentials and that tiering URL whenever users configure auto-tiering on their buckets through the CMC.

5.7.6.7. S3 Request Restriction Settings

The settings in this section of the CMC’s Configuration Settings page place restrictions on the behaviors of S3
client applications that interface with the HyperStore system.

349

Chapter 5. Cloudian Management Console (CMC)

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Put Object Maximum Size (Bytes)

The maximize single-part object size that S3 clients will be allowed to upload to the system through a PUT
Object request or POST Object request, in number of bytes. If a client submits a PUT Object or POST Object
request with an object size larger than this many bytes, the S3 Service rejects the request.

In the case of Multipart Upload operations, this maximum size restriction applies to each individual uploaded
part. If a single part is larger than Put Object Maximum Size, the S3 Service rejects the Upload Part request.

For best upload performance it’s recommended for S3 clients to use the S3 Initiate Multipart Upload operation
for objects larger than 100MB (rather than PUT Object or POST Object).

Default = 5368709120 (5 GiB)

Note In HyperStore version 7.1.x and older, the default was 5000000000 (5 GB). If you upgraded from
HyperStore 7.1.x, your system retains the default of 5000000000 unless you change the setting
through the CMC's Configuration Settings page.

Multipart Upload Maximum Parts

Maximum number of parts to allow per Initiate Multipart Upload request.

Each individual part can be no larger than the configured "Put Object Maximum Size (Bytes)" limit.

Default = 10000

Maximum Buckets Per User

Maximum number of S3 storage buckets to allow per user. When a user has this many buckets and tries to cre-
ate an additional bucket, the request is rejected with an error response.

Default = 100

5.7.6.8. Auto-Repair Schedule Settings

The settings in this section of the CMC’s Configuration Settings page configure the scheduling of the Hyper-
Store auto-repair feature.

350

5.7. Cluster

After making any edits, click Save at the bottom of the page to dynamically apply the configuration change to
the cluster.

Note For more information about the auto-repair feature see "Automated Data Repair Feature Over-
view" (page 150)

Replicas Repair Interval (Minutes)

For each HyperStore node, the interval (in minutes) between scheduled auto-repairs of replicated object data.
The auto-repair feature automatically executes the hsstool repair operation to repair each node at the con-
figured interval.

The system maintains a queue of nodes scheduled for auto-repair of replicated object data, and the queue is
processed in such a way that within a service region hsstool repair will run on only one target node at a time.
Repair of the node that is next in queue will not start until the repair operation completes on the node on which
hsstool repair is currently running. Consequently if you have a lot of nodes and/or a high volume of data in your
system, the actual time between repairs of a given node may be longer than the scheduled interval.

Note that when a replica repair operation is running on a target node, the scope of repair activity will extend to
other nodes as well. In particular, repair of a target node will also make sure that for objects that fall within the
target node's primary token range, the objects' replicas also are present on the other nodes where they are sup-
posed to be.

Auto-repair of the replicated object data in your cluster is a resource-intensive operation and should be con-
figured to run infrequently.

Default = 43200 (every 30 days)

351

Chapter 5. Cloudian Management Console (CMC)

Note If you wish, you can have some or all of the auto-repairs of replica data use the "computedigest"
option to combat bit rot. This feature is controlled by the "auto_repair_computedigest_run_number"
(page 518) setting in common.csv. By default "computedigest" is not used in auto-repair runs.

Note The system allows repair operations of different types -- such as an hsstool repair operation and
an hsstool repairec operation -- to run concurrently within the same service region.

EC Repair Interval (Minutes)

For each HyperStore node, the interval (in minutes) between scheduled auto-repairs of erasure coded object
data. The auto-repair feature automatically executes the hsstool repairec operation to repair each node at the
configured interval.

The system maintains a queue of nodes scheduled for auto-repair of erasure coded object data, and the queue
is processed in such a way that within a service region hsstool repairec will run on only one target node at a
time. Repair of the node that is next in queue will not start until the repair operation completes on the node on
which hsstool repairec is currently running. Consequently if you have a lot of nodes and/or a high volume of
data in your system, the actual time between repairs of a given node may be longer than the scheduled inter-
val.

Note that for erasure coded object data repair, for single data center storage policies and for multi- data center
replicated EC storage policies, repair of a target node has the effect of assessing and repairing all erasure
coded data on all nodes within the data center where the target node resides. And for multi- data center dis-
tributed EC storage policies, repair of a target node has the effect of assessing and repairing all erasure coded
data in all of the participating data centers.

In a multi- data center HyperStore service region, the erasure coded data auto-repair queue is ordered in such
a way that the target nodes alternate among the data centers -- for example after a repair completes on a target
node in DC1, then the next target node will be from DC2, and then after that completes the next target node will
be from DC3, and then after that completes the next target node will be from DC1 again, and so on.

Auto-repair of the erasure coded object data in your cluster is a resource-intensive operation and should be
configured to run infrequently.

Default = 41760 (every 29 days)

Note If you wish, you can have some or all of the auto-repairs of erasure coded data use the "com-
putedigest" option to combat bit rot. This feature is controlled by the "auto_repair_computedigest_
run_number" (page 518) setting in common.csv. By default "computedigest" is not used in auto-repair
runs.

Note The system allows repair operations of different types -- such as an hsstool repair operation and
an hsstool repairec operation -- to run concurrently within the same service region.

Cassandra Full Repair Interval (Minutes)

For each HyperStore node, the interval (in minutes) between automatically running a full repair of the node's
Cassandra data (system metadata and object metadata stored in Cassandra) . It is essential to run a full Cas-
sandra data repair on each node at an interval less than 10 days (less than the Cassandra gc_grace_

352

5.7. Cluster

seconds interval, which by default is 10 days).

The system maintains a queue of nodes scheduled for auto-repair of Cassandra data, and the queue is pro-
cessed in such a way that within a service region Cassandra repair will run on only one target node at a time.
Repair of the node that is next in queue will not start until the repair operation completes on the node on which
a Cassandra repair is currently running.

Note that when a Cassandra repair operation is running on a target node, the scope of repair activity will
extend to other nodes as well. In particular, repair of a target node will also make sure that for metadata row
keys that fall within the target node's primary token range, the metadata's replicas also are present on the other
nodes where they are supposed to be.

Default = 10080 (every seven days)

5.7.7. Storage Policies
Path: Cluster → Storage Policies

Supported tasks:

l "Add a Storage Policy" (page 353)

l "Edit a Storage Policy" (page 377)

l "Designate a Default Storage Policy" (page 377)

l "Disable a Storage Policy" (page 378)

l "Delete a Storage Policy" (page 379)

Note For detailed information on S3 write and read availability under various combinations of cluster
size, storage policy configuration, and number of nodes down, see "Storage Policy Resilience to
Downed Nodes" (page 84).

5.7.7.1. Add a Storage Policy

Storage policies are ways of protecting data so that it’s durable and highly available to users. The HyperStore
system lets you pre-configure one or more storage policies. Users when they create a new storage bucket can
then choose which pre-configured storage policy to use to protect data in that bucket. Users cannot create
buckets until you have created at least one storage policy.

For each storage policy that you create you can choose and configure either of two data protection methods:
replication or erasure coding. If your HyperStore system spans multiple data centers, for each storage policy
you can also choose how data is allocated across your data centers.

353

Chapter 5. Cloudian Management Console (CMC)

Note In your system you must have a default storage policy. If you have not yet created any storage
policies, the first policy that you create must be configured to be visible to all groups, and it will auto-
matically become the default policy. Subsequently, after creating additional policies, you can designate
a different policy as the default policy if you wish.

In a multi-region system, each region must have its own storage policy or policies. When you create
storage policies, while configuring each policy's "Data Center Assignment" you will specify the region
with which the policy is associated. Each region must have a default storage policy.

To add a storage policy:

1. In the CMC's Storage Policies page click Create Storage Policy. This opens the Create New Policy
interface.

354

5.7. Cluster

2. Complete the sections of the Create New Policy interface.

l Policy Name and Description

l Data Distribution Scheme and Data Center Assignment

l Consistency Setting

l Group Visibility

l Compression

l Server-Side Encryption

355

Chapter 5. Cloudian Management Console (CMC)

Note If you have configured Elasticsearch integration for your HyperStore system, then
when you create (or edit) a storage policy you will have an option to "Enable metadata
search". For information about this feature see "Elasticsearch Integration for Object
Metadata" (page 171).

3. Click Save to create the new policy in the system. The policy will then appear in your storage policy list
in the CMC’s Storage Policies page. The new policy will initially show a status of PENDING, but if you
check again a few minutes later it should have a status of ACTIVE, at which point the policy is available
to users.

Note In the unlikely event that the new policy fails to be created in the system, in your policy list
the policy will appear with status FAILED. In this case you can delete the failed policy and then
try again to configure and save a new policy with your desired settings.

5.7.7.1.1. Create New Storage Policy -- Policy Name and Description

Enter a Policy Name (only letters, numbers, dashes, and underscores are allowed; maximum 32 characters)
and also a Policy Description that will be meaningful to your users (maximum 64 characters). The Policy Name
and Policy Description are important because users will see this text when they are choosing a storage policy
to apply to a newly created storage bucket.

How End Users Will See the Policy Name and Description

In the CMC’s Buckets interface, a user creating a bucket will see a drop-down menu listing all the pre-con-
figured storage policies by name, and when they select a policy they will see its description (before they com-
plete the process of creating the bucket). So, create policy names and descriptions that will be meaningful to
your service users.

For example, suppose your HyperStore spans two data centers, one in Chicago and one in Kansas City. You
create one storage policy that uses replication and stores the data in both of your data centers, and another
policy that uses erasure coding and stores data only in Kansas City. If the people who will be creating storage
buckets are fairly technical, then in creating these two policies you might use names and descriptions like:

Policy Name Policy Description

Replication_Chicago-3X_KC-2X 3 replicas stored in Chicago and 2 in Kansas City

Erasure_coding_KC-only Objects are erasure coded and stored in Kansas City only

If your users are non-technical, you might gear your policy descriptions more towards the type of data that
users intend to store. Since replication is commonly used for more active data while erasure coding is suitable
to "cold" data, you might do something like:

Policy Name Policy Description

Active_High-Availability For "live" data that is accessed often

Cold_Archival_Storage For "cold" data that is rarely accessed

Note that if your HyperStore system has multiple service regions and/or multiple data centers, it may be import-
ant to communicate data storage location information to end users through the Policy Name and Policy Descrip-
tion — especially if your system spans multiple countries.

356

5.7. Cluster

5.7.7.1.2. Create New Storage Policy -- Data Distribution Scheme and Data Center
Assignment

In the "Data Distribution Scheme" and "Data Center Assignment" sections of the Create New Policy interface,
choose and configure a scheme for protecting S3 object data and object metadata.

First, from the "Number of Data Centers" drop-down list, choose the number of data centers in which this new
policy should store data. If you want you can specify a number here that's smaller than your total number of
data centers -- for example, if you have three DCs in your system but you want to create a policy that stores
data in only two of those DCs, then select 2 here. Later in the policy creation process you will be able to specify
exactly which DCs to use for this policy.

Next, choose one of the following data distribution schemes. Only the schemes appropriate to your specified
number of DCs will display in the interface.

Note For detailed information on S3 write and read availability under various combinations of cluster
size, data distribution scheme, consistency level settings, and number of nodes down, see "Storage
Policy Resilience to Downed Nodes" (page 84).

Replicas Within Single Data Center

This scheme protects S3 object data by replicating it within a single data center.

357

Chapter 5. Cloudian Management Console (CMC)

When you choose this option, the interface displays a "Number of Replicas" field in which you can specify how
many replicas you want. For example, if you specify 3, then with this storage policy the system will maintain a
total of 3 copies of each S3 data object, each on a different node.

The system will also maintain the same number of replicas of each S3 object’s metadata (in Cassandra), again
with each replica on a different node. The object metadata key has its own hash value (token) and thus Hyper-
Store's token-based data distribution mechanism may allocate the object metadata to different nodes than the
object data.

You cannot choose a number of replicas that is greater than the number of HyperStore nodes in the data
center. For example, if you have only 3 nodes in the data center, then 3 is the maximum number of replicas
that you can choose.

Also, you cannot choose fewer than 3 replicas unless you have only 1 or 2 nodes in your system (such as
when doing simple evaluation or testing of HyperStore). In a production environment, 1X or 2X replication
provide inadequate data protection and consequently those settings are not allowed.

If you have only one DC in your system, then there is nothing that you need to do in the "Data Center Assign-
ment" section of the interface. If you have more than one DC in your system, use the "Data Center Assignment"
section to select which one of your DCs to use for this policy.

EC Within Single Data Center

This scheme protects S3 object data by erasure coding the data, within a single data center.

When you choose this option, the interface lets you select which of the supported EC "k"+"m" configuration
schemes to use. For example:

358

5.7. Cluster

l 4+2— Each object will be encoded into 4 data fragments plus 2 parity fragments, with each fragment
stored on a different node. Objects can be read so long as any 4 of the 6 fragments are available.

l 6+2— Each object will be encoded into 6 data fragments plus 2 parity fragments, with each fragment
stored on a different node. Objects can be read so long as any 6 of the 8 fragments are available.

In addition to the options above, the system by default also supports:

l 8+2

l 9+3

l 12+4

The choice among these supported EC configurations is largely a matter of how many HyperStore nodes you
have in the data center. For example, compared to a 4+2 configuration, 6+2 EC provides the same degree of
data availability assurance (stored objects can be read even if 2 of the involved nodes are unavailable), while
delivering a higher level of storage efficiency based on the parity fragments as a percentage of the data frag-
ments (4+2 incurs 50% overhead whereas 6+2 incurs only 33% overhead). So 6+2 may be preferable to 4+2 if
you have at least 8 HyperStore nodes in the data center.

Likewise, 9+3 EC provides a higher degree of protection and availability than 6+2 EC (since with 9+3 EC,
stored objects can be read even if 3 of the involved nodes are unavailable) while delivering the same level of
storage efficiency (both 6+2 and 9+3 incur 33% storage overhead). So 9+3 may be preferable to 6+2 if you
have at least 12 HyperStore nodes in the data center.

You cannot choose a k+m configuration that totals to more than the number of HyperStore nodes in the
data center. For example, if you have 7 nodes in the data center, you can choose 4+2 as your k+m con-
figuration, but not 6+2.

If you have only one DC in your system, then there is nothing that you need to do in the "Data Center Assign-
ment" section of the interface. If you have more than one DC in your system, use the "Data Center Assignment"
section to select which one of your DCs to use for this policy.

IMPORTANT ! Whatever k+m configuration you choose, the system will maintain (2m)-1 replicas of
each object’s metadata (in Cassandra). For more detail see "Object Metadata Replication" (page 80).

Consult with Cloudian Support to ensure that the disks or SSDs on which you are storing Cas-
sandra data have sufficient capacity to support your desired k+m configuration with its associated
metadata storage requirements as well as the temporary storage overhead needed during Cassandra
repair operations.

Note If you want to use a k+m configuration other than those listed in the CMC interface, contact Cloud-
ian Support or your Cloudian Sales representative to see whether your desired configuration can be
supported.

Replication Across Data Centers

359

Chapter 5. Cloudian Management Console (CMC)

This distribution scheme is supported only for HyperStore systems that span multiple data centers. Choose this
option if you want S3 objects to be replicated and to have those replicas distributed across DCs.

When you choose this option, the interface displays a "Number of Replicas" field in which you can specify the
total number of replicas that you want, across multiple data centers. For example, if for each S3 object you
want 3 replicas stored in DC1 and 2 replicas in DC2, enter 5 in the "Number of Replicas" field.

You can then use the "Data Center" drop-down lists to select which one of your data centers will house each
replica. This interface allows you to define how many replicas will be stored in each specific data center. In the
example below, 3 replicas will be stored in DC1 and 2 replicas will be stored in DC2.

360

5.7. Cluster

Note that the ordering of the replicas doesn’t matter — what matters is the total number of replicas that you
assign to each data center. (If you have a multi-region system, first choose a region then choose the DCs from
within that region).

Note The system will also maintain the same number of replicas of each S3 object’s metadata (in Cas-
sandra), with the same distribution across data centers. The object metadata key has its own hash
value (token) and thus HyperStore's token-based data distribution mechanism may allocate the object
metadata to different nodes than the object data.

Replicated EC

361

Chapter 5. Cloudian Management Console (CMC)

With Replicated EC, each object is encoded into "k" data fragments + "m" parity fragments and that set of
"k"+"m" fragments is replicated in multiple data centers. With this approach, each participating data center
stores the full set of an object’s erasure coded fragments (each participating data center stores "k" + "m" frag-
ments). An object can be read so long as a combined total of at least "k" fragments are available across the par-
ticipating DCs.

In the "Erasure Coding k+m Value" drop-down list you can choose from among these options that the system
supports by default:

l 4+2

l 6+2

l 8+2

l 9+3

l 12+4

Next, in the "Data Center Assignment" section of the interface choose which of your DCs you want to par-
ticipate in this storage policy. (If you have a multi-region system, first choose a region then choose the DCs
from within that region).

Note that:

362

5.7. Cluster

l For this type of distribution scheme, each participating data center will use the same "k"+"m" con-
figuration (the configuration you selected from the "Erasure Coding k+m Value" drop-down list). You
cannot create a policy that uses 4+2 in one data center while using 6+2 in a different data center, for
instance.

l In each participating data center, for a given object each of the "k"+"m" erasure coded fragments will be
stored on a different node. Therefore you cannot choose a "k"+"m" configuration that exceeds the num-
ber of nodes in any participating data center. For example, if one of the data centers that you want to
use for the storage policy has 8 nodes and the second data center has 6 nodes, you can use replicated
4+2 erasure coding but not replicated 6+2 erasure coding (since the second data center doesn't have
enough nodes to support 6+2 erasure coding).

l As compared to the "EC Across Data Centers" option, the "Replicated EC" option:

o Is less efficient in using storage capacity, since there is more storage overhead per stored
object. This is because for each object each DC will have a full "k"+"m" set of fragment replicas,
whereas for EC Across Data Centers there is just one "k"+"m" set of fragments which is spread
across multiple DCs. Mathematically, the storage overhead percentage (redundant data size as
a percentage of original data size) for Replicated EC is #DCs(m/k) whereas for EC Across Data
Centers it's m/k.

o Reduces the chance of objects being unavailable, since there are additional redundant frag-
ments and objects are available so long as a total of "k" fragments are readable across the par-
ticipating data centers. For example, with 4+2 EC replicated in two DCs there are a total of 12
stored fragments and objects remain readable even if 8 of those fragments are unreachable. By
contrast, for EC Across Data Centers an object will be unreadable if more than "m" endpoints in
total are unavailable across all the participating DCs.

o Reduces read latency since typically an object will be decodable (readable) from the fragments
within the local data center (the data center processing the S3 request from a client application).

IMPORTANT ! In each data center included in the policy, the system will maintain (2m)-1 replicas of
each object’s metadata (in Cassandra). For more detail see "Object Metadata Replication" (page 80).

Consult with Cloudian Support to ensure that the disks or SSDs on which you are storing Cas-
sandra data have sufficient capacity to support your desired k+m configuration with its associated
metadata storage requirements as well as the temporary storage overhead needed during Cassandra
repair operations.

Note If you want to use a k+m configuration other than those listed in the CMC interface, contact Cloud-
ian Support or your Cloudian Sales representative to see whether your desired configuration can be
supported.

EC Across Data Centers

363

Chapter 5. Cloudian Management Console (CMC)

With EC Across Data Centers, each object is encoded into "k" data fragments + "m" parity fragments and then
that one set of "k"+"m" fragments is spread out evenly across the participating data centers. An object can be
read so long as a combined total of at least "k" fragments are available across the multiple DCs.

In the "Erasure Coding k+m Value" drop-down list you can choose your desired "k"+"m" configuration. Your
options are determined by the number of DCs that you specified in the "Number of Data Centers" drop-down
list. The table below shows the default supported options and how the fragments will be distributed.

of Participating DCs Supported "k"+"m" How Fragments Will Be Dis-
tributed

3
5+4 3 fragments per DC

7+5 4 fragments per DC

4 8+4 3 fragments per DC

5 6+4 2 fragments per DC

6
8+4 2 fragments per DC

7+5 2 fragments per DC

7 10+4 2 fragments per DC

8 10+6 2 fragments per DC

9 10+8 2 fragments per DC

364

5.7. Cluster

After selecting your "k"+"m" configuration, use the "Data Center Assignment" section of the interface to choose
which of your DCs you want to participate in this storage policy. (If you have a multi-region system, first choose
a region then choose the DCs from within that region).

Note that:

l You must have at least 3 data centers within a region to use this type of data distribution scheme.

l The number of nodes in each participating DC must be at least as many as the number of fragments
that will be distributed to each DC. For example, to use 7+5 erasure coding spread across 3 data cen-
ters you need at least 4 nodes in each of those DCs (since each DC will be allocated 4 fragments from
each S3 object and each fragment must be stored on a different node).

l The supported options are such that objects are readable even if one of the participating DCs goes
down, so long as a sufficient number of endpoints are live in the remaining DCs. (Put differently, in all
the supported options the number of fragments per DC is never greater than "m".)

l As compared to the "Replicated EC" option, the "EC Across Data Centers" option:

o Is more efficient in using storage capacity, since there is less storage overhead per stored
object. This is because there is just one "k"+"m" set of fragments which is spread across multiple
DCs, rather than each DC having a full "k"+"m" set of fragments (as is the case with Replicated
EC). Mathematically, the storage overhead percentage (redundant data size as a percentage of
original data size) for EC Across Data Centers is m/k whereas for Replicated EC it's #DCs(m/k).

o Entails a somewhat higher chance of objects being unavailable, since for a given object if more
than a total of "m" endpoints (nodes on which the object's fragments are stored) are down
across the multiple DCs, the system will not be able to decode the object. By contrast, with Rep-
licated EC there is additional redundancy of fragments and a greater percentage of an object's
fragments can be lost or unreachable without impacting the object's readability.

o Entails a somewhat higher read latency since all object reads will necessarily require com-
munication across DCs (since no one DC has the entire "k" set of fragments that's required for
an object read).

IMPORTANT ! Distributed across all the data centers included in the policy, the system will maintain a
total of (2m)-1 replicas of each object’s metadata (in Cassandra). For more detail see "Object
Metadata Replication" (page 80).

Consult with Cloudian Support to ensure that the disks or SSDs on which you are storing Cas-
sandra data have sufficient capacity to support your desired k+m configuration with its associated
metadata storage requirements as well as the temporary storage overhead needed during Cassandra
repair operations.

Note If you want to use a k+m configuration other than those listed in the CMC interface, contact Cloud-
ian Support or your Cloudian Sales representative to see whether your desired configuration can be
supported.

5.7.7.1.3. Create New Storage Policy -- Consistency Setting

In the "Consistency Setting" section of the Create New Policy interface, configure data consistency levels to
apply to this storage policy. Consistency levels impose requirements as to what portion of the data and
metadata reads or writes associated with a given S3 request must be successfully completed within the
cluster before the system can return a success response to the S3 client. If the consistency requirements

365

Chapter 5. Cloudian Management Console (CMC)

cannot be met for a given S3 request at a given time -- for example, due to one or more endpoint nodes being
inaccessible -- an HTTP 503 error response is returned to the client.

Note For detailed information on S3 write and read availability under various combinations of cluster
size, data distribution scheme, and consistency level settings, see "Storage Policy Resilience to
Downed Nodes" (page 84).

Your consistency level options depend on which data distribution scheme you chose for the policy you are cre-
ating:

Replicas Within Single Data Center
With a "Replicas within Single Data Center" scheme you can choose from the following consistency levels.

Read Write

ALL ALL

QUORUM (default) QUORUM (default)

ONE --

EC Within Single Data Center
With an "EC within Single Data Center" scheme you can choose from the following consistency levels.

Read (metadata only) Write

ALL ALL

QUORUM (default) QUORUM (default)

Note For this type of scheme the consistency requirement for reading object data is always "k" unique
fragments. Your "Read" consistency setting impacts only the reading of object metadata.

Replication Across Data Centers
With a "Replicas Across Data Centers" scheme you can choose from the following consistency levels.

Read Write

ALL ALL

-- EACH QUORUM

QUORUM (default) QUORUM (default)

LOCAL QUORUM LOCAL QUORUM

ONE --

Replicated EC
With a "Replicated EC" scheme you can choose from the following consistency levels.

Read Write

ALL ALL

366

5.7. Cluster

Read Write

-- EACH QUORUM

LOCAL QUORUM LOCAL QUORUM

ANY QUORUM (default) ANY QUORUM (default)

Note For this type of scheme the consistency requirement for reading object data is always "k" unique
fragments. If you choose "Local Quorum" for read, the system will only read from the local data center
when trying to get "k" unique fragments. With the other settings the system will read from all data cen-
ters when trying to get "k" unique fragments.

EC Across Data Centers
With an "EC Across Data Centers" scheme you can choose from the following consistency levels.

Read (metadata only) Write

ALL ALL

QUORUM (default) QUORUM (default)

Note For this type of scheme the consistency requirement for reading object data is always "k" unique
fragments. Your "Read" consistency setting impacts only the reading of object metadata.

Note When configuring consistency levels you would typically choose just one consistency level for
each operation type, by selecting one consistency level checkbox for Read and one for Write.
However, HyperStore also supports an advanced option known as "Dynamic Consistency Levels"
(page 39), whereby you can configure both a primary consistency level and a fallback consistency
level to be used in instances when the primary consistency level cannot be achieved. In the CMC inter-
face you can do this by selecting more than one consistency level checkbox for a given operation type.

5.7.7.1.4. Consistency Levels

To boost data durability and availability, HyperStore implements replication or erasure coding for object data
and replication for object metadata. This entails distributing each object's data and metadata to multiple end-
point nodes across the cluster. When you create storage policies, along with configuring a replication or eras-
ure coding scheme you will also configure consistency levels for writes and reads. Consistency levels impose
requirements as to what portion of the data and metadata writes or reads associated with each S3 request
must be successfully completed before the system can return a success response to the S3 client. If the
consistency requirements cannot be met for a given S3 request at a given time -- due to one or more endpoint
nodes being unavailable -- an HTTP 503 error response is returned to the client. An endpoint node could be
unavailable for example because the node is down, or is unreachable on the network, or (in the case of writes
of object data) is in "stop-write" condition.

Below is the list of consistency levels supported by the HyperStore system. Your consistency level options
when configuring a storage policy will be limited by the data distribution scheme (replication or erasure coding,
single DC or multi-DC) that you have selected for that policy.

367

Chapter 5. Cloudian Management Console (CMC)

l "Consistency Level "ALL"" (page 369)

l "Consistency Level "QUORUM"" (page 374)

l "Consistency Level "EACH QUORUM"" (page 371)

l "Consistency Level "LOCAL QUORUM"" (page 372)

l "Consistency Level "ANY QUORUM"" (page 370)

l "Consistency Level "ONE"" (page 373)

For detailed information on S3 write and read availability under various combinations of cluster size, data dis-
tribution scheme, and consistency level settings, see "Storage Policy Resilience to Downed Nodes" (page
84).

Note In the case of writes, if the consistency requirement is met by something less than completing
writes of all replicas (or all erasure coded fragments), then after returning a success response to the cli-
ent the system continues to try to complete the remaining writes. If any of these writes fail they will later
be recreated by automatic data repair.

Note As an advanced option you can also configure "dynamic" consistency levels, whereby the system
will try to achieve a "fallback" consistency level if the primary consistency level cannot be achieved. For
more information see "Dynamic Consistency Levels" (page 39).

Note About Object Data Replica Reads

For replication based storage policies, the descriptions and examples in this documentation state that part of
the read consistency requirement is being able to read X number of object data replicas. This is a sim-
plification. Technically, what needs to be readable in order to satisfy a read consistency requirement is the file
digests of X number of object data replicas. A file digest is an object data file "header" -- a small bit of file-
identifying information including file name, size, timestamp, and MD5 hash -- which is stored in RocksDB on
the same disk as the corresponding object data replica file. To determine whether or not an object data replica
file is present on a given endpoint, the system tries to read that object data replica's file digest. This is much
faster than reading the object data file itself.

If the read consistency requirements are met for an S3 GET operation -- for reading the required number of
object metadata replicas (in Cassandra) and the digests for the required number of object data replicas -- the
system then retrieves just one object data replica file in order to return the object data to the S3 client. For
example to meet a read consistency requirement of ALL, the system must be able to read all the object's
metadata replicas in Cassandra, and all the object's data replicas' file digests in RocksDB -- and then it
retrieves one object data replica and returns it to the client.

Note About Bucket Content List Reads

In the documentation of the supported consistency levels such as "ALL", "QUORUM", and so on (see the cross
references above), when read consistency requirements are discussed the focus is on reads of individual
objects -- that is, the consistency requirements for successfully implementing S3 GET Object requests. It's worth
noting however that your configured read consistency requirements also apply to bucket content list reads --
that is, implementing S3 GET Bucket (List Objects) requests.

Metadata for objects is stored in two different types of record in Cassandra: object-level records (with one such
record for each object) and bucket-level records that identify the objects in a bucket (along with some metadata
for each of those objects). Both types of object metadata are replicated to the same degree. So for example, in

368

5.7. Cluster

a 3X replication storage policy, for each object the object-level metadata record is replicated three times in the
cluster and for each bucket the bucket-level object metadata records are replicated three times in the cluster.

A GET Object request requires reading the object's object-level metadata record and a GET Bucket (List
Objects) request requires reading the bucket's bucket-level object metadata records. Whatever read con-
sistency requirements you set for a storage policy apply not only to reads of individual objects but also to reads
of buckets content lists. So for example if you use a QUORUM read consistency requirement, then in order to
successfully execute a GET Bucket (List Objects) request the system must be able to read a QUORUM of the
bucket-level object metadata records for the bucket.

For more on the meaning of QUORUM and the other supported consistency levels, see the cross references
above.

5.7.7.1.5. Consistency Level "ALL"

The consistency level "ALL" is a supported option for every type of data distribution scheme, for both reads and
writes. The table below shows the general requirements of ALL in the context of replication based storage
policies and erasure coding based storage policies. Following the table are examples for each supported data
distribution scheme.

Replication Erasure Coding

Read ALL
For an S3 GET to succeed, the system must
succeed in reading all object data replicas
and all object metadata replicas.

For an S3 GET to succeed, the system must
succeed in reading "k" object data fragments
and all object metadata replicas.

Write ALL
For an S3 PUT to succeed, the system must
succeed in writing all object data replicas
and all object metadata replicas.

For an S3 PUT to succeed, the system must
succeed in writing all ("k"+"m") object data frag-
ments and all object metadata replicas.

Example for a "Replication Within Single Data Center" policy

Suppose a "Replication Within Single Data Center" policy uses 3X replication. With this configuration, for each
object the system will store 3 object data replicas and 3 object metadata replicas.

If the policy's consistency level for Read is set to ALL, then during an S3 GET operation all 3 object data rep-
licas and all 3 object metadata replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to ALL, then during an S3 PUT operation all 3 object data replicas and all
3 object metadata replicas must be successfully written before a success response is returned to the client.

Example for an "EC Within Single Data Center" policy

Suppose an "EC Within Single Data Center" policy uses 4+2 erasure coding. With this configuration, for each
object the system will store 6 object data fragments and 3 object metadata replicas (2m-1, by default).

If the policy's consistency level for Read is set to ALL, then during an S3 GET operation 4 object data fragments
and all 3 object metadata replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to ALL, then during an S3 PUT operation all 6 object data fragments and
all 3 object metadata replicas must be successfully written before a success response is returned to the client.

Example for a "Replication Across Data Centers" policy

Suppose a "Replication Across Data Centers" policy uses 3X replication in DC-East and 2X replication in DC-
West. With this configuration, for each object the system will store 3 object data replicas and 3 object metadata

369

Chapter 5. Cloudian Management Console (CMC)

replicas in DC-East, and 2 object data replicas and 2 object metadata replicas in DC-West.

If the policy's consistency level for Read is set to ALL, then during an S3 GET operation all 5 object data rep-
licas and all 5 object metadata replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to ALL, then during an S3 PUT operation all 5 object data replicas and all
5 object metadata replicas must be successfully written before a success response is returned to the client.

Example for a "Replicated EC" policy

Suppose a "Replicated EC" policy uses 4+2 erasure coding replicated in DC-East and DC-West. With this con-
figuration, for each object the system will store 6 object data fragments and 3 object metadata replicas (2m-1,
by default) in each of those DCs.

If the policy's consistency level for Read is set to ALL, then during an S3 GET operation a total of 4 unique
object data fragments (from among all the object's fragments in the two DCs) as well as all 6 object metadata
replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to ALL, then during an S3 PUT operation all 12 object data fragments
and all 6 object metadata replicas must be successfully written before a success response is returned to the cli-
ent.

Example for an "EC Across Data Centers" policy

Suppose an "EC Across Data Centers" policy uses 7+5 erasure coding distributed across DC-East, DC-West,
and DC-South. With this configuration, for each object the system will store 4 bject data fragments in each of
those DCs, as well as 9 object metadata replicas (2m-1, by default) spread approximately evenly across the
DCs.

If the policy's consistency level for Read is set to ALL, then during an S3 GET operation a total of 7 unique
object data fragments (from among all the object's fragments in the three DCs) as well as all 9 object metadata
replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to ALL, then during an S3 PUT operation all 12 object data fragments
and all 9 object metadata replicas must be successfully written before a success response is returned to the cli-
ent.

5.7.7.1.6. Consistency Level "ANY QUORUM"

The consistency level "ANY QUORUM" is supported only in "Replicated EC" data distribution schemes, for
read and write operations. The table below shows the general requirements of ANY QUORUM, and following
the table is an example.

Replicated EC

Read ANY QUORUM

For an S3 GET to succeed the system must succeed in reading a total of "k" unique
erasure coded fragments from among the storage policy's participating data centers,
and also reading enough object metadata replicas to satisfy either a
LOCAL QUORUM or QUORUM consistency level (implemented as dynamic con-
sistency levels). The system automatically sets up this object metadata consistency
configuration when you choose ANY QUORUM as the read consistency for the stor-
age policy, because Cassandra (in which object metadata is stored) does not natively
support an ANY QUORUM consistency level.

Write ANY QUORUM
For an S3 PUT to succeed the system must succeed in writing "k"+1 erasure coded
fragments within any one of the storage policy's participating data centers and also
writing enough object metadata replicas to satisfy either a LOCAL QUORUM or

370

5.7. Cluster

Replicated EC

QUORUM consistency level

Example for a "Replicated EC" policy

Suppose a "Replicated EC" policy uses 4+2 erasure coding replicated in DC-East and DC-West. With this con-
figuration, for each object the system will store 6 object data fragments and 3 object metadata replicas (2m-1,
by default) in each of those DCs.

If the policy's consistency level for Read is set to ANY QUORUM, and an S3 GET request is received in DC-
East (for example), then in order for that request to succeed the system must succeed in reading 4 unique
object data fragments, and either 2 object metadata replicas in DC-East or a total of 4 object metadata replicas
from the two DCs combined.

Note For the object data, reading 3 object data fragments in DC-East (for example) and 1 object data
fragment in DC-West would satisfy the requirement as long as all those fragments are unique.

If the consistency level for Write is set to ANY QUORUM, and an S3 PUT request is received in DC-East, then
in order for that request to succeed the system must succeed in writing 5 object data fragments either in DC-
East or in DC-West, and writing either 2 object metadata replicas in DC-East or a total of 4 object metadata rep-
licas in the two DCs combined.

Note For the object data, writing 3 object data fragments in DC-East (for example) and 2 object data
fragments in DC-West would not satisfy the requirement, since the object data write quorum has to be
achieved within one of the DCs.

5.7.7.1.7. Consistency Level "EACH QUORUM"

The consistency level "EACH QUORUM" is supported only in "Replication Across Data Centers" or "Replicated
EC" data distribution schemes and only for write operations -- not reads. The table below shows the general
requirements of EACH QUORUM in the context of replication based storage policies and erasure coding
based storage policies. Following the table are examples for each supported data distribution scheme.

Replication Erasure Coding

Write
EACH QUORUM

For an S3 PUT to succeed, in each of the
storage policy's participating data centers
the system must succeed in writing a
majority of object data replicas and a
majority of object metadata replicas.

For an S3 PUT to succeed, in each of the
storage policy's participating data centers
the system must succeed in writing "k"+1
object data fragments and a majority of
object metadata replicas.

Note For replicated data or metadata, a quorum or majority of a set of replicas is defined math-
ematically as (#replicas/2) +1, rounded down to the nearest integer. For example with 3 replicas a
quorum would be (3/2 = 1.5) +1 = 2.5, rounded down = 2. With 4 replicas a quorum would be (4/2 = 2)
+1 = 3, rounded down = 3. With the EACH QUORUM consistency level the quorum must be achieved in
each participating DC.

371

Chapter 5. Cloudian Management Console (CMC)

Example for a "Replication Across Data Centers" policy

Suppose a "Replication Across Data Centers" policy uses 3X replication in DC-East and 2X replication in DC-
West. With this configuration, for each object the system will store 3 object data replicas and 3 object metadata
replicas in DC-East, and 2 object data replicas and 2 object metadata replicas in DC-West.

If the policy's consistency level for Write is set to EACH QUORUM, then in order for an S3 PUT operation to suc-
ceed the system must succeed in writing 2 object data replicas and 2 object metadata replicas in DC-East, and
2 object data replicas and 2 object metadata replicas in DC-West.

Example for a "Replicated EC" policy

Suppose a "Replicated EC" policy uses 4+2 erasure coding replicated in DC-East and DC-West. With this con-
figuration, for each object the system will store 6 object data fragments and 3 object metadata replicas (2m-1,
by default) in each of those DCs.

If the policy's the consistency level for Write is set to EACH QUORUM, then in order for an S3 PUT operation to
succeed the system must succeed in writing 5 object data fragments and 2 object metadata replicas in DC-
East, and 5 object data fragments and 2 object metadata replicas in DC-West.

5.7.7.1.8. Consistency Level "LOCAL QUORUM"

The consistency level "LOCAL QUORUM" is supported only in "Replication Across Data Centers" or "Rep-
licated EC" data distribution schemes, for write and read operations. With LOCAL QUORUM it's important to
understand these two points:

l In the context of a storage policy that encompasses multiple data centers, for any given S3 request the
"local" data center is the data center in which the request is received from the S3 client. For
example in a storage policy that encompasses DC1 and DC2, for all S3 requests received in DC1 the
local data center is DC1, and for all S3 requests received in DC2 the local data center is DC2.

l With a LOCAL QUORUM consistency level, whether an S3 request succeeds or not is based solely on
what happens in the local data center. What happens in the remote data center(s) is irrelevant to
achieving a LOCAL QUORUM consistency level.

With those points in mind, the table below shows the general requirements of LOCAL QUORUM in the context
of replication based storage policies and erasure coding based storage policies. Following the table are
examples for each supported data distribution scheme.

Replication Erasure Coding

Read
LOCAL QUORUM

For an S3 GET to succeed, the system
must succeed in reading a majority of the
local DC's object data replicas and a
majority of the local DC's object metadata
replicas.

For an S3 GET to succeed, the system
must succeed in reading "k" object data
fragments within the local DC and a
majority of the local DC's object
metadata replicas.

Write
LOCAL QUORUM

For an S3 PUT to succeed, the system
must succeed in writing a majority of the
local DC's object data replicas and a
majority of the local DC's object metadata
replicas.

For an S3 PUT to succeed, the system
must succeed in writing "k"+1 object data
fragments within the local DC and a
majority of the local DC's object
metadata replicas.

Note For replicated data or metadata, a quorum or majority of a set of replicas is defined math-
ematically as (#replicas/2) +1, rounded down to the nearest integer. For example with 3 replicas a

372

5.7. Cluster

quorum would be (3/2 = 1.5) +1 = 2.5, rounded down = 2. With 4 replicas a quorum would be (4/2 = 2)
+1 = 3, rounded down = 3. With the LOCAL QUORUM consistency level the requirement is to suc-
cessfully read or write a quorum among the replicas in the local DC. For example if the local DC is
assigned 3 replicas, a local quorum is constituted by 2 of those replicas; or if the local DC is assigned 4
replicas, a local quorum is constituted by 3 of those replicas.

Example for a "Replication Across Data Centers" policy

Suppose a "Replication Across Data Centers" policy uses 3X replication in DC-East and 2X replication in DC-
West. With this configuration, for each object the system will store 3 object data replicas and 3 object metadata
replicas in DC-East, and 2 object data replicas and 2 object metadata replicas in DC-West.

If the policy's consistency level for Read is set to LOCAL QUORUM, and an S3 GET request is received in DC-
East (for example), then in order for that request to succeed the system must succeed in reading 2 object data
replicas and 2 object metadata replicas in DC-East.

If the consistency level for Write is set to LOCAL QUORUM, and an S3 PUT request is received in DC-East (for
example), then in order for that request to succeed the system must succeed in writing 2 object data replicas
and 2 object metadata replicas in DC-East.

Note that what happens in the non-local data center -- DC-West in the examples above -- is irrelevant to meet-
ing the LOCAL QUORUM requirement for a given request. For an S3 request received in DC-East, DC-West
could be unreachable or completely offline and LOCAL QUORUM could still be achieved so long as the read
or write succeeds for 2 of the 3 replicas assigned to DC-East. Conversely, if the operation does not succeed for
2 of DC-East's 3 assigned replicas, then the S3 request fails regardless of whether or not some replicas can be
read or written in DC-West.

Example for a "Replicated EC" policy

Suppose a "Replicated EC" policy uses 4+2 erasure coding replicated in DC-East and DC-West. With this con-
figuration, for each object the system will store 6 object data fragments and 3 object metadata replicas (2m-1,
by default) in each of those DCs.

If the policy's consistency level for Read is set to LOCAL QUORUM, and an S3 GET request is received in DC-
East (for example), then in order for that request to succeed the system must succeed in reading 4 object data
fragments and 2 object metadata replicas in DC-East.

If the consistency level for Write is set to LOCAL QUORUM, and an S3 PUT request is received in DC-East (for
example), then in order for that request to succeed the system must succeed in writing 5 object data fragments
and 2 object metadata replicas in DC-East.

Note that what happens in the non-local data center -- DC-West in the examples above -- is irrelevant to meet-
ing the LOCAL QUORUM requirement for a given request. For the S3 PUT request received in DC-East, DC-
West could be unreachable or completely offline and LOCAL QUORUM could still be achieved so long as the
write succeeds for 5 object data fragments and 2 object metadata replicas in DC-East. Conversely, if the sys-
tem cannot write the 5 object data fragments and 2 object metadata replicas in DC-East, then the S3 PUT oper-
ation fails regardless of whether or not some data fragments and metadata replicas can be written in DC-West.

5.7.7.1.9. Consistency Level "ONE"

The consistency level "ONE" is supported only in "Replication Within Single Data Center" and "Replication
Across Data Centers" data distribution schemes and only for read operations -- not writes.

373

Chapter 5. Cloudian Management Console (CMC)

With a read consistency of ONE, for an S3 GET to succeed the system must succeed in reading one object data
replica and one object metadata replica.

Example for a "Replication Within Single Data Center" policy

Suppose a "Replication Within Single Data Center" policy uses 3X replication. With this configuration the sys-
tem will for each object store 3 object data replicas and 3 object metadata replicas.

If the policy's consistency level for Read is set to ONE, then during an S3 GET operation just one object data
replica and just one object metadata replica must be successfully read before the object is returned to the cli-
ent.

Example for a "Replication Across Data Centers" policy

Suppose a "Replication Across Data Centers" policy uses 3X replication in DC-East and 2X replication in DC-
West. With this configuration, for each object the system will store 3 object data replicas and 3 object metadata
replicas in DC-East, and 2 object data replicas and 2 object metadata replica in DC-West.

If the policy's consistency level for Read is set to ONE, then during an S3 GET operation just one object data
replica (from either DC) and just one object metadata replica (from either DC) must be successfully read before
the object is returned to the client.

5.7.7.1.10. Consistency Level "QUORUM"

The consistency level "QUORUM" is a supported option for every type of data distribution scheme except "Rep-
licated EC", for both reads and writes. The table below shows the general requirements of QUORUM in the con-
text of replication based storage policies and erasure coding based storage policies. Following the table are
examples for each supported data distribution scheme.

Replication Erasure Coding

Read
QUORUM

For an S3 GET to succeed, the system must
succeed in reading a majority of object data
replicas and a majority of object metadata rep-
licas.

For an S3 GET to succeed, the system must
succeed in reading "k" object data frag-
ments and a majority of object metadata rep-
licas.

Write
QUORUM

For an S3 PUT to succeed, the system must
succeed in writing a majority of object data rep-
licas and a majority of object metadata rep-
licas.

For an S3 PUT to succeed, the system must
succeed in writing "k"+1 object data frag-
ments and a majority of object metadata rep-
licas.

Note For replicated data or metadata, a quorum or majority of a set of replicas is defined math-
ematically as (#replicas/2) +1, rounded down to the nearest integer. For example with 3 replicas a
quorum would be (3/2 = 1.5) +1 = 2.5, rounded down = 2. With 4 replicas a quorum would be (4/2 = 2)
+1 = 3, rounded down = 3.

Example for a "Replication Within Single Data Center" policy

Suppose a "Replication Within Single Data Center" policy uses 3X replication. With this configuration, for each
object the system will store 3 object data replicas and 3 object metadata replicas.

374

5.7. Cluster

If the policy's consistency level for Read is set to QUORUM, then during an S3 GET operation 2 object data
replicas and 2 object metadata replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to QUORUM, then during an S3 PUT operation 2 object data replicas
and 2 object metadata replicas must be successfully written before a success response is returned to the client.

Example for an "EC Within Single Data Center" policy

Suppose an "EC Within Single Data Center" policy uses 4+2 erasure coding. With this configuration, for each
object the system will store 6 object data fragments and 3 object metadata replicas (2m-1, by default).

If the policy's consistency level for Read is set to QUORUM, then during an S3 GET operation 4 object data frag-
ments and 2 object metadata replicas must be successfully read before the object is returned to the client.

If the consistency level for Write is set to QUORUM, then during an S3 PUT operation 5 object data fragments
and 2 object metadata replicas must be successfully written before a success response is returned to the client.

Example for a "Replication Across Data Centers" policy

Suppose a "Replication Across Data Centers" policy uses 3X replication in DC-East and 2X replication in DC-
West. With this configuration, for each object the system will store 3 object data replicas and 3 object metadata
replicas in DC-East, and 2 object data replicas and 2 object metadata replicas in DC-West.

If the policy's consistency level for Read is set to QUORUM, then during an S3 GET operation any 3 object
data replicas and any 3 object metadata replicas must be successfully read before the object is returned to the
client. For example the 3 readable object data replicas could be constituted as 1 in DC-East and 2 in DC-West,
or 2 in DC-East and 1 in DC-West, or 3 in DC-East and 0 in DC-West.

If the consistency level for Write is set to QUORUM, then during an S3 PUT operation any 3 object data replicas
and any 3 object metadata replicas must be successfully written before a success response is returned to the
client. For example the 3 successfully written object data replicas could be constituted as 1 in DC-East and 2 in
DC-West, or 2 in DC-East and 1 in DC-West, or 3 in DC-East and 0 in DC-West.

Example for an "EC Across Data Centers" policy

Suppose an "EC Across Data Centers" policy uses 7+5 erasure coding distributed across DC-East, DC-West,
and DC-South. With this configuration, for each object the system will store 4 object data fragments and 3
object metadata replicas in each of those DCs (for the object metadata it's 9 replicas [2m-1, by default] divided
evenly among the three DCs).

If the policy's consistency level for Read is set to QUORUM, then during an S3 GET operation any 7 object data
fragments and any 5 object metadata replicas must be successfully read before the object is returned to the cli-
ent.

If the consistency level for Write is set to QUORUM, then during an S3 PUT operation a total of 8 object data
fragments and a total of 5 object metadata replicas must be successfully written before a success response is
returned to the client. The 8 successfully written object data fragments could be constituted as, for example, 2
in DC-East and 3 in DC-West and 3 in DC-South; or 4 in DC-East and 4 in DC-West and 0 in DC-South.

5.7.7.1.11. Create New Storage Policy -- Group Visibility

In the "Group Visibility" section of the Create New Policy interface, specify which user groups will be allowed
to use the policy. Users from the groups that you select here will see the policy as an available storage policy
when they create a storage bucket. Users are required to choose a storage policy when creating a bucket.

To make this storage policy available to all user groups, do nothing in the "Group Visibility" section of the inter-
face. Making policies available to all user groups is the default behavior.

375

Chapter 5. Cloudian Management Console (CMC)

IMPORTANT ! If this storage policy is going to be the default storage policy, do not specify any
groups. The default storage policy must be available to all groups. If you do not yet have any storage
policies in your system, the first policy that you create must be a default policy that is available to all
groups.

If you want the policy to be used only by certain user groups, do the following for each group that you want the
policy to be available to:

a. Use the drop-down list to select a group.

b. Click Add.

The groups that you select will then display in the "Group Visibility" section interface.

5.7.7.1.12. Create New Storage Policy -- Compression

In the "Compression" field of the Create New Policy interface, select the type of compression (if any) to use for
S3 objects stored in the HyperStore File System. This applies to replicated S3 object data and erasure coded
S3 object data stored in the HSFS. It does not apply to data stored in Cassandra.

Supported options are:

l Snappy

l Zlib

l LZ4

l None (no compression)

When enabled, compression is applied to incoming S3 objects by the S3 Service, before those objects are
transmitted to the HyperStore Service and placed into storage. Any change that you make to the compression
type setting — such as changing it from disabled to a particular compression type, or from one compression
type to another — is applied only to new S3 objects as they come into the system, not retroactively to objects
that are already stored in the system.

Each object’s compression type (if any) is stored in the object’s metadata in Cassandra. Consequently, if for
example you use Snappy for a while and then switch to LZ4, those objects that had been compressed with
Snappy will continue to have in their metadata an indicator that they were compressed with Snappy — and so
the system will be able to de-compress the objects when they are downloaded by S3 client applications.

Note For S3 service usage tracking (for purposes of QoS enforcement and billing), the uncompressed
size of objects is always used, even if you enable HyperStore compression.

For a "CopyObject" (page 939) operation, the copy of the object will be subject to whatever the cur-
rent compression type setting is (which may be different than the setting that was in effect when the ori-
ginal object was uploaded).

5.7.7.1.13. Create New Storage Policy -- Server-Side Encryption

In the "Server-Side Encryption" field of the Create New Policy interface, select the default method of server-
side encryption that the system should apply to all objects in all buckets that use this storage policy.

Supported options are:

l SSE -- Regular server-side encryption using encryption keys managed by the HyperStore system

376

http://google.github.io/snappy/
http://zlib.net/
https://github.com/Cyan4973/lz4

5.7. Cluster

l None -- No server-side encryption

Your chosen default method of server-side encryption for the storage policy will apply only to objects for which
no server-side encryption method is specified either in the object upload request or in the bucket configuration.
Object-level and bucket-level server-side encryption settings supersede the storage policy level setting.

For more information about HyperStore's support for server-side encryption -- including the interaction of object
level, bucket level, and storage policy level encryption settings -- see "Server-Side Encryption" (page 105).

Note If you edit the Server-Side Encryption setting for an existing storage policy, your change applies
only to objects that are uploaded from that time forward. The change does not apply to objects that are
already in storage.

5.7.7.2. Edit a Storage Policy

To edit an existing storage policy, in the policy list on the CMC's Storage Policies page click View/Edit for the
policy that you want to edit. You can then edit policy attributes such as data consistency requirements, group
visibility, compression, and server-side encryption. For guidance on working with these policy characteristics,
see "Add a Storage Policy" (page 353).

Note that any changes you make to how stored objects are handled, such as compression or server-side
encryption, will apply only to objects uploaded after you make the storage policy edit -- not to objects that are
already in storage. For example if you enable server-side encryption on an existing storage policy, then from
that time forward objects that get uploaded to buckets that use that storage policy will be encrypted -- but
objects that were already uploaded prior to the configuration change will not be encrypted. Conversely, if an
existing storage policy has been configured for encryption and then later you disable encryption for that policy,
then from that time forward newly uploaded objects will not be encrypted -- but objects that had already been
uploaded (and encrypted) prior to the configuration change will remain encrypted.

Note When you click View/Edit for a storage policy you can also view the storage policy's data dis-
tribution scheme (such as replication factor or EC "k"+"m" values), its data center assignment, and its
system-generated policy ID. However these policy attributes are not editable.

5.7.7.3. Designate a Default Storage Policy

At all times you must have one and only one default storage policy defined in each of your HyperStore service
regions. The default policy is the one that will be applied when users create new buckets without specifying a
policy.

In your storage policy list (in the CMC's Storage Policies page), the current default policy is listed first, with its
Region name highlighted in green. In the example below, the policy named "HSFS-1" is the default storage
policy.

377

Chapter 5. Cloudian Management Console (CMC)

To be eligible for being the default storage policy, a policy must be:

l Active (Status = ACTIVE)

l Visible to all user groups. If you’re unsure whether a particular policy is visible to all groups, click
View/Edit for the policy, then check in the Group Visibility panel. If individual group names appear in
this panel, that means the policy is currently configured to be visible to only those groups. You can
change this by deleting all the specific groups that are displayed and saving the edited storage policy.

To designate a policy as the default, click Set as Default for that policy. The interface will ask you to confirm
that you want to take this action.

Note that changing the default storage policy has no effect on which policy is used by currently existing
buckets. Buckets that have been using the old default storage policy will continue to do so. The impact is that
when new buckets are created without specifying a storage policy, they will be assigned the new default stor-
age policy.

Note When a pre-5.2 version of HyperStore is upgraded to 5.2 or newer, the upgrade process auto-
matically creates a storage policy named "DEFAULT_<region-name>". This policy is configured with
the data distribution scheme (replication factor or EC "k"+"m" values) and user data read/write con-
sistency requirements that the pre-5.2 system had been using. This "DEFAULT_<region-name>" will be
your default storage policy until you designate some other policy as the default.

5.7.7.4. Disable a Storage Policy

Disabling a storage policy prevents users from choosing the policy when they create new buckets. However,
buckets that are already using the policy will continue to do so even after the policy is disabled.

Note You cannot disable the default storage policy. If you want to disable that policy you must first pro-
mote a different policy to be the new default.

Note Disabled policies still count toward the configurable limit on the number of polices that can exist
in the system.

To disable a policy, in the CMC's Storage Policies page select the checkbox to the left of the policy name and
then click Disable. The interface will ask you to confirm that you want to take this action.

378

5.7. Cluster

If subsequently you want to re-enable a disabled storage policy, select the policy and click Enable. When you
re-enable a storage policy, the policy once again becomes available for service users to assign to newly cre-
ated buckets.

5.7.7.5. Delete a Storage Policy

Deleting a storage policy completely removes the policy from the system. There are restrictions on which
policies you can delete. You cannot delete:

l The default storage policy. If you want to delete that policy you must first promote a different policy to
be the new default.

l The system-generated policy named "DEFAULT_<regionName>" (applicable only to HyperStore sys-
tems that have upgraded from versions older than 5.2).

l Storage policies that are currently being used by one or more buckets. If a policy is being used by buck-
ets and you want those buckets to continue using it but you no longer want the policy to be available to
new buckets, you can disable the policy rather than deleting it. See "Disable a Storage Policy" (page
378). If you really want to delete such a policy, see the required preliminary steps below.

To delete a storage policy that has never been used (that is, the policy has never been associated with any
buckets), in the CMC's Storage Policies page select the checkbox to the left of the policy name and then click
Delete. The interface will ask you to confirm that you want to take this action, and when you confirm the policy
will be deleted.

To delete a policy that has been or is currently being used by one or more buckets, do the following:

1. If any buckets are currently using the policy, first delete all objects from those buckets, then delete the
buckets themselves.

Note It is not possible to reassign a different storage policy to a bucket. If you want to delete a
storage policy that is currently being used by one or more buckets, you must delete those buck-
ets.

If you are not certain which buckets are currently using a given storage policy, you can use the
Admin API method GET /bppolicy/bucketsperpolicy to retrieve this information.

2. Delete the policy: In the Storage Policies page select the checkbox to the left of the policy name and
then click Delete. The interface will ask you to confirm that you want to take this action, and when you
confirm the policy will be deleted.

Note As a best practice, after deleting a storage policy wait 24 hours and then run hsstool
cleanup on each node in your cluster, using the -a option and the -policy option (hsstool
cleanup -h <host> -a -policy). This will clean up any garbage data associated with the deleted
storage policy -- such as replicas or erasure coded fragments that the system failed to remove
when you manually deleted all the objects from buckets that had been using the storage policy
(Step 1 above). Normally you should only run hsstool cleanup on one node at a time, per data
center. If you have circumstances where you need to clean up multiple nodes within a data cen-
ter, you can try running it on two or three nodes concurrently, but pay close attention to cluster
performance and also contact Cloudian Support for further guidance.

379

Chapter 5. Cloudian Management Console (CMC)

5.7.8. Repair Status
Path: Cluster → Repair Status

Supported tasks:

l View repair status for cluster

l View repair status for a node

5.7.8.1. View Repair Status for Cluster

The upper section of the Repair Status page shows aggregate data repair status for your cluster as a whole.
The information displays in three panels:

Proactive Repair

This panel is activated if proactive repair is either pending or in progress on any node in your cluster.

For the cluster as a whole, this panel shows:

l Objects Repaired -- The number of objects that have been repaired by in-progress proactive repair
operations

Note that an "object" in this context can be either an object replica or an erasure coded object fragment. So if
for example the in-progress proactive repair has so far repaired 12 object replicas and 8 erasure coded object
fragments, the Objects Repaired value would be 20.

Rebalance

This panel is activated if any of the following operations is in progress on any node:

380

5.7. Cluster

l A rebalance operation (which you should be initiating toward the end of the procedure for "Adding
Nodes" (page 420))

l A decommission operation (which the system would automatically initiate as part of the process of
"Removing a Node" (page 443), if the node was accessible within the Cassandra ring)

These operations have in common that object replicas (or erasure coded fragments) are being re-located
within the cluster in response to the cluster having been re-sized.

For the cluster as a whole, this panel shows:

l Objects Rebalanced -- How many object replicas or erasure coded fragments have been relocated so
far, by the currently in-progress rebalance or decommission operation.

l % Completed -- For object replicas, the token ranges for which rebalancing or decommissioning has
been completed as a percentage of the total token ranges impacted by the cluster resizing.

l % EC Completed -- For object erasure coded fragments, the token ranges for which rebalancing or
decommissioning has been completed as a percentage of the total token ranges impacted by the
cluster resizing.

Repair

This panel is activated if an hsstool repair or hsstool repairec operation is in progress on any node in your
cluster. It indicates the number of objects that have been scanned and (from among the scanned objects) the
number of objects that needed and received repair. It also shows the completion percentage for the operation,
on the node on which it is being run.

For the cluster as a whole, this panel shows:

l Objects Scanned -- The number of objects that have been scanned by in-progress repair and/or
repairec operations to determine whether or not the objects are in need of repair.

l Objects Repaired -- The number of objects that have been repaired by in-progress repair and/or
repairec operations.

l % Completed -- For replica repair only, the completion percentage so far. This is calculated as the num-
ber of token ranges for which repair has been completed divided by the total number of token ranges
that will be repaired by this repair operation. The % Completed metric does not apply to repairec oper-
ations -- if only a repairec operation is running (and not a repair operation), then the % Completed field
displays "N/A" for not applicable.

5.7.8.2. View Repair Status for a Node

The lower section of the CMC's Repair Status page displays a color-coded node icon (cube) for each node in
the cluster. The icon indicates the node's current repair status:

Rebalance Failed— The node has been added to the cluster and rebalance was run on the node,
but the rebalance operation failed. Try running rebalance on the node again. See "Adding
Nodes" (page 420).

Rebalance Required— The node has been added to the cluster, but rebalance has not yet been
run on the node. The rebalance operation is required in order to shift some data to the node from
other nodes in the cluster. See "Adding Nodes" (page 420).

Rebalance Running— Either a rebalance operation is in progress for the node (if the node has
been recently added to the cluster); or else a decommission operation is in progress for the node
(if the node is live and is being removed from the cluster).

381

Chapter 5. Cloudian Management Console (CMC)

Repair Running— An hsstool repair or hsstool repairec operation is running on the node. This
may be as a result of the scheduled auto-repair feature, or because a system administrator ini-
tiated the operation.

Proactive Repair Pending— The system has detected that the node is in need of proactive
repair. The repair will occur at the next proactive repair interval (by default every 60 minutes).

Proactive Repair Running— Proactive repair is in progress on the node.

All Clear—No repair of any type is in progress on the node, and the node is not currently in need
of rebalance or proactive repair.

Unavailable—The repair information for the node is unavailable, such as if the node is down or
inaccessible or the HyperStore Service is down on the node.

Note In the event that multiple repair types are simultaneously running on the node, the color-coding
reflects whichever in-progress repair type started first on the node.

If you click a node icon, detailed information about in-progress and recently completed repairs on that node
will display.

382

5.7. Cluster

This is the same information that is retrieved when you run the hsstool opstatus command on a node. For
description of the available information items see the command response section of "hsstool opstatus" (page
666).

In the case of proactive repair, the information items will also include the proactive repair queue length. This
indicates the number of objects for which data -- either a replica or an erasure coded fragment -- currently
needs to be written to the node by the proactive repair feature. As the proactive repair of the node proceeds
and fewer objects remain to repair, the proactive repair queue shrinks. (Conversely, at times when the node is
down, unreachable, or otherwise unable to support writes, the node's proactive repair queue grows.)

If after clicking a node icon, you click the host name at the top of a node's status detail display you will jump
to the Node Status page for that node.

Note If proactive repair is pending on a node, and if for some reason you want to trigger the proactive
repair on that node immediately rather than waiting for the automatic hourly run, you can do so by
using the hsstool proactiverepairq command with the "-start" option.

Note For information about stopping an in-progress repair see "Disabling or Stopping Data Repairs"
(page 154).

383

Chapter 5. Cloudian Management Console (CMC)

5.7.9. Operation Status
Path: Cluster → Operation Status

Supported task:

l Check status of operations launched from the CMC

In the Operation Status page you can view the status of long-running operations that you have launched from
the CMC. Status reporting in this page is supported for these operation types:

l Add Node

l Add Data Center

l Add Region

l Uninstall Node

l hsstool rebalance

l hsstool repair or repairec

l hsstool cleanup or cleanupec

Note For hsstool operations, the CMC's Operation Status page reports only on hsstool operations that
you initiate through the CMC's Node Advanced page. It does not report on hsstool operations that you
initiate manually through the command line. For viewing status of operations that you initiate on the
command line use hsstool opstatus.

For each operation the Operation Status page displays the Operation Name, Target node (identified as
<region-name>::<datacenter-name>::<hostname>), and current Status, as well as the Progress (as an approx-
imate percentage of completion), operation Start Time, and Last Update time (the last time that the CMC
obtained status information for the operation).

The operation Status will be one of In-Progress, Completed, Failed, or Terminated. A Terminated status is
applicable only for hsstool repair, hsstool repairec, hsstool cleanup, or hsstool cleanupec operations that an
operator has terminated by the "stop" command option that's supported for those operation types.

l To refresh the display, click the refresh icon above the Search field.

384

5.8. Alerts

l To view status detail for an operation, click the View button to the right of the operation status sum-
mary.

In the case of hsstool operations these are the same operation details as are provided by hsstool
opstatus. To refresh the status detail, close the detail view and then reopen it.

l To filter the operation list, in the Search field enter an operation name, region name, data center name,
or hostname.

l To delete an operation status line from the page click Delete to the right of the line. In the case of
hsstool operations the status detail will still be available through the hsstool opstatus command.

5.8. Alerts
The Alerts tab contains the following functions:

l "Alerts" (page 385)

l Alert Rules

5.8.1. Alerts
Path: Alerts → Alerts

385

Chapter 5. Cloudian Management Console (CMC)

Supported tasks:

l "Review Alerts" (page 386)

l "Acknowledge Alerts" (page 389)

Note Optionally you can suppress alerting for specific log messages as identified by message
code. HyperStore provides a configuration setting for suppressing specific log-based alerts. In the con-
figuration file common.csv, see the setting "alert_suppression_list" (page 543).

5.8.1.1. Review Alerts

In the Alerts page you can review active alerts that have been generated by your HyperStore nodes. Alerts are
triggered by the occurrence of node events or conditions for which alert rules have been configured. Your
HyperStore system comes with a set of pre-configured alert rules which are listed in the CMC's Alert Rules
page. In that page you can also edit the pre-configured rules if you wish, or create additional alert rules.

The Alerts page auto-refreshes once per minute. For each alert the following information is displayed:

Severity

Each alert is assigned a severity level of Critical, High, Medium, or Low. The severity level assigned to each
alert is configurable in the Alert Rules page.

Node ID

The HyperStore node on which the alert occurred. Note that at the top of the Alerts page you can filter the
Alert List by node. By default, "ALL" is selected, to show results for all nodes in your system.

You can click on the Node ID to jump to the "Node Status" (page 313) page for that node.

Alert Type

386

5.8. Alerts

l Statistic threshold alerts— Alerts indicating that a monitored performance statistic has crossed a
threshold. For this category of alert, the "Alert Type" field indicates the statistic for which a configured
threshold was crossed (such as CPU utilization, Disk space available on node, Disk space available on
device, Number of S3 GET transactions per second, and so on).

l Service down/unreachable alerts— Alerts indicating that a service is either down or unreachable by
the HyperStore monitoring system. For this category of alert, the "Alert Type" field indicates the service
type that is down or unreachable -- Admin, Cassandra, HyperStore, Redis Credentials, Redis QoS, or
S3. (The system also supports alerts for when such a service is restored or reachable again -- these are
not pre-configured in the system but you can add alert rules for these if you wish).

Note To determine whether a service is actually down on a node (as opposed to being up but
unreachable by the monitoring system), log into the node and run:

systemctl is-active <servicename>

The <servicename> string can be one of {cloudian-s3, cloudian-cassandra, cloudian-hyper-
store, cloudian-redis-credentials, cloudian-redis-qos, cloudian-redismon, cloudian-cmc, cloud-
ian-agent, cloudian-dnsmasq}.

l Logmessage alerts— Alerts indicating that a WARN or ERROR level message has been written to a
service application log. For this category of alert, the "Alert Type" field indicates the service for which the
WARN or ERROR occurred -- Admin, Cassandra, HyperStore, Redis Credentials, Redis QoS, or S3.

Note Along with alerts pertaining to providing S3 service to clients, the "S3" alerts category also
includes alerts pertaining to auto-tiering and cross-region replication.

l Repair completion alerts— Alerts indicating that a data repair operation has finished its run. For this
category of alert, the "Alert Type" field displays "Repair Completion Status". Note that the completion of
routine "proactive" repairs does not trigger these alerts -- only completion of scheduled auto-repairs or
repairs operations that you execute yourself (from the CMC or the command line) will trigger these
alerts. For more information on repair types see .

l Disk error alerts -- Alerts indicating that a HyperStore data disk read/write error has been detected
and/or the disk has been disabled. For this category of alert, the "Alert Type" field displays "Disk Error".
To learn more about the status of a data disk for which a Disk Error alert has been generated, go to the
"Node Status" (page 313) page and select the node on which the disk resides, then view the Disk
Detail Info section of the page.

Note For HyperStore Appliances only, an alert is also triggered if an SSD (storing the OS and
metadata) fails.

For more details about the types of alerts that HyperStore monitors see "Alert Rules" (page 390).

Alert Text

l For statistic threshold alerts, this field will indicate the statistic’s value which caused an alert rule to be
triggered.

l For service down/unreachable alerts, this field will be a text string "[Service Down or Unreachable]"

387

Chapter 5. Cloudian Management Console (CMC)

Note To determine whether a service is actually down on a node (as opposed to being up but
unreachable by the monitoring system), log into the node and run:

/etc/init.d/<service-name> status

The <service-name> string can be one of {cloudian-s3, cloudian-cassandra, cloudian-hyper-
store, cloudian-redis-credentials, cloudian-redis-qos, cloudian-redismon, cloudian-cmc, cloud-
ian-agent, cloudian-dnsmasq}.

l For disk error alerts, this field indicates the mount point for the disk that's had an error.

l For log message alerts, this field will be the full text of the log entry (truncated if the log message is lar-
ger than 256 characters).

o For general information about HyperStore log entry formatting, see "HyperStore Logs" (page
605).

o Most log entries of level ERROR or higher include an alphanumericmessage code that
uniquely identifies the log message (either "HSxxxxxx" or "DCxxxxxx" or "RMxxxxxx"). For doc-
umentation of an individual message code, click the message code text (in blue font) in the
Alerts interface. This opens the log message code Help. The documentation for the message
code that you clicked will be expanded, but you may need to scroll down the Help page to see it.
(Alternatively, simply holding your cursor over the message code in the Alerts interface will dis-
play in-place "tool tip" text with the log level and recommended corrective action for the message
code.)

Note For log message based alerts that have occurred multiple times without being acknow-
ledged, the "Alert Text" -- including the log entry timestamp -- will be from the most recent
instance of the log message.

Note Optionally you can suppress alerting for specific log messages as identified by mes-
sage code. HyperStore provides a configuration setting for suppressing specific log-based
alerts. In the configuration file common.csv, see the setting "alert_suppression_list" (page
543).

Last Update

This field shows the local date and time at which the alert was detected by the HyperStore monitoring system.

For alerts that have occurred multiple times without being acknowledged (as indicated by the "Count" value),
the "Last Update" field indicates when the most recent instance of the alert was detected.

Count

The number of unacknowledged times that the same alert has occurred.

l For statistic threshold alerts, a Count value greater than "1" means that the monitoring system has
detected the statistic to be across its configured threshold multiple times, without being acknowledged.

388

5.8. Alerts

Note Each node’s CPU utilization, disk space availability, and total network throughput are
checked each minute. For each of these statistics, each time that the once-per-minute checks
finds that the statistic is across its notification threshold, the Count for the alert is incremented.
For example, if you have an alert rule for "CPU utilization > 50%", and if the monitoring system’s
once-per-minute checks find three different instances where the node’s CPU utilization was in
excess of 50%, then the Alert List will show one line for the "CPU Utililzation" alert type, with a
Count of 3.

For S3 statistics — GET/PUT transactions per second, GET/PUT throughput, and GET/PUT aver-
age latency — the statistics are calculated at the node every five minutes. However, the alert
monitoring system retrieves the values each minute, just like for other statistics. So, the mon-
itoring system retrieves the same calculated S3 statistics five times, until the next set of S3 stat-
istics is calculated. If an S3 statistic value is across a notification threshold, the monitoring
system retrieves that same statistic value five times, and consequently shows a Count of 5. So
for alerts based on S3 statistic thresholds, the Count will overstate how often the alert has actu-
ally happened, by as much as a factor of 5.

l For service down/unreachable alerts the Count increments each 60 seconds for as long as the ser-
vice is down or unreachable by the HyperStore monitoring system.

l For log message alerts, a Count value greater than "1" means that the exact same log message has
occurred multiple times without being acknowledged.

Note The monitoring system checks the logs every 30 seconds for new warning or error mes-
sages. If a log is rotated during the 30 second interval between one check and the next, it’s pos-
sible that an instance of a log message may be missed by the monitoring system. In this alert the
Count value may not be exactly correct, particularly in circumstances where many error mes-
sages are occurring and logs are being rotated more frequently than usual.

l For repair completion alerts, a Count value greater than "1" means that multiple repair completion
alerts of the specified repair type (REPAIR, EC:REPAIR, or CASSANDRA:REPAIR) have occurred on
the same node without being acknowledged. Note that if the Count is greater than "1", the Alert Text will
show only the status of the first-finished repair operation . To view status detail on all recently run
repairs use hsstool opstatus or check the CMC’s "Repair Status" (page 380) page.

Note The alert list is sorted primarily by alert Severity (high to low) and secondarily by reverse chro-
nological order (based on the time of the most recent instance of each listed alert, as indicated in the
Last Update column). You can re-sort the alert list by any column except for Alert Text by clicking the
column heading. Click once for ascending order, click a second time for descending order.

5.8.1.2. Acknowledge Alerts

In the Alerts page you can acknowledge that you have seen and reviewed the node alert notifications that dis-
play in the Alert List. Once you acknowledge an alert, it will no longer display in the Alert List (unless you
choose to display acknowledged alerts as described further below).

l To acknowledge one or multiple alerts in the Alert List, click the checkbox to the left of the alert(s) and
then click Acknowledge at the bottom of the list. Note that as you are selecting alerts to acknowledge

389

Chapter 5. Cloudian Management Console (CMC)

(by clicking checkboxes), the Alerts page's auto-refresh feature will temporarily pause, so as not to
clear your checkbox selections.

l To acknowledge all alerts, click the checkbox at the left side of the Alert List column heading row and
then click Acknowledge at the bottom of the list.

l To show previously acknowledged alerts in the list as well as unacknowledged alerts, click Show
Acknowledged at the top of the alert list. Previously acknowledged alerts then display within the list,
and are distinguished from unacknowledged alerts by the absence of a checkbox to the left of the alert.
You can click Hide Acknowledged to hide the acknowledged alerts again.

The Alert List can display a maximum of 50 unacknowledged alerts and acknowledged alerts combined. Note
that some of these 50 alerts may have occurred multiple times as indicated by the alert’s "Count" value. Even if
an alert has a Count showing that it has occurred multiple times, this counts as only one alert toward the Alert
List display maximum of 50 alerts.

Note Acknowledged alerts are automatically deleted from the system after a time period con-
figured by the mts.properties.erb:"events.acknowledged.ttl" (page 568) setting. By default this period
is 86400 seconds (one day). After they are deleted acknowledged alerts will not display in the Alert List
even if you click Show Acknowledged. If you wish you can reduce the configurable time-to-live for
acknowledged alerts to as little as 1 second (so that they are deleted from your system right after
acknowledgment). Note that regardless of your configured time-to-live for acknowledged alerts, a
record of your system's alert history will persist in the Smart Support logs that by default are uploaded
to Cloudian Support each day.

Note If you acknowledge an alert for which the underlying notification triggering condition still exists, a
new alert may be generated quickly. For example, if a service is down, and you acknowledge the ser-
vice down alert but do not restart the service, a new service down alert will be triggered as soon as the
monitoring system polls the service status again (which occurs each minute). If you want to temporarily
disable an alert rule you can do so in the Alert Rules page, but be sure to remember to re-enable the
rule at the appropriate time.

5.8.2. Alert Rules
Path: Alerts → Alert Rules

390

5.8. Alerts

Supported tasks:

l "Review Supported Rule Types and Pre-Configured Rules" (page 391)

l "Add Alert Rules" (page 395)

l "Edit Alert Rules" (page 397)

l "Disable Alert Rules" (page 397)

l "Delete Alert Rules" (page 398)

l "Suppress Alerting for Specific Log Messages" (page 398)

5.8.2.1. Review Supported Rule Types and Pre-Configured Rules

Alert rules specify the system conditions that will trigger HyperStore alerts. HyperStore supports the alert rule
types described in the tables below. As indicated by the "Pre-Configured?" column, for some alert rule types
HyperStore comes with pre-configured rules that have already been created for you and are active in the sys-
tem. These pre-configured rules are listed in the main part of the Alert Rules page when you first access the
CMC. All pre-configured rules include sending a notification email to the default system administrator email
address.

For all active rules, an alert is generated if the specified condition occurs on any node in the system. All rules
are based on node conditions (as opposed to aggregate, system-wide conditions).

391

Chapter 5. Cloudian Management Console (CMC)

5.8.2.1.1. Network Status Rules

Rule Type Description Pre-Con-
figured?

Number of GET transactions
per second

For each node, every five minutes the system calculates the
average number of S3 GETs processed per second, based on
the last approximately 1000 S3 GET transactions. Alert rules
can be based on this average exceeding or falling below a
user-defined threshold.

No

Number of PUT transactions
per second

Same as above, except for S3 PUTs. No

Throughput for GET oper-
ations

For each node, every five minutes the system calculates the
average throughput for S3 GETs in bytes per second, based on
the last approximately 1000 S3 GET transactions. Alert rules
can be based on this average exceeding or falling below a
user-defined threshold.

No

Throughput for PUT oper-
ations

Same as above, except for S3 PUTs. No

Latency for GET operations

For each node, every five minutes the system calculates the
95th percentile for transaction latencies of S3 GETs, in mil-
liseconds, based on the last approximately 1000 S3 GET trans-
actions. The 95th percentile latency value indicates that of the
last 1000 S3 GET transactions, 95% completed in that many mil-
liseconds or less. Alert rules can be based on this value exceed-
ing or falling below a user-defined threshold.

No

Latency for PUT operations Same as above, except for S3 PUTs. No

Network throughput (incom-
ing)

For each node, each minute the system calculates the average
number of bytes of incoming network throughput per second,
based on the last minute of activity. Alert rules can be based on
this value exceeding or falling below a user-defined threshold.

Note Network throughput statistics are based on all
data moving into or out of a node — not just S3 request
data. For example, data transmission associated with
cluster maintenance operations would count toward
these statistics.

No

Network throughput (out-
going)

Same as above, except for outgoing throughput. No

5.8.2.1.2. General Status Rules

Rule Type Description Pre-Con-
figured?

Disk space available in
node

For each node, each minute the system calculates the aggreg-
ate available disk space for the node's data disks, as a per-
centage of the total capacity of the data disks. Alert rules can be
based on this value falling below a user-defined threshold.

Yes -- a
High sever-
ity alert if
disk space

392

5.8. Alerts

Rule Type Description Pre-Con-
figured?

Note In calculating this statistic the system does not
count "reserved" disk capacity as being available.
Instead, available capacity is what's left after deducting
both used capacity and reserved capacity from the total
capacity. For information about "reserved" capacity see
"Capacity Managed" (page 198).

available on
a node is
less than
10%

Disk space available in each
device

Same as above, except for each individual data disk on each
node.

Yes -- a
High sever-
ity alert if
space avail-
able on a
disk is less
than 15%

Disk error

With this alert rule, an alert is triggered whenever an
"HSDISKERROR" or "HSDISKDISABLED" message appears in
the HyperStore Service application log (cloudian-
hyperstore.log) on any node.

Yes -- a Crit-
ical severity
alert

Node unreachable
With this alert rule, an alert is triggered if a node cannot be
reached by the HyperStore monitoring system.

Yes -- a Crit-
ical severity
alert

Load average (5 minutes)

For each node, every five minutes the system calculates the
Linux load average (average number of processes in execution
or queued for execution) for the node as a whole during the past
five minutes. Alert rules can be based on this average exceed-
ing a user-defined threshold.

Note Be sure to take into account the number of pro-
cessing cores on your HyperStore hosts when setting a
threshold for alerts based on load average.

No

CPU utilization
For each node, each minute the system checks the node's aver-
age CPU utilization level during the past minute. Alert rules can
be based on this value exceeding a user-defined threshold.

Yes -- a
Medium
severity alert
if CPU util-
ization is
greater than
90%

Repair completion status

With this alert rule, an alert is triggered whenever a data repair
operation finishes its run. The alert will indicate the operation’s
finishing status: COMPLETED, FAILED, or TERMINATED.

Note The completion of routine "proactive" repairs does
not trigger these alerts. For more information on repair

Yes -- a Low
severity alert

393

Chapter 5. Cloudian Management Console (CMC)

Rule Type Description Pre-Con-
figured?

types see "Automated Data Repair Feature Overview"
(page 150).

5.8.2.1.3. Service Status Rules

Rule Type Description Pre-Con-
figured?

Admin Service status

For the Admin Service, separate alert rules can be set for any
of these statuses:

l Service is down

l Service goes back up after being down

l Service logs an error

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service is
down, and a
High sever-
ity alert if the
service logs
an error

Cassandra Service status

For the Cassandra Service, separate alert rules can be set for
any of these statuses:

l Service is down

l Service goes back up after being down

l Service logs an error

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service is
down, and a
High sever-
ity alert if the
service logs
an error

HyperStore Service status

For the HyperStore Service, separate alert rules can be set for
any of these statuses:

l Service is down

l Service goes back up after being down

l Service logs an error

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service is
down, and a
High sever-
ity alert if the
service logs
an error

Redis QoS Service status

For the Redis QoSService, separate alert rules can be set for
any of these statuses:

l Service is down

l Service goes back up after being down

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service is
down, and a
Medium
severity alert
if the service
logs a warn-
ing

Redis Credentials Service For the Redis Credentials Service, separate alert rules can be Yes -- a

394

5.8. Alerts

Rule Type Description Pre-Con-
figured?

status

set for any of these statuses:

l Service is down

l Service goes back up after being down

l Service logs a warning

High sever-
ity alert if the
service is
down, and a
Medium
severity alert
if the service
logs a warn-
ing

Redis Monitor Service status

For the Redis Monitor Service, separate alert rules can be set
for any of these statuses:

l Service is down

l Service goes back up after being down

Yes -- a
High sever-
ity alert if the
service is
down

S3 Service status

For the S3 Service, separate alert rules can be set for any of
these statuses:

l Service is down

l Service goes back up after being down

l Service logs an error

l Service logs a warning

Note Along with alerts pertaining to providing S3 ser-
vice to clients, the S3 service alerts category includes
alerts pertaining to auto-tiering and cross-region rep-
lication.

Yes -- a
High sever-
ity alert if the
service is
down, and a
High sever-
ity alert if the
service logs
an error

Cron Mon Service status

For the Cron and Monitoring services, separate alert rules can
be set for either of these statuses:

l Service logs an error

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service logs
an error

Phone Home Service status

For the Phone Home (Smart Support) service, separate alert
rules can be set for either of these statuses:

l Service logs an error

l Service logs a warning

Yes -- a
High sever-
ity alert if the
service logs
an error

5.8.2.2. Add Alert Rules

To add a new alert rule, in the Alert Rules page do the following:

1. From the "Alert Type" drop-down list, select an alert type.

395

Chapter 5. Cloudian Management Console (CMC)

2. Configure a rule for that alert type. A rule defines the conditions that will trigger the alert. The options
(as presented in the rule-configuring interface) will vary according to the alert type. For descriptions of
alert types see "Review Supported Rule Types and Pre-Configured Rules" (page 391).

3. If you want the alert to include sending an email notification to the default system administrator email
address(es), leave the "Use Default Email Address" option checked. If you want to customize the target
email addresses for this particular alert, uncheck the "Use Default Email Address" option and enter the
address(es) in the "Target Email" field (for multiple addresses, use comma separation). If you do not
want email notification for this alert, uncheck the "Use Default Email Address" option and leave the "Tar-
get Email" field empty.

Note The default system administrator email address is configured in the "SMTP/Email Settings
for Alerts/Notifications" (page 338) section of the CMC’s Configuration Settings page. Alert
emails are sent by the HyperStore System Monitoring / Cron Job host, using your specified
SMTP server.

4. If you want the alert to include sending an SNMP trap to your SNMP management system, select the
"Send SNMP Trap" checkbox.

Note Trap destination settings are configured in the "SNMP Trap Destination Settings" (page
341) section of the CMC’s Configuration Settings page. In the traps that HyperStore generates
and sends to your specified destination, the OID is enterprises.16458.4.1.1.1. The trap payload
also indicates the specific HyperStore host on which the trap-triggering event occurred. Hyper-
Store uses SNMP version 2c. Traps are sent by the HyperStore System Monitoring / Cron Job
host.

5. Select a Severity level to assign to the alert. You can choose from Critical, High, Medium, or Low.

396

5.8. Alerts

Note Subsequently, if the alert occurs and is displayed in the Alerts page, the display includes
the severity level that you assigned to the alert. Also, in the Alerts page you will be able to sort
the displayed alert list by severity level.

6. Click Create.

Your new alert rule then displays in the Active Alert Rules section of the page.

IMPORTANT ! If your HyperStore system has multiple service regions, a drop-down list displays at the
top of the Alert Rules page so you can select a region for which to manage alert rules. Any alert rule
actions that you take in one region — such as adding, editing, or disabling a rule — will not carry over
to the other region(s). If you want an alert rule change to apply to all of your regions, you must make
that change for each region one at a time, using the Alert Rules page.

5.8.2.3. Edit Alert Rules

In the Alert Rules page you can edit existing alert rules — for example to change a threshold value, change
the severity level assigned to a particular rule, or change email notification settings for a particular rule.

Note If you want to change the default email address(es) that alert emails are sent to, go to the CMC’s
Configuration Settings page and edit the "Default Email Address to Receive Notifications" setting. You
do not need to make any change on the Alert Rules page to do this. The same is true for changing the
destination for sending SNMP traps: do it on the Configuration Settings page.

To edit a rule:

1. Click Edit next to the rule in the Rules list.

2. Modify the rule as desired.

Note To change from using the default target email address to using a different email address
specifically for this rule, uncheck the "Use Default" option to the right of the rule statement and
then enter the custom email address in the text field. To disable email notification for just this
rule, leave the text field empty.

3. Click Done to apply your changes.

Your modified rule will then display in the Rules list.

5.8.2.4. Disable Alert Rules

To temporarily disable an alert rule, in the Alert Rules page select the checkbox to the left of the rule and then
click Disable on the lower right of the page. If you want you can disable multiple rules at the same time by
selecting multiple rules' checkboxes and then clicking Disable.

A disabled rule will remain in your Rules list display, but the rule will no longer be applied by the HyperStore
system. In the rules list a disabled rule is distinguished by its name being grayed out.

To re-enable a rule that has been disabled, select the checkbox to the left of the rule and then click Enable on
the lower right of the page. The HyperStore system will resume applying the alert rule.

397

Chapter 5. Cloudian Management Console (CMC)

5.8.2.5. Delete Alert Rules

To delete an alert rule, in the Alert Rules page click Delete to the right of the rule in the Rules list. The rule will
no longer display in the Rules list and will no longer be applied by the HyperStore system.

If you want you can delete multiple rules at the same time by selecting the checkboxes to the left of those rules
and then clicking Delete on the lower right of the page.

5.8.2.6. Suppress Alerting for Specific Log Messages

Optionally you can suppress alerting for specific log messages as identified by message code. HyperStore
provides a configuration setting for suppressing specific log-based alerts. In the configuration file
common.csv, see the setting "alert_suppression_list" (page 543).

See Also:

l "How HyperStore Implements Alerts" (page 398)

5.8.3. HowHyperStore Implements Alerts
In the CMC's Alert Rules page you can create rules for having the HyperStore system generate alerts when
specified events occur. When an event covered by an alert rule occurs, the HyperStore system:

l Sends an SNMP trap, if the alert rule for the event includes sending an SNMP trap. The trap is sent by
the HyperStore System Monitoring / Cron Job host, to the SNMP destination configured in the
"SNMP Trap Destination Settings" (page 341) section of the CMC’s Configuration Settings page.

l Displays an alert in the CMC’s Node Status page (in the Alert List for the node on which the event
occurred) and also in the Alerts page.

l Emails an alert notification to specified system administrator addresses (unless you disable email noti-
fication, which you can do on a per-rule basis as described in "Alert Rules" (page 390)). The alert
email is sent by the HyperStore System Monitoring / Cron Job host, using your specified SMTP
server.

Alerting through the CMC and through email and SNMP is implemented as follows:

l When the event that is specified by the alert rule occurs, an alert email is sent to the configured email
address(es), and a trap is sent if you’ve enabled SNMP as part of the rule. An alert notice is also dis-
played on the Node Status page and on the Alerts page.

l The sending of the alert email sets off a 24 hour hold on any further alert emails in association with the
same alert rule on the same node. The same hold period applies to SNMP trap sending. The 24 hour
hold works like this:

o So long as the original instance of the alert remains unacknowledged by administrators, any
additional events that trigger the same alert rule on the same node will not generate additional
email notifications (or SNMP traps). Such additional event instances will only generate addi-
tional alerts in the CMC interface, so that the alert’s "Count" value increments.

o As soon as an administrator acknowledges the alert in the CMC’s Node Status page or in the
Alerts page, the 24 hour hold is lifted and any new instances of the event will trigger a new
email notification (and SNMP trap if enabled).

398

5.9. My Account

o If 24 hours pass without the original alert being acknowledged by an administrator, then the next
subsequent instance of the event will trigger the sending of a new alert email (and SNMP trap if
enabled). This then initiates a new 24 hour hold period.

5.8.3.1. Handling of Alerts for ERROR or WARN Log Messages

For alert rules based on ERROR messages in service logs, an alert is written to the CMC’s Node Status page
and Alerts page for each individual ERROR message that occurs in the service logs. For alert rules based on
WARN messages in service logs, the alerts are written for each individual WARN message that occurs in the
service logs and also for each individual ERROR message.

However, for purposes of email notification, each additional log message from the same service is considered
the same type of "event", and consequently the 24 hour hold described above applies. For example, if you
have an alert rule in place for ERROR messages in the S3 service logs:

l If ERROR message "X" appears in the S3 service log on node1, an alert is written to the CMC’s Node
Status and Alerts pages, and an email notification is sent.

l If 10 minutes later ERROR message "X" appears again in the S3 service log on node1, another alert is
written to the CMC’s Node Status and Alerts pages, but no additional email notification is sent.

l If 10 minutes later ERROR message "Y" appears in the S3 service log on node1, another alert is written
to the CMC’s Node Status and Alerts pages, but no additional email notification is sent. Although
ERROR message "Y" is different from ERROR message "X", it’s still considered to be part of the same
alert rule and consequently it does not trigger an additional email notification.

Note In describing alerting behavior for the second and third messages, the scenario above presumes
that no administrator has yet acknowledged the earlier ERROR message alert. Recall that acknow-
ledging an alert releases the 24-hour hold on additional emails for that alert type, in which case a new
instance of the underlying event triggers a new email notification.

5.9. My Account
In the upper right of the CMC interface, holding your cursor over your user name displays a drop-down menu
from which you can choose these options relating to your user account:

l Profile

l Security Credentials

5.9.1. Profile
Path: Drop-down menu under your user name (at top right) → Profile

399

Chapter 5. Cloudian Management Console (CMC)

Supported task:

l Change your contact information

5.9.1.0.1. Change Your Contact Information

1. Update your contact information.

2. Click Save.

Note Changing your system administrator email address in this page does not impact the sending of
system notification emails. To change the email address to which notification emails are sent, use the
"Default Email Address to Receive Notifications" (page 340) setting on the Configuration Settings
page.

5.9.2. Security Credentials
Path: Drop-down menu under your user name (at top right) → Security Credentials

400

5.9. My Account

Supported task:

l Change your Console password

l Manage your S3 access keys

5.9.2.1. Change Your Console Password

Note If the system is configured to use LDAP authentication for your user group, the CMC’s Change
Password function will not be available and the instructions below are not applicable to you. Instead,
your password should be controlled through your organization’s LDAP system.

1. In the "Current Password" field, enter your current password.

2. In the "New Password" field, enter a new password that you will use to log into the CMC. Then in the
"Confirm Password" field, enter the new password again.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

Note You can optionally configure HyperStore to require a higher minimum password length.
You can also optionally configure additional password restrictions such as a password expir-
ation period, a restriction against a user's new password being too similar to their previous pass-
word, a restriction on password reuse, and a restriction against too-frequent password changes.
In common.csv, see "user_password_min_length" (page 527) and the subsequent settings.

401

Chapter 5. Cloudian Management Console (CMC)

3. Click Change Password.

5.9.2.2. Manage Your S3 Access Keys

As a system administrator you do not have an S3 storage account but you will need S3 access credentials if
you want to use the HyperStore IAM Service to perform certain read-only administrative tasks. (For more inform-
ation about this feature see "IAM Extensions for Role-Based Access to HyperStore Admin Functions"
(page 1027).)

l To create a new S3 data access key, in the S3 Access Credentials dialog click Create New Key. A
new access key ID then displays in the access key list.

l To view the secret access key that corresponds to an access key ID, to the right of the access key ID
click View Secret Key. A secret key display box appears which enables you to view your secret key
and to copy it using <Ctrl>-c if you want to. Note that the OK and Cancel buttons have no effect other
than to close the secret key display box.

Note If you view your secret key(s) multiple times during one Console login session, your
browser may display a "Prevent this page from creating additional dialogs" checkbox that
appears as if it’s part of the Console UI. Do not select this checkbox. If you select this checkbox
and then click OK you will no longer be able to view your secret access keys during your current
Console login session.

l To activate or deactivate an access key, to the right of the displayed access key ID click Activate or
Inactivate.

l To delete an access key, to the far right of the displayed access key ID click Delete. You will be asked
to confirm that you want to delete the key.

5.10. Customizing the CMC

5.10.1. Showing/Hiding CMCUI Functions
The CMC provides granular configuration control over which UI functions and sub-functions display for the
three types of users that the CMC supports: system admins, group admins, and regular S3 service users. The
table below summarizes the CMC’s configurability for showing or hiding certain functionality. The third column
indicates which user types have access to the functionality by default, or whether the function is by default hid-
den from all user types. The fourth column indicates the configuration setting that controls access to the func-
tionality — all settings are in mts-ui.properties.erb on your Puppet master node unless otherwise noted.

Note After making changes to a configuration file, use the installer to push the changes out to your
cluster and restart the CMC service. For instructions see "Pushing Configuration File Edits to the
Cluster and Restarting Services" (page 506).

Function
Area Functionality Default Avail-

ability Controlling Setting

Manage
Users

Basic user man-
agement interface

System admins
and group admins

"admin.manage_users.enabled" (page 584)

Create users System admins "admin.manage_users.create.enabled" (page

402

5.10. Customizing the CMC

Function
Area Functionality Default Avail-

ability Controlling Setting

and group admins 585)

Edit users
System admins
and group admins

"admin.manage_users.edit.enabled" (page
585)

Delete users
System admins
and group admins

"admin.manage_users.delete.enabled" (page
585)

View and manage
users' security cre-
dentials

System admins
and group admins

"admin.manage_users.edit.user_cre-
dentials.enabled" (page 586)

View and manage
users' stored data

System admins
and group admins

"admin.manage_users.viewuserdata.enabled"
(page 586)

Edit users' Quality of
Service settings

System admins
and group admins

"admin.manage_users.edit.user_qos.enabled"
(page 586)

Manage
Groups

Basic group man-
agement interface

System admins
and group admins

"admin.manage_groups.enabled" (page 587)

Create groups System admins
"admin.manage_groups.create.enabled" (page
587)

Edit groups
System admins
and group admins

"admin.manage_groups.edit.enabled" (page
587)

Delete groups System admins
"admin.manage_groups.delete.enabled" (page
588)

Set default user QoS
for a group

System admins
and group admins

"admin.manage_groups.user_qos_groups_
default.enabled" (page 588)

Billing whitel-
ist

Set source IP
addresses allowed
free traffic

Hidden
"admin_whitelist_enabled" (page 537) in com-
mon.csv

User
Account Self-
Management

Edit own profile
System admins,
group admins, and
regular users

"account.profile.writeable.enabled" (page 588)

Basic security cre-
dentials interface

System admins,
group admins, and
regular users

"account.credentials.enabled" (page 589)

Manage own S3 cre-
dentials

Group admins and
regular users

"account.credentials.access.enabled" (page
589)

Change own CMC
password

System admins,
group admins, and
regular users

"account.credentials.signin.enabled" (page
589)

Usage
Reporting

Basic usage reporting
interface

System admins,
group admins, and
regular users

"usage.enabled" (page 590)

Reporting on HTTP
request rates and
byte transfer rates

Hidden
"Track/Report Usage for Request Rates and
Data Transfer Rates" (page 344) in the CMC
Configuration Settings page

403

Chapter 5. Cloudian Management Console (CMC)

Function
Area Functionality Default Avail-

ability Controlling Setting

Auto-Tiering
Allow buckets to be
configured for auto-
tiering

Hidden
"Enable Auto-Tiering" (page 347) in the CMC
Configuration Settings page

5.10.2. Rebranding the CMCUI
If you wish you can customize various aspects of the CMC interface to reflect your organization’s own brand-
ing. The interface elements that you can customize are:

l Logo (default is the Cloudian company logo)

l Browser tab title text (default is "Cloudian® Management Console")

l Color scheme (default is the Cloudian color scheme with black, white, gray, and green)

l Application name in URLs (default is "Cloudian")

To rebrand any or all of these interface elements you will use a HyperStore tool that simplifies the process of
putting the relevant files into the proper location.

Before starting, decide whether you want a change of logos to be part of your rebranding of the CMC UI. If so,
you will need three images of your organization's logo, using the following file names and pixel sizes:

Logo Image Required Image File Name Size in Pixels

Login screen logo logo_new.png 225 X 225

Header logo logo_2.png 144 X 28

Favicon for browser tab favicon.ico 16 X 16

Before starting the rebranding procedure below, you should have the three image files on your local machine
(for instance a laptop computer from which you will connect to the Puppet master node).

To rebrand the CMC UI, follow these steps:

1. Log into the Puppet master node as root.

If you are using the HyperStore Shell

As an alternative to logging in as root you can log into the HyperStore Shell (HSH) on the Puppet mas-
ter node to perform this procedure, so long as you are an HSH Trusted user. In the steps below that call
for using the rebrand_cmc.sh script, run the script simply as rebrand_cmc.sh <command> without spe-
cifying a path to the script.

2. On the Puppet master node create or choose a working directory from which you will manage the pro-
cess of rebranding the CMC UI. Then change into the working directory.

3. Run the following script command to back up the current CMC files that are relevant to the UI's brand-
ing.

/opt/cloudian/tools/rebrand_cmc.sh --backup

This action creates a web_backup_<timestamp> sub-directory under your working directory on the Pup-
pet master node. In the backup directory are files copied from the CMC's Tomcat web server con-
figuration, that affect the CMC's look and feel.

4. Make your desired changes to the CMC's branding

Replace logos

404

5.10. Customizing the CMC

a. Copy your organization's logo image files -- as specified in the introduction to this procedure --
from your local machine to the working directory on the Puppet master node (by using scp, for
example).

b. Change into working directory on the Puppet master node, if you are not already there. Then run
this script command:

/opt/cloudian/tools/rebrand_cmc.sh --images

This copies the image files from the working directory to the proper location within the Puppet
configuration module for the CMC, so that you can subsequently push the files out to the whole
cluster (as described in Step 6).

Change browser tab title text

By default the title text that displays at the top of a browser tab for the UI is "Cloudian® Management
Console". To change this title, do the following:

a. On the Puppet master node, copy the resources.properties file (for English language) and any of
the resources_<language-code>.properties files (for other languages that the CMC supports, if
applicable to your user population) from the backup sub-directory that you created in Step 3 into
the working directory.

b. Use a text editor to edit the copy of resources.properties in the working directory, as follows:

i. In the file find the following line:

header.title=Cloudian® Management Console

ii. Change it to the desired browser tab name:

header.title=<NEW TAB NAME>

c. Make the same change in the resources_<language-code>.properties files that you've copied
into the working directory (if any).

d. After editing the file(s) and saving your changes, while still in the working directory run this script
command:

/opt/cloudian/tools/rebrand_cmc.sh --resources

This copies the resource file(s) from the working directory to the proper location within the Pup-
pet configuration module for the CMC, so that you can subsequently push the file(s) out to the
whole cluster (as described in Step 6).

Change UI color scheme

To change the UI's color scheme -- as defined in its CSS file -- follow the steps below. (This assumes
some familiarity with CSS files, and knowledge of your organization's preferred color scheme.)

a. On the Puppet master node, copy the master.css file from the backup sub-directory that you cre-
ated in Step 3 into the working directory.

b. Use a text editor to edit the copy ofmaster.css file in the working directory, to replace all occur-
rences of the existing color codes with the desired new values.

c. After editing the file and saving your changes, while still in the working directory run this script
command:

/opt/cloudian/tools/rebrand_cmc.sh --css

405

Chapter 5. Cloudian Management Console (CMC)

This copies the CSS file from the working directory to the proper location within the Puppet con-
figuration module for the CMC, so that you can subsequently push the file out to the whole
cluster (as described in Step 6).

Change the application name in the CMC’s URLs

By default all CMC URLs include the application name "Cloudian" (for example
https://<host>:8443/Cloudian/dashboard.htm). To change the application name, do the following:

a. On the Puppet master node, use a text editor to open the configuration file /etc/cloudian-7.2.3-
puppet/manifests/extdata/common.csv and edit this setting:

cmc_application_name,Cloudian

Replace Cloudian with a different application name string of your choosing. Use only alpha-
numeric characters, with no spaces, dashes, or underscores.

b. Save the updated common.csv file.

5. To confirm that the rebranding script has successfully copied your customized image, resource, and/or
CSS files to the Puppet configuration module, run this script command:

/opt/cloudian/tools/rebrand_cmc.sh --list

This should list all the image, resource, and/or CSS files that you worked with in Step 4. (It will not list
the common.csv file.)

6. Use the installer to push your customized file to the cluster and to restart the CMC to apply the changes.
If you need instructions see "Pushing Configuration File Edits to the Cluster and Restarting Ser-
vices" (page 506).

Note If you customize the branding of the CMC, and then subsequently upgrade your HyperStore sys-
tem to a newer version, only your customized logos and your customized application name will be
retained after the upgrade. After the upgrade you will need to re-implement any changes that you had
made to the browser tab title and/or the color scheme, by again following the instructions above.

Note The rebrand_cmc.sh script also supports adding a custom banner to the top of the CMC login
page. For instructions see "Configuring a Login Page Banner" (page 407).

5.10.2.1. Rebranding the CMC Help

The CMC has three Help systems attached to it: one for system administrators, one for group administrators,
and one for end users. The Help that displays for a logged-in CMC user depends on which of those three types
of user he or she is.

Each of the three Help systems has a Cloudian logo. For each Help system the logo image file is named Cloud-
ianLogoFull_1.png and its size is 235 X 54 pixels.

To replace the Cloudian logo in the CMC Help with your organization's logo, replace these three instances of
the logo file on each of your HyperStore nodes:

l /opt/cloudian-packages/apache-tomcat-7.0.85/webapps/Cloud-
ian/help/HyperStoreHelp/Skins/Default/Stylesheets/Images/CloudianLogoFull_1.png

406

5.10. Customizing the CMC

l /opt/cloudian-packages/apache-tomcat-7.0.85/webapps/Cloud-
ian/help/HyperStoreHelpGroupAdmin/Skins/Default/Stylesheets/Images/CloudianLogoFull_1.png

l /opt/cloudian-packages/apache-tomcat-7.0.85/webapps/Cloud-
ian/help/HyperStoreHelpEndUser/Skins/Default/Stylesheets/Images/CloudianLogoFull_1.png

Note Changing this image file is not supported by the rebrand_cmc.sh script, and this image file is not
under Puppet control. To replace this image file you must do it manually on each of your HyperStore
nodes.

5.10.3. Configuring a Login Page Banner
The CMC supports two types of customizations specifically for the login page:

l You can configure a text banner that displays at the top of the login page every time any user accesses
the CMC.

l You can configure an acknowledgment gate that displays as an overlay in front of the login page every
time any user accesses the CMC, and requires that the user acknowledge having read the gate text
before they can log into the CMC.

By default the CMC login page has no banner and no acknowledgment gate. You can enable either one of
these customizations, or enable both of them. This section describes how to configure a login page banner; for
instructions for configuring an acknowledgment gate see "Configuring a Login Page Acknowledgment Gate"
(page 408).

Here is an example in which a custom text banner has been added to the login page.

To configure a custom banner for the CMC login page:

1. Log in to the Puppet master node as root.

If you are using the HyperStore Shell

As an alternative to logging in as root you can log into the HyperStore Shell (HSH) on the Puppet mas-
ter node to perform this procedure, so long as you are an HSH Trusted user. In the steps below that call

407

Chapter 5. Cloudian Management Console (CMC)

for using the rebrand_cmc.sh script, run the script simply as rebrand_cmc.sh <command> without spe-
cifying a path to the script.

2. Create a working directory, and change into that directory.

3. Run the following command:

/opt/cloudian/tools/rebrand_cmc.sh --backup

This creates under your working directory a sub-directory named as web_backup_<timestamp>.

4. Copy the custom_banner.jsp file from the backup sub-directory into the working directory.

5. In the working directory, use a text editor such as vi to make the following edits to the custom_ban-
ner.jsp file:

a. Uncomment the starting style tag.

Default in custom_banner.jsp file (with starting style tag commented out):

<!-- style>

After uncommenting:

<style>

b. Replace Title with your desired banner title text. Do not alter the h2 tags.

<h2>Title</h2>

c. Replace Message with your desired banner body text. Do not alter the p tags.

<p>Message</p>

6. After saving your changes and exiting the file, while still in the working directory run the following com-
mand:

/opt/cloudian/tools/rebrand_cmc.sh --custom_banner

This copies your edited custom_banner.jsp file to the appropriate Puppet configuration directory.

7. Use the installer to push your changes out to the cluster and then restart the CMC. If you need instruc-
tions see "Pushing Configuration File Edits to the Cluster and Restarting Services" (page 506).

To verify that the banner is displaying as desired, go to the CMC in your browser.

5.10.4. Configuring a Login Page Acknowledgment Gate
The CMC supports two types of customizations specifically for the login page:

l You can configure a text banner that displays at the top of the login page every time any user accesses
the CMC.

l You can configure an acknowledgment gate that displays as an overlay in front of the login page every
time any user accesses the CMC, and requires that the user acknowledge having read the gate text
before they can log into the CMC.

By default the CMC login page has no banner and no acknowledgment gate. You can enable either one of
these customizations, or enable both of them. This section describes how to configure an acknowledgment
gate; for instructions for configuring a plain login page banner that does not require acknowledgment "Con-
figuring a Login Page Banner" (page 407).

408

5.10. Customizing the CMC

Here is an example in which an acknowledgment gate has been added to the login page. The CMC imple-
ments the acknowledgment gate as a modal dialog.

To configure a CMC login page acknowledgment gate:

1. Log into the Puppet master node as root.

If you are using the HyperStore Shell

As an alternative to logging in as root you can log into the HyperStore Shell (HSH) on the Puppet mas-
ter node to perform this procedure, so long as you are an HSH Trusted user. To open the common.csv
file for editing as is required in this procedure you can use the command hspkg config -e common.csv.
This command opens the file with the vi text editor.

2. Open the configuration file common.csv in a text editor.

3. Edit the following settings as desired:

Note You do not need to enclose any of the setting text in quotes.

l cmc_login_banner_size -- This setting controls the width of the acknowledgment dialog. The
valid values are 0, 1, 2, or 3, with 0 being the narrowest and 3 the widest. The default is 1. In the
screen shot above, the width is set to 1.

l cmc_login_banner_title -- Title text of the acknowledgment dialog.

409

Chapter 5. Cloudian Management Console (CMC)

l cmc_login_banner_message -- Body text of the acknowledgment dialog. If you want to apply
any formatting to this text, use HTML format tags within the text. For example,

 to start a
second paragraph with a line break between paragraphs; or text to create bold text.

l cmc_login_banner_button_confirm -- Text of the "confirm" button in the acknowledgment dialog.
For example, you could use Confirm or Acknowledge or Agree or OK as the button text.

4. After saving your changes and exiting the file, push your changes to the cluster and then restart the
CMC. If you need instructions see "Pushing Configuration File Edits to the Cluster and Restarting
Services" (page 506).

To verify that the acknowledgment gate is working as desired, go to the CMC in your browser.

5.10.5. Implementing Single Sign-On for the CMC
To enable integration between a portal and the Cloudian Management Console, the Cloudian HyperStore sys-
tem employs a one-way hash based Single Sign-On (SSO) solution. It allows for cross-domain sign-ons from
the portal to CMC.

User provisioning is beyond the scope of the provided SSO solution. The HyperStore provides an Admin API
for user provisioning but the implementation of user mapping is left to the portal application integrating with
CMC.

5.10.5.1. How SSO for the CMC Works

Cloudian HyperStore SSO is ideal for sites that already have an authentication model in place using a browser-
/login session and that want to incorporate the Cloudian Management Console into their web portal applic-
ation.

The idea is that a portal application calculates an one-way hash (also known as a signature) based on Cloud-
ian HyperStore user identification, timestamp and the shared key. Then the user’s browser accesses sso-
securelogin.htm with the signature. The CMC checks for this signature to determine whether a user is
authenticated or not. If the signature is found valid, access to the CMC from the client will skip the login page
and take the user directly to a CMC interior page such as the Buckets & Objects page.

IMPORTANT ! To use the Cloudian HyperStore SSO feature, the following system configuration set-
tings must be set to "true":

-- "cmc_web_secure" (page 538) in common.csv -- This is set to true by default. Leave it true if you
want to use SSO.

-- "sso.enabled" (page 592) in mts-ui.properties.erb -- This is set to false by default. Change it to true if
you want to use SSO.

Also in mts-ui.properties, if you enable SSO functionality (by setting sso.enabled to true), then for secur-
ity reasons you should set sso.shared.key and sso.cookie.cipher.key to custom values. Do not use the
default keys.

410

5.10. Customizing the CMC

5.10.5.2. CMC SSO Secure Login Using One-Way Hash

The single sign-on with one-way hash method relies on a one-way hash of query string parameters (also
known as a signature).

The following HTTP API, using a signature, prompts the CMC to create an authenticated session for the client
that submitted the request:

Note Submit this as a GET, not a POST. POST is not supported for CMC SSO login.

https://<cmc_FQDN>:<cmc_port>/Cloudian/ssosecurelogin.htm?user=USERID&group=GROUPID

×tamp=TIMESTAMP&signature=SIG&redirect=RELATIVE_OR_ABSOLUTE_URL

l user: Cloudian HyperStore userId of the user

l group: Cloudian HyperStore groupId of the group to which the user belongs

l timestamp: Current Epoch time in milliseconds (eg. "1346881953440"). The timestamp is used to imple-
ment the configurable request expiration (mts-ui.properties: sso.tolerance.millis; expiration defaults to
one hour).

l signature: This is the URI encoding of the base64 representation of the calculated signature. For further
information see below.

l redirect: This optional parameter can be used to redirect the client to the given URL upon successful
sign-in. It is typically set to a CMC interior page such as bucket.htm.

Each value must be URL-encoded by the client. Order of the parameters does not matter.

If the signature is found valid, the CMC creates an authenticated session for the HyperStore user, allowing the
client to skip the login page and access to a CMC interior page.

5.10.5.2.1. How to Create the Signature

The portal server can create the signature by the following steps.

1. Assemble the query string.

l querystring = "user=USERID&group=GROUPID×tamp=TIMESTAMP"

NoteWhen using the querystring to create the signature, do not URL-encode the querys-
tring. Also do not reorder the items. (By contrast, when the client subsequently submits
the SSO secure login request to the CMC, it’s desirable to URL encode the request
querystring.)

2. Calculate one-way hash for the querystring using the standard HmacSHA1 and the CMC SSO shared
key. The shared key is configured by mts-ui.properties: sso.shared.key.

l hashresult = HmacSHA1(querystring, sharedkey)

3. Base64 encode the resulting hash.

l base64string = Base64Encode(hashresult)

4. URI encode the base64 encoded hash result.

l signature = encodeURIComponent(base64string)

411

Chapter 5. Cloudian Management Console (CMC)

For a sample of a Python script that uses the one-way hash login API, see "Cloudian HyperStore SSO Sample
Script" (page 413).

5.10.5.2.2. Access to a CMC’s Interior Page

After creating the signature, the portal server can return an HTML page with a hyperlink to the CMC SSO
secure login API. The following example will display CMC’s Buckets & Objects page (bucket.htm) embedded
in the inline frame on the portal’s page.

<iframe src="https://<cmc_FQDN>:<cmc_port>/Cloudian/ssosecurelogin.htm

?user=USERID&group=GROUPID×tamp=TIMESTAMP&signature=SIG

&redirect=bucket.htm"></iframe>

5.10.5.2.3. CMC SSO Secure Login HTTP Response

If redirect=RELATIVE_OR_ABSOLUTE_URL is given, the CMC’s SSO secure login API returns an HTTP redir-
ect response.

l If the request was successful, the redirect response will take the client to the URL specified by redir-
ect.

l If the request failed, the redirect response will take the client to the CMC’s Login panel.

If redirect=RELATIVE_OR_ABSOLUTE_URL is not given, the CMC’s SSO secure login API returns an HTTP
response with content-type "text/plain".

l If the request was successful, the HTTP response status is 200 OK.

l If the request failed, a 400 BAD REQUEST status is returned, along with a plain text status description.
Possible reasons for failure include:

o Missing required parameters

o SSO token already exists (request is ignored)

o Timestamp in request is outside of configured tolerance range

o Invalid signature

o Invalid credentials (group ID and/or user ID is invalid)

5.10.5.2.4. CMC Logout

This API method allows for immediately invalidating the CMC session.

https://<cmc_FQDN>:<cmc_port>/Cloudian/logout.htm&redirect=RELATIVE_OR_ABSOLUTE_URL

l redirect: This optional parameter can be used to redirect the client to the URL after logging out from the
CMC. It is typically set to a portal page. The URL must be URL-encoded by the client.

5.10.5.2.5. CMC Logout HTTP Response

If redirect=RELATIVE_OR_ABSOLUTE_URL is given, the CMC’s logout API returns an HTTP redirect
response to take the client to the given URL after logging out from the CMC.

If redirect=RELATIVE_OR_ABSOLUTE_URL is not given, the CMC’s logout API returns an HTTP redirect
response to take the client to the CMC’s Login panel.

5.10.5.2.6. Logging Out from the CMC and Portal at Once

You may want the logout link on the portal page to also trigger logout from the CMC. You can achieve this by
using the redirect parameter.

412

5.10. Customizing the CMC

For example, if you have the portal’s logout link like this:

Logout

You can change it to the following:

<a href="https://<cmc_FQDN>:<cmc_port>/Cloudian/logout.htm

?redirect=https:%2F%2F<portal_FQDN>:<portal_port>%2Fauth%2Flogout">Logout

l The redirect URL must be an absolute URL including the protocol (e.g. https://) and portal’s FQDN.

l The redirect URL must be URL-encoded.

5.10.5.3. Cloudian HyperStore SSO Sample Script

Below is a sample Python script that outputs a HyperStore SSO secure login URL for use with the one-way
hash method of having the CMC create a cookie. The script also creates an SSO logout URL.

#!/usr/bin/python

import time

import hmac

import hashlib

import base64

import urllib

TODO: Move these config options to configuration file

SSO_DOMAIN = 'cmc.cloudian.com'

SSO_PORT = 8443

SSO_KEY = 'aa2gh3t7rx6d'

TODO: Dynamically choose user/group based on the user

and group you want to login using.

SSO_USER = 'sso@group'

SSO_GROUP = 'ssogroup'

Do Not Change

SSO_PROTO = 'https://'

SSO_PATH = 'Cloudian/ssosecurelogin.htm'

SSO_LOGOUT_PATH = 'Cloudian/ssologout.htm'

def sso_sig(user, group, timestamp):

query string with no urlencoding for signature

signme = 'user=%s&group=%s×tamp=%s' % (user, group, timestamp)

hmacsha1 = hmac.new(SSO_KEY, signme, hashlib.sha1).digest()

return base64.b64encode(hmacsha1)

def sso_url(user, group):

timestamp = int(time.time() * 1000)

signature = sso_sig(user, group, timestamp)

params = {'user': user,

'group': group,

'timestamp': timestamp,

'signature': signature}

query = urllib.urlencode(params)

url = '%s%s:%d/%s?%s' % (SSO_PROTO, SSO_DOMAIN, SSO_PORT, SSO_PATH, query)

413

Chapter 5. Cloudian Management Console (CMC)

return url

def sso_logout_url():

url = '%s%s:%d/%s' % (SSO_PROTO, SSO_DOMAIN, SSO_PORT, SSO_LOGOUT_PATH)

return url

print 'login: ' + sso_url(SSO_USER, SSO_GROUP)

print '\nlogout: ' + sso_logout_url()

Note The sample script hard-codes the SSO secret key, which is not advisable for actual practice. In
practice, you should keep the secret key safely on the server side.

414

Chapter 6. Node andCluster Operations

6.1. Starting and Stopping Services
Subjects covered in this section:

l Introduction (immediately below)

l "Start or Stop Services on All Nodes in the Cluster" (page 415)

l "Start or Stop Services on One Node" (page 417)

l "Shutting Down or Rebooting a Node" (page 419)

l "Automatic Service Start on Node Boot-Up" (page 419)

You can start, restart, or stop a service across all the nodes in your cluster by using the HyperStore installer. If
instead you want to start, restart, or stop a service on just one particular node, you can do so through the CMC
or by using a HyperStore service initialization script. Note also that HyperStore services are configured to start
automatically when you reboot a node.

6.1.1. Start or Stop Services on All Nodes in the Cluster
The interactive tool that you used to install the HyperStore system — cloudianInstall.sh— can also be used to
manage HyperStore services. The tool enables you to start, restart, or start one or more services on all nodes
at once (or to put it more precisely, on all nodes in rapid succession).

Note The installation tool does not support managing a service on just one particular node.

1. On your Puppet master node, change into the installation staging directory and then launch the
HyperStore installer.

./cloudianInstall.sh

This displays the top-level menu of options.

415

Chapter 6. Node and Cluster Operations

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. Choose "Cluster Management", then from the sub-menu that displays choose "Manage Services". This
displays the "Service Management" sub-menu:

416

6.1. Starting and Stopping Services

Note For future reference: As an alternative to launching cloudianInstall.sh and navigating to
the "Service Management" menu, you can access this menu directly by launching the cloud-
ianService.sh script in your installation staging directory.

a. At the prompt, enter a service number from the menu. To manage all services enter option (0).

Note The Admin Service is bundled with the S3 Service. Any operation that you apply to
the S3 Service (such as stopping or restarting) applies also to the Admin Service. Like-
wise, the STS Service is bundled together with the IAM Service, so any operation that
you apply to the IAM Service also applies to the STS Service.

b. At the prompt that appears after you make your service selection, enter a service command:
start, stop, status, restart, or version. (The "version" option is supported only for the S3 Service.)

The service command you enter will be applied to all nodes on which the service resides. For example,
if you choose Cassandra and then enter "start", this will start Cassandra on all nodes on which it is
installed. Likewise if you choose S3 and then "status", this will return the status of the S3 Service on
each node on which it is installed. And if you choose "All services" and then "stop", this will stop all ser-
vices on all nodes.

Note From the "Service Management" menu all you can do for the Puppet service is check its
status. To stop or start the Puppet daemons, from the installer’s main menu choose "Advanced
Configuration Options". From the advanced sub-menu that displays you can stop or start the
Puppet daemons.

6.1.2. Start or Stop Services onOneNode
You can start, restart, or stop a service on just one particular node by using the CMC's Node Status page.

As an alternative to using the CMC for this task, you can use the following commands. These commands can
be run from any directory on the target node.

If you are using the HyperStore Shell

The HyperStore Shell (HSH) supports using systemtctl commands such as those below.

systemctl start|restart|stop|is-active <servicename>

Example:

systemctl restart cloudian-s3

Example:

systemctl is-active cloudian-s3
active

The table below shows all HyperStore services and their corresponding <servicename>.

Service <servicename>

S3 Service and Admin Service. These two services start and stop
together.

cloudian-s3

417

Chapter 6. Node and Cluster Operations

Service <servicename>

IAM Service and STS Service. These two services start and stop
together.

cloudian-iam

SQS Service cloudian-sqs (by default this ser-
vice is disabled; see "HyperStore
Support for the AWS SQS API"
(page 1041) for information on
enabling it)

Cassandra Service cloudian-cassandra

HyperStore Service cloudian-hyperstore

Redis Credentials Service cloudian-redis-credentials

Redis QoS Service cloudian-redis-qos

Redis Monitor cloudian-redismon

Cloudian Management Console cloudian-cmc

Cloudian Monitoring Agent cloudian-agent

Dnsmasq cloudian-dnsmasq

6.1.2.1. Stop or Start All Services on One Node

To stop all of the services on a single node, stop each individual service (as described in "Start or Stop Ser-
vices on One Node" (page 417)) in this order:

1. CMC

2. Cloudian Monitoring Agent

3. Redis Monitor

4. S3 Service

5. IAM Service

6. SQS Service (if being used)

7. HyperStore Service

8. Redis QoS

9. Redis Credentials

10. Cassandra

11. Dnsmasq

To start all of the services on a single node, start each individual service in this order:

1. Cassandra

2. Redis Credentials

3. Redis QoS

4. HyperStore Service

5. SQS Service (if being used)

6. IAM Service

7. S3 Service

418

6.1. Starting and Stopping Services

8. Redis Monitor

9. Cloudian Monitoring Agent

10. CMC

11. Dnsmasq

6.1.2.2. Checking the ISO Version on a HyperStore Appliance machine

On a HyperStore Appliance machine, you can check the ISO version (the version of the HyperStore ISO file
from which CentOS was installed on the machine) by changing into the /root/CloudianPackages directory and
then running the following command:

cat ISOVERSION

Example:

cat ISOVERSION

Cloudian CentOS 7.4 Rev d56af03 Custom - 09/27/17

6.1.3. Shutting Down or Rebooting a Node
You can shut down or reboot a HyperStore host machine by logging into the machine and using systemctl com-
mands.

If you are using the HyperStore Shell

The HyperStore Shell (HSH) supports using systemtctl commands such as those below.

To power off:

systemctl poweroff

To reboot:

systemctl reboot

6.1.4. Automatic Service Start on Node Boot-Up
By default all of the HyperStore services on a host are configured to automatically start when the host is booted
up (the configuration setting is common.csv: "service_starts_on_boot" (page 515), which defaults to "true").
This includes dnsmasq if it was included in your HyperStore software installation.

Note ntpd is configured to automatically start on host boot-up. By design, the sequencing is such that
ntpd starts up before major HyperStore services do.

Cloudian Inc. recommends that after booting a HyperStore host, you verify that ntpd is running. You can
do this with the ntpq -p command. If ntpd is running this command will return a list of connected time
servers.

IMPORTANT ! If you are rebooting multiple nodes, make sure that each node is back up for at least
one second before moving on to reboot the next node.

419

Chapter 6. Node and Cluster Operations

6.2. Adding Nodes
This procedure is for adding one or more nodes to an existing HyperStore data center. During this pro-
cedure you will:

l Prep the new node(s)

l Verify that your existing cluster is in a proper condition to add nodes

l Add the new node(s) to the cluster

l Rebalance data within the cluster

l Clean from the existing nodes data that they are no longer responsible for

IMPORTANT ! Be sure about the node or nodes that you are adding to the cluster, before you add
them to the cluster:
* Once you have added a node to the cluster's Cassandra ring you cannot simply "undo" the
process. If after adding a new node to the Cassandra ring you were to change your mind about keep-
ing the node in the cluster, you would still be required to rebalance data within the cluster (so that data
is streamed in to the new node) and then afterwards you would need to decommission the node (so
that data is streamed away from the new node). That is the only way that the system will allow you to
remove the node from the cluster.
* Once you add a node to your cluster, HyperStore does not support adding disks to the node. Make
sure that the node or nodes that you are adding have sufficient disk capacity to meet your needs.

6.2.1. Special Requirements if an Existing Node is Down
The CMC's Add Node function will not work if an existing node in your cluster is down or unreachable. If you
have more nodes in your cluster than are required by your configured storage policies and one of those nodes
is permanently down, follow the procedure for "Removing a Node" (page 443) to remove the dead node from
the cluster. After you complete that procedure you can then follow this procedure for Adding Nodes. If your cur-
rent cluster has only the minimum number of nodes required by your storage policies and one of those
nodes is dead, contact Cloudian Support for guidance.

6.2.2. Preparing to Add Nodes
Before you add a node or nodes to your cluster, prepare by taking the actions below.

1. Make sure the new host(s)meet requirements for:

o Hardware specs and operating system: See "Host Hardware and OS Requirements" in the
HyperStore installation Guide

o Open listening ports: See "HyperStore Listening Ports" in the Reference section of the Hyper-
Store Installation Guide

2. Make sure you have the information you will need to complete this procedure: each new node's host-
name, IPv4 address, internal interface name (optional), and root user password (or sa_admin user pass-
word for a "Secure Appliance" with its HyperStore Shell enabled and root password disabled at the
factory).

3. Start the new host(s), if not already running.

420

6.2. Adding Nodes

4. From your Puppet master node use the system_setup.sh tool's Prep New Node to Add to Cluster func-
tion to complete network interface configuration, time zone set-up, prerequisites installation, and data
disk formatting for each new node.

More detail

a. On your Puppet master node change into the installation staging directory and then launch the
system_setup.sh tool.

./system_setup.sh

If you are using the HyperStore Shell on the Puppet master node

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Pup-
pet master node you can launch the system setup tool with this command:

$ hspkg setup

Once launched, the setup tool's menu options (such as referenced in the steps below) are the
same regardless of whether it was launched from the HSH command line or the OS command
line.

b. In the tool's main menu select "8" for Prep New Node to Add to Cluster. When prompted
provide the IP address of a new node, and then the password for logging into the node. A menu
of node preparation tasks will then display.

c. Use the node preparation task menu to prepare the node:

o Complete the configuration of network interfaces for the node, if you haven't already.

o Set the timezone for the node.

o Install and configure HyperStore prerequisites on the node.

o Set up data disks on the node with ext4 file systems, if you haven't already. Make sure to
format and mount all available data disks on the node.

o After completing the setup tasks for the node choose the "Return to Master Node" option,
which returns you to the tool's main menu.

d. Repeat steps "b" and "c" above for each new node that you're adding. When you're done, exit
the system_setup.sh tool.

IMPORTANT ! If the new node(s) are not HyperStore Appliances and if you do not use sys-
tem_setup.sh to format the data disks on the new node(s), then in the installation staging dir-
ectory on your Puppet master node you must for each new node create a text file named
<hostname>_fslist.txt that specifies the new node’s data mount points, in this format:

<devicename> <mountpoint>
<devicename> <mountpoint>
etc...

5. Make sure the cluster is in proper condition to add nodes:

a. If there are any operations in-progress in the CMC's Operation Status page, wait for them to fin-
ish (or otherwise, the Add Node operation will automatically stop them).

More detail

When you initiate the Add Node operation in the CMC (as described in "Adding Nodes" below),

421

Chapter 6. Node and Cluster Operations

the system will automatically stop any in-progress repair, repairec, cleanup, or cleanupec oper-
ations in the service region. If there is an in-progress operation that you do not want the system
to stop, wait until the operation completes before you add nodes to your cluster.

l If a repair is running on a node because you recently initiated a "replacedisk" operation
on that node, Cloudian recommends waiting until the repair completes before you add a
node to your cluster.

l If you proceed with adding a node at a time when a repair is in progress, and the system
automatically stops the repair, do not run the "-resume" option on that repair after you've
added the node. Adding a node affects the token range distribution within the cluster, so
resuming an interrupted repair operation afterward is not supported. If you want to repair
a node on which repair was interrupted, wait until after you've completed the rebalance
operation (as part of the Adding Nodes procedure), and then run a fresh repair operation
on the node for which repair was interrupted.

l It's inconsequential to allow the system to stop an in-progress cleanup operation on a
node, because you will need to run a fresh cleanup operation on each existing node any-
way, at the end of the Adding Nodes procedure.

Note When you in initiate the Add Node operation in the CMC, the system will also auto-
matically disable the auto-repair feature and the proactive repair feature -- so that no new
repairs kick off while you're expanding your cluster -- and then after you've completed the
rebalance operation the system automatically re-enables auto-repair and proactive
repair.

b. In the Data Centers page, make sure that all the existing nodes and services are up and run-
ning in the service region.

More detail

422

6.2. Adding Nodes

The Add Node function will not let you add nodes if any existing nodes or services in the region
are down.

6.2.3. Adding Nodes
1. In the CMC's Data Centers page, in the display for the data center and rack in which you want to add a

node, click the light green cube icon that has a plus sign on it.

More detail

423

Chapter 6. Node and Cluster Operations

Clicking the light green cube opens the Add Node interface.

Note If the data center has multiple racks for HyperStore -- which is possible only if your original
HyperStore version installed was earlier than version 7.2 -- and if you want the new node(s) to
be assigned to a new rack rather than one of the existing racks, just click on the light green cube
icon for any rack in the display for the correct data center. If (and only if) the data center has mul-
tiple racks for your existing HyperStore nodes, you will have an opportunity to specify a new
rack name in the next step below.

2. In the Add Node interface that displays, complete the fields for the new node.

More detail

424

6.2. Adding Nodes

Hostname (required; must be unique within system)

Hostname of the new node.

Note
* This must be just a hostname, not an FQDN.
* Do not use the same hostname for more than one node in your entire HyperStore sys-
tem. Each node must have a unique hostname within your entire HyperStore system,
even in the case of nodes that are in different domains.

IP Address (required)

Service network IP (v4) address that the hostname resolves to. Do not use IPv6.

Internal Network Interface Name (optional)

If the new node will use a different dedicated interface for internal cluster traffic than other nodes
in your cluster use — for example if the new node uses "eth2" for internal traffic while other
nodes in your cluster are using "eth1" for internal traffic — enter the interface name in this field. If
the new node will use the same internal network interface as your existing nodes you can leave
this field empty.

Rack Name (required)

The behavior of this field depends on your particular HyperStore system and existing set-up:

l If your original HyperStore system is version 7.2 or later, or if your original HyperStore sys-
tem was earlier than 7.2 and you have only been using one rack name for your existing
nodes in the data center, this field value is fixed to the rack name that you have been
using for your existing nodes. You cannot edit this field.

425

Chapter 6. Node and Cluster Operations

l If your original HyperStore system was earlier than 7.2 and you have been using multiple
rack names for your existing nodes in the data center, you can select any of those rack
names from the drop-down list or create a new rack name.

IMPORTANT ! If your system is configured with multiple rack names and you are
adding nodes, make sure to do it in such a way that when you are all done adding
nodes, each rack has the same number of nodes (for example, three nodes on
each rack). Having an imbalance in the number of nodes per rack will result in
data load imbalance, such that on racks with fewer nodes there will be more
stored data per node than on racks with more nodes.

Authentication fields (based on new node type)

During the Add Node operation, the HyperStore installer on your Puppet master node needs to
securely connect to the new node. The authentication options for doing so depend on the new
node type:

l If the new node is a "Secure Appliance" (a HyperStore Appliance for which the Hyper-
Store Shell [HSH] was enabled and the root password disabled at the factory), select the
"New node is a Secure Appliance" checkbox. Then enter the sa_admin user's password
for the new node.

Note Before the new node is added to your HyperStore cluster, the sa_admin
user's password on the new node may be different than the sa_admin user's pass-
word in your existing cluster. If so, after the new node is added to the cluster, the
sa_admin user's password on the new node will be automatically changed to
match the sa_admin user's password in the cluster.

l If the new node is not a "Secure Appliance" -- that is, if the new node is a standard
Appliance or a software-only node on commodity hardware -- then you can use either
one of these authentication methods (use one method or the other -- not both):

o Enter the root user's password for the new node.

OR

o Select the "Private Key Authentication" checkbox. In this case the installer will use
the same private key as was used to install the existing cluster. Distribution of the
corresponding public key to the new node depends on how you handled SSH key
set-up during installation of the existing HyperStore cluster:

n If during installation of the cluster you let the installer generate an SSH key
pair for you, or you used your own existing SSH key pair and you copied
both the private and the public key into the installation staging directory on

426

6.2. Adding Nodes

the Puppet master, then distribution of the public key to the new node will
be taken care of automatically by the installer.

n If during installation of the cluster you used your own existing SSH key pair
and you copied only the private key into the installation directory -- and you
copied the public key to the target installation nodes manually -- then you
must also copy the public key to the new node manually, before execut-
ing the Add Node operation.

3. Click Execute. This initiates a background operation that will take anywhere from a half-hour up to a full
day to complete depending on your environment. When it completes successfully an orange node icon
with a gear inside of it displays in the Data Centers page.

More detail

The Add Node operation entails verifying that the new host meets HyperStore requirements, installing
software, updating system configuration, starting services, joining the new node into the cluster, and
streaming system and object metadata to the new node (in Cassandra).

There are two CMC locations where you can monitor the Add Node operation progress:

l The Data Centers page. A new node icon appears, with color-coding to indicate the status of
the Add Node operation. You can hold your cursor over the node icon for a text description of
the status.

Note The new node status icon will not display until the system successfully completes
preliminary actions such as verifying that the new node meets HyperStore requirements
and adding the node to the Cassandra ring. Prior to the appearance of the grey new
node icon, if the Add Node operation encounters errors the system will automatically roll
back the operation. Once the grey new node icon appears, the node has been added to
the Cassandra ring and the operation can no longer be rolled back.

Grey node with gear -- The node has been added to the Cassandra ring, and Cas-
sandra repair (which streams metadata to the new node) is in progress.

Orange node with gear -- Cassandra repair has completed successfully , and the
node requires that you run a "rebalance" operation to stream object data to it (as
described later in this procedure).

Red node with gear -- Cassandra repair has failed. If this status occurs, first check
the Data Center page's Service Status section to make sure that Cassandra is up
and running on all nodes (if it's down on any node, go to the Node Status page for
that node and start Cassandra). After making sure Cassandra is up on all nodes go
to the Node Advanced page, and from the Maintenance command type menu run
repaircassandra on the new node.

Note Do not try to add any more new nodes until the Data Centers page shows the
orange icon for the currently added node.

l The Operation Status page. Click View to the right of the summary status line to display detailed
progress information as the operation proceeds through pre-installation checks and initial set-up

427

Chapter 6. Node and Cluster Operations

of the node.

4. When the Data Centers page shows the orange icon for the currently added node, you can add more
nodes (if you wish) by repeating Steps 1, 2, and 3 above for each new node. If you have a multi-DC
cluster, be careful to click the add node icon within the data center panel for your desired DC. You can
add different nodes to different DCs if you wish, as long as they're in the same service region.

5. After the Add Node operation has completed successfully for each new node, update your DNS and/or
load balancer configurations to include the new node(s), so that the new node(s) can participate in ser-
vicing user request traffic (if you have not already done so). For more information see "DNS Set-Up"
and "Load Balancing" in the HyperStore Installation Guide.

6. If your system is currently using HyperStore software that you have previously "patched" by running the
HyperStore patch installer, log into the Puppet master node and manually run the patch installer again
to apply the patch to the new nodes. For more information on this task see "Adding Nodes to a
Patched System" (page 64). After the patch installation completes successfully, proceed to Step 7. (If
your current system is not a patched version of HyperStore you can skip Step 6 and go directly to Step
7.)

7. In the Node Advanced page, from the Maintenance command type group, execute hsstool rebalance
on each new node. When launching rebalance on each new node, use the cleanupfile option. Rebal-
ance is a long-running background operation that you can run concurrently on multiple new nodes that
you've added. When all new nodes have completed rebalancing, for each node a green, check-marked
cube icon will display in the Data Centers page.

More detail

428

6.2. Adding Nodes

The rebalance operation populates the new node(s) with their appropriate share of S3 object data. The
rebalance is a background operation that may take up to several days or more to complete, depending
on factors such as data volume and network bandwidth. When rebalance is performed with the cleanup-
file option, as soon as a replica or fragment is successfully copied to the new node, it is deleted from the
older node on which it no longer belongs -- thereby freeing up storage space on the older nodes as the
rebalance operation progresses. For more information see "hsstool rebalance Parameters" (page
682).

Note During in-progress rebalance operations the affected data remains readable by S3 client
applications. Meanwhile the new node(s) are immediately available to support writes of new
data, even before any rebalancing occurs.

Note When you have rebalance running on a new node or multiple new nodes, you cannot add
any additional nodes to the service region (using the CMC's Add Node feature) until rebalance
has competed successfully on all of the current new nodes.

Use the Data Centers page to periodically check the progress of the rebalance operation on each of
the new nodes. The icon for the new node(s) will be color-coded, and you can hold your cursor over the
icon(s) for a text description of the status.

Grey node with gear -- The rebalance operation is in progress. If you have added multiple
nodes and have started rebalance operations on the nodes, each node's status icon will
remain in this status until rebalance completes on all of the nodes in the batch.

Red node with gear -- The rebalance operation has failed for one or more token ranges. If
this status displays, go to the Nodes Advanced page and run rebalance on the node again,
using the "retry" option this time (select the retry checkbox when you run rebalance on the
node), as well as the "cleanupfile" option. This will try the rebalance again, just for the failed
token range(s).

Green node with check mark -- The rebalance operation has completed successfully. If you
have added multiple nodes, this status will not display for any of the new nodes until rebal-
ance has completed on all of the new nodes.

Another source of status information for the rebalance operation is the Operation Status page.

For status detail click View to the right of the summary status line.

429

Chapter 6. Node and Cluster Operations

8. If you removed a dead node prior to performing the Adding Nodes procedure and deferred the node
repair operations that are necessary after you remove a dead node, perform those repairs now.

More detail

a. From the Node Advanced page, run hsstool repair on each node in the service region except
for the new node(s), just one node at a time. When repairing each node, use the allkeyspaces
option and also the -pr option. Leave the -l and -m options selected, as they are by default. Use
the Operation Status page to track the progress of each repair. After repair of a node is com-
plete, repair another node -- until all nodes except for the new node(s) have been successfully
repaired.

b. If you have erasure coded object data in your system, from the Node Advanced page run
hsstool repairec on one node in each HyperStore data center in the region. It doesn't matter
which node you run it on, as long as you do it for one node in each DC in the region. Use the
Operation Status page to track repair progress.

9. After all rebalance operations have completed (and repair operations have completed if Step 8 was
applicable to you), run hsstool cleanup allkeyspaces on each node except the new node(s) -- one node
at a time, waiting for the cleanup to complete before you start the cleanup on the next node. This cleans
up any metadata replicas (in Cassandra) that no longer belong on the older nodes due to the addition
of the new node(s).

This completes the procedure for adding nodes to your cluster.

6.3. Adding a Data Center
This procedure is for adding a new data center to an existing HyperStore service region. During this pro-
cedure you will:

l Prep the nodes in the new data center

l Verify that your existing cluster is in a proper condition to successfully add a data center

l Add the new data center's nodes to the cluster

l Take initial steps to start utilizing the new data center

IMPORTANT ! Once you add nodes to your cluster, HyperStore does not support adding disks to those
nodes. Make sure that the nodes that you are adding have sufficient disk capacity to meet your needs.

6.3.1. Special Requirements if an Existing Node is Down or Unreachable
The CMC's Add DC function will not work if an existing node in your cluster is down or unreachable. If you
have more nodes in your cluster than are required by your configured storage policies and one of those nodes
is permanently down, follow the procedure for "Removing a Node" (page 443) to remove the dead node from
the cluster. After you complete that procedure you can then follow this procedure for Adding a Data Center. If
your current cluster has only the minimum number of nodes required by your storage policies and one of
those nodes is dead, contact Cloudian Support for guidance.

6.3.2. Preparing to Add a Data Center
Before you add a new data center to a region, prepare by taking the actions below.

430

6.3. Adding a Data Center

1. The HyperStore nodes in each data center will need to be able to communicate with the HyperStore
nodes in the other data center(s). This includes HyperStore services that listen on the internal interface.
Therefore, if you haven't already done so you must configure your inter-DC networking so that the
DCs' internal networks are connected to each other (for example, by using a VPN).

2. Make sure the new host(s)meet requirements for:

o Hardware specs and operating system: See "Host Hardware and OS Requirements" in the
HyperStore installation Guide

o Open listening ports: See "HyperStore Listening Ports" in the Reference section of the Hyper-
Store Installation Guide

3. Make sure you have the information you will need to complete this procedure: the new data center's
name, and each new node's hostname, IPv4 address, internal interface name (optional), and root pass-
word (or sa_admin user password for a "Secure Appliance" with its HyperStore Shell enabled and root
password disabled at the factory). For data center names only alphanumeric characters and dashes are
supported.

4. Start the new host(s), if not already running.

5. From your Puppet master node use the system_setup.sh tool's Prep New Node to Add to Cluster func-
tion to complete network interface configuration, time zone set-up, prerequisites installation, and data
disk formatting for each new node.

More detail

a. In your existing cluster, on your Puppet master node change into the installation staging dir-
ectory and then launch the system_setup.sh tool.

./system_setup.sh

If you are using the HyperStore Shell on the Puppet master node

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Pup-
pet master node you can launch the system setup tool with this command:

$ hspkg setup

Once launched, the setup tool's menu options (such as referenced in the steps below) are the
same regardless of whether it was launched from the HSH command line or the OS command
line.

b. In the tool's main menu select "8" for Prep New Node to Add to Cluster. When prompted
provide the IP address of a new node, and then the password for logging into the node. A menu
of node preparation tasks will then display.

c. Use the node preparation task menu to prepare the node:

o Complete the configuration of network interfaces for the node, if you haven't already.

o Set the timezone for the node.

o Install and configure HyperStore prerequisites on the node.

o Set up data disks on the node with ext4 file systems, if you haven't already. Make sure to
format and mount all available data disks on the node.

o After completing the setup tasks for the node choose the "Return to Master Node" option,
which returns you to the tool's main menu.

d. Repeat steps "b" and "c" above for each new node that you're adding. When you're done, exit
the system_setup.sh tool.

431

Chapter 6. Node and Cluster Operations

IMPORTANT ! If the new node(s) are not HyperStore Appliances and if you do not use sys-
tem_setup.sh to format the data disks on the new node(s), then in the installation staging dir-
ectory on your Puppet master node you must for each new node create a text file named
<hostname>_fslist.txt that specifies the new node’s data mount points, in this format:

<devicename> <mountpoint>
<devicename> <mountpoint>
etc...

6. In the CMC's Data Centers page,make sure that all the existing nodes and services are up and run-
ning in the region in which you are adding a data center. The Add DC function will not let you add
nodes if any existing nodes or services in the region are down.

6.3.3. Adding a Data Center
1. In the CMC's Data Centers page, with the correct service region tab selected, click the large box that

says +NEWDC.

432

6.3. Adding a Data Center

2. In the Add DC interface that displays, complete the top two fields for the new data center as a whole,
then complete the remaining fields for each node in the data center, clicking Add More Nodes to dis-
play fields for additional nodes as needed.

More detail

433

Chapter 6. Node and Cluster Operations

System Metadata Replication Factor (required)

In this field indicate how many replicas of system metadata (such as usage reporting data, user account
information, and system monitoring data) you want to store in the new DC. For each metadata item,
each replica will be stored on a different node, to protect this metadata against loss or corruption. It's
recommended that you set this replication factor to 3 if you are going to have three or more nodes in the
new DC. If there will be only two nodes in the new DC, set this to 2; if there will be only one node, set
this to 1. You cannot set a metadata replication factor higher than the number of nodes in the new DC.

Data Center Name (required)

Name of the new data center. Maximum 256 characters. Only ASCII alphanumerical characters and
dashes are allowed.

Hostname (required; must be unique within system)

Hostname of the new node.

Note
* This must be just a hostname, not an FQDN.
* Do not use the same hostname for more than one node in your entire HyperStore system.
Each node must have a unique hostname within your entire HyperStore system, even in the
case of nodes that are in different domains.

IP Address (required)

Service network IP (v4) address that the hostname resolves to. Do not use IPv6.

434

6.3. Adding a Data Center

Internal Network Interface Name (optional)

If the new node will use a different dedicated interface for internal cluster traffic than other nodes in your
cluster use — for example if the new node uses "eth2" for internal traffic while other nodes in your
cluster are using "eth1" for internal traffic — enter the interface name in this field. If the new node will
use the same internal network interface as your existing nodes you can leave this field empty.

Rack Name (fixed value "RAC1")

The "Rack Name" value is automatically fixed to "RAC1" for all nodes in the new data center. You can-
not edit this value.

Note This is an internal value used by HyperStore. It does not need to correspond to any actual
rack name in your data center.

Authentication fields (based on new node type)

During the Add DC operation, the HyperStore installer on your Puppet master node needs to securely
connect to each new node. The authentication options for doing so depend on the new node type:

l If the new node is a "Secure Appliance" (a HyperStore Appliance for which the HyperStore
Shell [HSH] was enabled and the root password disabled at the factory), select the "New node is
a Secure Appliance" checkbox. Then enter the sa_admin user's password for the new node.

Note Before the new node is added to your HyperStore cluster, the sa_admin user's
password on the new node may be different than the sa_admin user's password in your
existing cluster. If so, after the new node is added to the cluster, the sa_admin user's
password on the new node will be automatically changed to match the sa_admin user's
password in the cluster.

l If the new node is not a "Secure Appliance" -- that is, if the new node is a standard Appliance
or a software-only node on commodity hardware -- then you can use either one of these authen-
tication methods (use one method or the other -- not both):

o Enter the root user's password for the new node.

OR

o Select the "Private Key Authentication" checkbox. In this case the installer will use the
same private key as was used to install the existing cluster. Distribution of the cor-
responding public key to the new node depends on how you handled SSH key set-up
during installation of the existing HyperStore cluster:

n If during installation of the cluster you let the installer generate an SSH key pair for
you, or you used your own existing SSH key pair and you copied both the private

435

Chapter 6. Node and Cluster Operations

and the public key into the installation staging directory on the Puppet master,
then distribution of the public key to the new node will be taken care of auto-
matically by the installer.

n If during installation of the cluster you used your own existing SSH key pair and
you copied only the private key into the installation directory -- and you copied the
public key to the target installation nodes manually -- then you must also copy
the public key to the new node manually, before executing the Add DC oper-
ation.

3. Click Execute. This initiates a background operation that will take anywhere from several minutes to
several hours to complete depending on your environment. When it completes successfully the Data
Centers page will display an additional block representing the newly added DC, with a green, check-
marked cube icon for each of the new DC's nodes.

More detail

The Add DC operation entails verifying that the new hosts meet HyperStore requirements, installing soft-
ware, updating system configuration, starting services, joining the new nodes into the cluster, and
streaming system metadata to the new nodes (in Cassandra).

You can use the Operation Status page to monitor progress of the operation.

For status detail click View to the right of the summary status line.

When the operation is complete, to see the new nodes in the Data Centers page you may need to
refresh the page in your browser.

If you hold your cursor over each cube in the new data center the node host names will display.

Note If the Operation Status page indicates that the Add DC operation has failed, click "View"
for detail. Then for more information to support troubleshooting efforts, grep for "ERROR" level
messages in the cloudian-installation.log file under the installation staging directory on your
Puppet master node.

4. Update your DNS and load balancing configurations to include the new data center and its nodes, if
you have not already done so. For more information see "DNS Set-Up" and "Load Balancing" in the
HyperStore Installation Guide.

5. If your system is currently using HyperStore software that you have previously "patched" by running the
HyperStore patch installer, log into the Puppet master node and manually run the patch installer again
to apply the patch to the new nodes. For more information on this task see "Adding Nodes to a
Patched System" (page 64). After the patch installation completes successfully, proceed to Step 6. (If

436

6.4. Adding a Region

your current system is not a patched version of HyperStore you can skip Step 5 and go directly to Step
6.)

6. Go to the CMC's Storage Policies page and create one or more storage policies that utilize the new
DC. Until you create storage policies that use the new DC and users subsequently create buckets that
use those storage policies, no S3 object data will be stored in the new DC.

Note Because your previously existing storage policies do not include the new DC, none of the
data already stored in your system in association with those storage policies will be migrated
into the new DC. Accordingly, there is no need for you to run a rebalance operation after adding
a new DC.

This completes the procedure for adding a data center to your cluster.

NOTE: If you removed a dead node prior to performing the Adding a Data Center procedure and deferred
the node repair operations that are necessary after you remove a dead node, perform those repairs now.

More detail

a. From the Node Advanced page, run hsstool repair on each node in the service region except for the
new nodes, just one node at a time. When repairing each node, use the allkeyspaces option and also
the -pr option. Leave the -l and -m options selected, as they are by default. Use the Operation Status
page to track the progress of each repair. After repair of a node is complete, repair another node -- until
all nodes except for the nodes in the new data center have been successfully repaired.

b. If you have erasure coded object data in your system, from the Node Advanced page run hsstool
repairec on one node in each HyperStore data center in the region except for the new data center. It
doesn't matter which node you run it on, as long as you do it for one node in each DC in the region,
except for the new DC. Use the Operation Status page to track repair progress.

6.4. Adding a Region
This procedure is for adding a new service region to your HyperStore system. During this procedure you
will:

l Prep the nodes in the new service region

l Add the new region's nodes to the system

l Take initial steps to start utilizing the new region

IMPORTANT ! Once you add nodes to your system, HyperStore does not support adding disks to
those nodes. Make sure that the nodes that you are adding have sufficient disk capacity to meet your
needs.

6.4.1. Preparing to Add a Region
Before you add a new region to your system, prepare by taking the actions below.

1. The HyperStore nodes in each region will need to be able to communicate with the HyperStore nodes
in the other region(s). This includes HyperStore services that listen on the internal interface. Therefore,

437

Chapter 6. Node and Cluster Operations

if you haven't already done so you must configure your networking so that the internal networks of
all of your data centers in all of your regions are connected to each other (for example, by using a
VPN).

2. Make sure the new host(s)meet requirements for:

o Hardware specs and operating system: See "Host Hardware and OS Requirements" in the
HyperStore installation Guide

o Open listening ports: See "HyperStore Listening Ports" in the Reference section of the Hyper-
Store Installation Guide

3. Make sure you have the information you will need to complete this procedure: the name of the new
region, the name(s) of the data center(s) that will comprise the region, and each new node's hostname,
IPv4 address, internal interface name (optional), rack name, and root password (or sa_admin user pass-
word for a "Secure Appliance" with its HyperStore Shell enabled and root password disabled at the fact-
ory). For region, DC, and rack names only alphanumeric characters and dashes are supported.

4. Start the new host(s), if not already running.

5. From your Puppet master node use the system_setup.sh tool's Prep New Node to Add to Cluster func-
tion to complete network interface configuration, time zone set-up, prerequisites installation, and data
disk formatting for each new node.

More detail

a. In your existing cluster, on your Puppet master node change into the installation staging dir-
ectory and then launch the system_setup.sh tool.

./system_setup.sh

If you are using the HyperStore Shell on the Puppet master node

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Pup-
pet master node you can launch the system setup tool with this command:

$ hspkg setup

Once launched, the setup tool's menu options (such as referenced in the steps below) are the
same regardless of whether it was launched from the HSH command line or the OS command
line.

b. In the tool's main menu select "8" for Prep New Node to Add to Cluster. When prompted
provide the IP address of a new node, and then the password for logging into the node. A menu
of node preparation tasks will then display.

c. Use the node preparation task menu to prepare the node:

o Complete the configuration of network interfaces for the node, if you haven't already.

o Set the timezone for the node.

o Install and configure HyperStore prerequisites on the node.

o Set up data disks on the node with ext4 file systems, if you haven't already. Make sure to
format and mount all available data disks on the node.

o After completing the setup tasks for the node choose the "Return to Master Node" option,
which returns you to the tool's main menu.

d. Repeat steps "b" and "c" above for each new node that you're adding. When you're done, exit
the system_setup.sh tool.

438

6.4. Adding a Region

IMPORTANT ! If the new node(s) are not HyperStore Appliances and if you do not use sys-
tem_setup.sh to format the data disks on the new node(s), then in the installation staging dir-
ectory on your Puppet master node you must for each new node create a text file named
<hostname>_fslist.txt that specifies the new node’s data mount points, in this format:

<devicename> <mountpoint>
<devicename> <mountpoint>
etc...

6.4.2. Adding a Region
1. In the CMC's Data Centers page, click the tab that says +NEWREGION.

2. In the Add Region interface that displays, enter the name of the new region then complete the fields for
each node in the data center, clicking Add More Nodes to display fields for additional nodes as
needed.

More detail

439

Chapter 6. Node and Cluster Operations

Region Name (required)

Name of the new region. Maximum 52 characters. Only ASCII alphanumerical characters and dashes
are allowed. Letters must be lower case.

Hostname (required; must be unique within system)

Hostname of the new node.

Note
* This must be just a hostname, not an FQDN.
* Do not use the same hostname for more than one node in your entire HyperStore system.
Each node must have a unique hostname within your entire HyperStore system, even in the
case of nodes that are in different domains.

IP Address (required)

Service network IP (v4) address that the hostname resolves to. Do not use IPv6.

Data Center Name (required)

Name of the data center in which the new node is located. Maximum 256 characters. Only ASCII alpha-
numerical characters and dashes are allowed.

Internal Network Interface Name (optional)

If the new node will use a different dedicated interface for internal cluster traffic than other nodes in your
cluster use — for example if the new node uses "eth2" for internal traffic while other nodes in your

440

6.4. Adding a Region

cluster are using "eth1" for internal traffic — enter the interface name in this field. If the new node will
use the same internal network interface as your existing nodes you can leave this field empty.

Rack Name (fixed value "RAC1")

The "Rack Name" value is automatically fixed to "RAC1" for all nodes in the new region. You cannot edit
this value.

Note This is an internal value used by HyperStore. It does not need to correspond to any actual
rack name in your data center(s).

Authentication fields (based on new node type)

During the Add Region operation, the HyperStore installer on your Puppet master node needs to
securely connect to each new node. The authentication options for doing so depend on the new node
type:

l If the new node is a "Secure Appliance" (a HyperStore Appliance for which the HyperStore
Shell [HSH] was enabled and the root password disabled at the factory), select the "New node is
a Secure Appliance" checkbox. Then enter the sa_admin user's password for the new node.

Note Before the new node is added to your HyperStore cluster, the sa_admin user's
password on the new node may be different than the sa_admin user's password in your
existing cluster. If so, after the new node is added to the cluster, the sa_admin user's
password on the new node will be automatically changed to match the sa_admin user's
password in the cluster.

l If the new node is not a "Secure Appliance" -- that is, if the new node is a standard Appliance
or a software-only node on commodity hardware -- then you can use either one of these authen-
tication methods (use one method or the other -- not both):

o Enter the root user's password for the new node.

OR

o Select the "Private Key Authentication" checkbox. In this case the installer will use the
same private key as was used to install the existing cluster. Distribution of the cor-
responding public key to the new node depends on how you handled SSH key set-up
during installation of the existing HyperStore cluster:

n If during installation of the cluster you let the installer generate an SSH key pair for
you, or you used your own existing SSH key pair and you copied both the private
and the public key into the installation staging directory on the Puppet master,
then distribution of the public key to the new node will be taken care of

441

Chapter 6. Node and Cluster Operations

automatically by the installer.

n If during installation of the cluster you used your own existing SSH key pair and
you copied only the private key into the installation directory -- and you copied the
public key to the target installation nodes manually -- then you must also copy
the public key to the new node manually, before executing the Add Region oper-
ation.

3. Click Execute. This initiates a background operation that will take anywhere from several minutes up to
an hour to complete depending on your environment. When it completes successfully the Data Centers
page will display an additional tab representing the newly added region, with a green, check-marked
cube icon for each of the new region's nodes.

More detail

The Add Region operation entails verifying that the new hosts meet HyperStore requirements, installing
software, updating system configuration, starting services, and joining the new nodes into a new Cas-
sandra ring.

Use the Operation Status page to monitor progress of the operation.

For status detail click View to the right of the summary status line. (The page may at one point indicate
that it cannot retrieve status information -- this is due to an S3 Server / Admin Server restart which is an
automatic part of the Add Region operation. Wait a few minutes then refresh the page.)

When the operation is complete, to see the new nodes in the Data Centers page you may need to
refresh the page in your browser.

If you hold your cursor over each cube in the new region the node host names will display.

Note If the Operation Status page indicates that the Add Region operation has failed, click
"View" for detail. Then for more information to support troubleshooting efforts, grep for "ERROR"
level messages in the cloudian-installation.log file under the installation staging directory on
your Puppet master node.

4. Update your DNS and load balancing configurations to include the new service region and its nodes, if
you have not already done so. Note that name server configurations in each of your existing region(s)
and the new region must have entries for all your regions' S3 service endpoints, as well as for the
global Admin service and CMC service endpoints. For more information see "DNS Set-Up" and "Load
Balancing" in the HyperStore Installation Guide.

5. If your system is currently using HyperStore software that you have previously "patched" by running the
HyperStore patch installer, log into the Puppet master node and manually run the patch installer again
to apply the patch to the new nodes. For more information on this task see "Adding Nodes to a

442

6.5. Removing a Node

Patched System" (page 64). After the patch installation completes successfully, proceed to Step 6. (If
your current system is not a patched version of HyperStore you can skip Step 5 and go directly to Step
6.)

6. Go to the Storage Policies page and select the new region. Then create a storage policy for the new
region. This first storage policy will become the default storage policy for the region. Later if you've cre-
ated more than one storage policy in the region you can change which policy is the default policy if you
wish. Until you create one or more storage policies in the new region and users subsequently create
buckets that use those storage policies, no S3 object data will be stored in the new region.

7. Optionally, set Quality of Service (QoS) limits for users' and groups' activity in the new service region.
Each service region has its own QoS configuration. By default, in each region no QoS limits are
enforced. For more information see "Set Quality of Service (QoS) Controls" (page 285). When using
the QoS configuration interfaces be sure to select the new service region from the interfaces' drop-down
list of regions.

This completes the procedure for adding a service region to your system.

6.5. Removing a Node
This procedure is for permanently removing a node from your cluster so that the data storage respons-
ibilities of that node are redistributed to the remaining nodes in the cluster. During this procedure you will:

l Verify that your existing system is in a proper condition to successfully support the removal of a node

l Remove the node

l If the node you removed was "dead" -- Cassandra down or unreachable before removing the node --
repair the remaining nodes in your cluster (this is not necessary if the node you removed was live)

Note If you are removing a node after having added a new node to your cluster, you must complete
the rebalance operation for the new node before removing a node. For more information on rebalance
see "Adding Nodes" (page 420).

IMPORTANT ! Removing a node should be something that you do only if absolutely necessary.
When you remove a live node from your cluster, during the decommissioning process the data stored
on that node is unavailable to client applications. Once data has been streamed from the decom-
missioning node to the other nodes that data is again available to support client requests. But depend-
ing on the data volume and network bandwidth, it may take up to several days or more until the
decommissioning process has completed for all of the node's data. Until all of the decommissioning
node's data has been streamed to other nodes, some objects will have fewer than your configured num-
ber of replicas or erasure coded fragments available within the live system.

6.5.1. Preparing to Remove a Node
Take these actions to prepare to remove a node from your cluster:

1. Make sure that removing the node won't leave your cluster with fewer nodes than your configured
storage policies require.

More detail

For example if 4+2 erasure coding is being used in your system you cannot reduce your cluster size to

443

Chapter 6. Node and Cluster Operations

fewer than 6 nodes, even temporarily. Or for another example if you have a storage policy that for each
object places 3 replicas in DC1 and 3 replicas in DC2, do not reduce the number of nodes in either data
center to fewer than 3.

If you're not certain what storage policies currently exist in your system, check the CMC's Storage
Policies page.

The CMC's Uninstall Node function checks and enforces this requirement and will not let you remove a
node if doing so would leave fewer than the required number of nodes in your cluster. If your cluster is
currently at the minimum size required by your storage policies and you want to remove a node:

l If the node you want to remove is live you can first add a new node to your cluster by following
the complete procedure for "Adding Nodes" (page 420) (including rebalancing); and then after
that you will be able to remove the node that you want to remove.

l If the node you want to remove is dead contact Cloudian Support for guidance.

2. Make sure that you have sufficient available storage capacity on the other nodes in your cluster.
The data from the removed node will be redistributed to the remaining nodes that are encompassed by
the same storage policies as the removed node.

More detail

Each remaining node must have available storage capacity to take on some of the data from the
removed node. You can review your cluster and per-node storage space availability in the CMC's Capa-
city Explorer page.

Note If any of the other nodes are in the "stop-write" condition -- or if any disks on a node are
in stop-write condition -- at a time when you decommission a different node from your system,
the decommissioning process overrides the stop-write restriction on the node(s) or disk(s)
where it exists in order to stream to all nodes and disks in the cluster their share of data from the
decommissioned node. Consequently, disks that were nearly full before a decommissioning
operation may become completely full during the decommission operation, resulting in stream
job failures once the disks can accept no more data.

To avoid this, before removing a node from your cluster make sure there is plenty of space on all
the remaining nodes and disks to absorb the data from the node you intend to remove. If you
want to remove a node from your cluster at a time when some disks on the other nodes are
nearly full, consult with Cloudian Support.

3. In the Node Advanced page, from the Maintenance command type group, execute the autorepair com-
mand with the Disable option to temporarily disable the automated repair feature in the service
region in which you are removing a node.

More detail

The target node for the command can be any node in the region. Leave the "Type" option unselected so
that all automated repair types are disabled. This will prevent any new schedule-based auto-repairs or
proactive repairs from launching during the node removal process.

444

6.5. Removing a Node

4. In the Operation Status page,make sure there are no rebalance operations or other operations cur-
rently in progress in the service region.

More detail

If any operations are in progress, wait until the operations complete before removing a node from your
cluster. The CMC's Uninstall Node function will not let you remove a node if a major operation such as
rebalance, repair, or cleanup is running in the service region.

Note If you don't want to wait for an in-progress repair or cleanup of a node to complete you
have the option of terminating the operation. To do so, go to the Node Advanced page and for
that node execute hsstool repair or hsstool repairec or hsstool cleanup or hsstool cleanupec
with the "stop" option selected. Note that an hsstool rebalance operation does not support a stop
option and cannot be terminated while in progress.

5. In the Repair Status page,make sure there are no proactive repairs currently in progress in the ser-
vice region.

More detail

If any proactive repairs are in progress, wait until they complete before removing a node from your
cluster. The CMC's Uninstall Node function will not let you remove a node if a proactive repair is

445

Chapter 6. Node and Cluster Operations

running in the service region.

Note If you don't want to wait for an in-progress proactive repair of a node to complete you have
the option of terminating the repair. To do so, go to the Node Advanced page and for that node
execute hsstool proactiverepairq with the "stop" option selected.

6. If the node you want to remove is the active Puppet Master node, follow the instructions to "Manually
Fail Over the Puppet Master Role from the Primary to the Backup" (page 469).

More detail

If you're not sure whether the node you want to remove is the Puppet Master host, check the CMC's
Cluster Information page. That page also shows which host is the Puppet Master backup host.

446

6.5. Removing a Node

Note Any other specialized services on the node -- such as Redis or Redis Monitor -- will be
automatically moved to other nodes in the cluster by the CMC's Uninstall Node function.

7. In the Node Advanced page, from the Info command type group, execute the status command on any
healthy node to verify that both the Cassandra Service and the HyperStore Service are up on all
nodes in the region.

More detail

The target node for the command can be any healthy node in the same service region as the node you
want to remove -- the command returns status information for the cluster as a whole.

447

Chapter 6. Node and Cluster Operations

a. In the command response, for the node that you want to remove check the status of the Cas-
sandra Service (in the "Cassandra" column) and the HyperStore Service (in the "Hss" column).

l If the Cassandra status and the HyperStore Service status are both Up, the data redis-
tribution that will be required in the cluster when you remove the node will be executed
by a decommissioning process that will be automatically invoked by the CMC's Uninstall
Node function.

l If the Cassandra status is Down or unreachable ("?"), data redistribution by decom-
missioning is not supported. Instead, at the end of the remove node procedure you will
need to run repair on all the remaining nodes in order to redistribute data in the cluster.
Details are in the procedure below.

Note If possible, start Cassandra on the node that you want to remove, so that the
Uninstall Node function can automatically implement a decommissioning process
and you won't have to perform repairs.

l If Cassandra is Up but HyperStore Service is Down or unreachable, the CMC's Unin-
stall Node function will abort if you try to run it. Before trying to remove the node, start the
HyperStore Service on the node (or resolve the network access problem if there is one).

b. For all the other nodes confirm that Cassandra and the HyperStore Service are Up. The CMC's
Uninstall Node function will abort if Cassandra or the HyperStore Service are Down or unreach-
able on any other node in the cluster. If those services are down on any of the other nodes, start
the services (or resolve the network access problem if there is one) before trying to remove a
node.

6.5.2. Removing a Node
1. If you have not already done so, log in to a CMC instance on a node other than the node that you are

going to remove, but in the same service region as the node that you are going to remove.

https://<IP_address_of_node_other_than_removal_node>:8443/Cloudian

2. In the CMC's Node Advanced page, from Command Type drop-down list select Start Maintenance
Mode. For the target node select the node that you want to remove from the cluster.

448

6.5. Removing a Node

Then click Execute. This directs the rest of the cluster to stop sending S3 requests to the specified node.

3. In the Node Advanced page, from Command Type drop-down list select Uninstall Node. For the "Node
to Uninstall" list select the node that you want to remove from the cluster.

Then click Execute. After you confirm that you want to proceed, the operation is initiated.

4. Use the Operation Status page to periodically check on the progress of the Uninstall Node operation.
To pop up a detailed status report click View next to the summary status line.

449

Chapter 6. Node and Cluster Operations

If the node you are removing is live, the Uninstall Node operation will include decommissioning the
node -- streaming copies of its data to the remaining nodes in the cluster -- and this may take up to sev-
eral days or more to complete. If the node you are removing is dead, the Uninstall Node operation will
be much briefer.

Note If you want to remove multiple nodes, wait until the Uninstall Node operation completes
for one node before you start to uninstall the next node. The system does not support unin-
stalling multiple nodes concurrently.

5. After the Operation Status page shows that the status of the Uninstall Node operation is Completed,
go to the Node Status page and confirm that the removed node no longer appears in the "Host" drop-
down list.

6. If the node you removed was "dead" -- meaning that the node's Cassandra Service was down or
unreachable when you checked it (as described in "Preparing to Remove a Node" (page 443)) -- you
must repair each of the remaining nodes in the region.

More detail

If the node you removed was "dead", take the following actions to recreate the removed node's data on
the remaining nodes in the cluster. (If the node you removed was "live" -- in which case the Uninstall
Node operation executed a decommissioning process -- these actions are not needed and you can
jump down to Step 7.)

Note If you have removed a dead node from your cluster as a precursor to adding a new node
to your cluster -- if you wish you can defer the time-consuming repair operations called for below
until after you have added the new node(s). If that's the case, you can now perform the "Adding
Nodes" (page 420) procedure, and that procedure indicates the point at which you should ini-
tiate the deferred repairs. If you have removed a dead node and are not adding a new node, per-
form the repair now as described below.

450

6.5. Removing a Node

From the Node Advanced page, run hsstool repair on each of the remaining nodes in the service
region. When repairing each node, use the allkeyspaces option (so as to repair Cassandra metadata
as well as S3 object data) and also the -pr option (this makes for more efficient repairs when repairing
multiple nodes). Leave the -l and -m options selected, as they are by default. Since you are using the -
pr option you can run repair on multiple nodes concurrently (in the GUI you will have to execute the
repair command for each node individually, but you do not need to wait for the repair operation on one
node to complete before you execute the command on the next node).

Also, if you have any erasure coded object data in your system, from the Node Advanced page run
hsstool repairec on one node in each HyperStore data center in the region. It doesn't matter which
node you run it on, as long as you do it for one node in each DC in the region. (Note that you do not
need to wait for the in-progress hsstool repair operations to finish before launching hsstool repairec --
it's OK to run hsstool repairec and hsstool repair concurrently.)

Use the Operation Status page to track the progress of all repairs. After all repairs have completed pro-
ceed to Step 7.

451

Chapter 6. Node and Cluster Operations

Note Because the repairec operation repairs erasure coded data on all hosts in a data center,
it's potentially a very long running operation. In a large cluster with high data volume it may take
multiple weeks to complete.

7. In the Node Advanced page, from the Maintenance command group execute the autorepair command
with the Enable option to re-enable the HyperStore automated repair features in the service region.
The target node can be any node in the region. Leave the "Type" option unselected so that all repair
types are enabled. This also re-enables proactive repair.

This completes the procedure for removing a node from your cluster.

Note that the CMC's Uninstall Node function deletes the node from the HyperStore cluster configuration and
removes all HyperStore software from the node. It does not delete the Cassandra metadata or HyperStore
object data from the node.

IMPORTANT ! If the node was "live" when you removed it -- so that the Uninstall Node operation
included a decommissioning process -- make sure that in the Operation Status page the Uninstall
Node operation shows as having completed successfully with no errors, before you consider manually
deleting the data that remains on the removed node. If the node was "dead" when you removed it -- so
that you had to subsequently run repair operations on the remaining nodes in the cluster -- make sure
that in the Operation Status page the Uninstall Node operation and also all those repair operations
show as having completed successfully with no errors, before you consider manually deleting the data
that remains on the removed node.

6.6. Replacing a Node
If you want to replace a dead node (for example a node that has failed due to hardware problems) with a new
node:

l First perform the procedure for "Removing a Node" (page 443) (for the dead node).

452

6.7. Restoring a Node That Has Been Offline

Note If your current number of nodes is at the minimum required by your storage policies, the
system will not allow you to remove the node in the standard way. If this is your circumstance --
you have the minimum number of nodes required by your storage policies and one of those
nodes is dead -- please contact Cloudian Support for guidance.

l Then perform the procedure for "Adding Nodes" (page 420) (for the new node).

If you want to replace a live node (a node on which the Cassandra Service and HyperStore Service are run-
ning and reachable) with a new node:

l First perform the procedure for "Adding Nodes" (page 420) (for the new node).

l Then perform the procedure for "Removing a Node" (page 443) (for the live node that you want to
remove).

6.7. Restoring a Node That Has Been Offline
When a node has been down or inaccessible for a while and then you bring it back online, the HyperStore sys-
tem automatically performs the most important actions necessary for restoring the node to a correct and up-to-
date condition:

l HyperStore will use proactive repair to automatically populate the node with any data that the node is
responsible for storing but that is missing due to the node having been offline.

IMPORTANT ! The longest node outage that a proactive repair can cover for is four hours (by
default configuration). If a node is down for more than four hours you need to take manual
steps to fully repair it. For detail see "6.7.1 Repairing a Node That's Been Down for Longer
than the Proactive Repair Limit" (page 454).

l If the node that you are restoring is a Redis slave node (for either the Redis Credentials DB or the
Redis QoS DB), when you bring the node back online it will automatically sync with the Redis master
node to get the most current data.

If you made any configuration changes to your cluster while the node was down, from the Puppet master
node do a Puppet push out to the cluster after the node is back up.

Optionally, you can run a cleanup on the node in order to remove from the node any data that should no
longer be there. This would apply, for example, if service users deleted some of their stored objects from the
system while the node was down. In this case after being brought back into service the node will still be storing
replicas or erasure coded fragments of those objects, resulting in wasted use of disk space. Cleaning the node
removes this "garbage" data. For cleanup command details see "hsstool cleanup" (page 644) (if you have
erasure coded data in your system use the command's -a option so that it cleans erasure coded data as well as
replica data).

Note Before cleaning a node you should wait until any proactive repair that’s automatically run on the
node has completed. You can check this on the CMC's Repair Status page. Wait until the node’s
status displays as "All Clear", and then you can clean the node.

Also optionally, you can return to the node any specialized service role that the node was playing before it
went down. If the node had been acting as a "master" or "primary" within one of the HyperStore system’s

453

Chapter 6. Node and Cluster Operations

specialized services, then when the node went offline that role would have failed over to a different node. If you
want you can return the master or primary role to the restored node after it’s back online — though it is not
necessary to do so.

How going down and then being brought back up affects a node's specialized service roles...

The table below shows how having been down impacts a node’s specialized service role(s).

If before going down the node
was… Then while the node was down that role… And when brought back

online the node is now…

Redis Credentials master
Automatically failed over to a Redis Cre-
dentials slave

Redis Credentials slave

Redis QoS master
Automatically failed over to a Redis QoS
slave

Redis QoS slave

Redis Monitor primary
Automatically failed over to the Redis Mon-
itor backup

Redis Monitor backup

Cron job primary
Automatically failed over to the Cron job
backup

Cron job backup

Puppet Master primary
An operator may (or may not) have manu-
ally triggered a fail-over to the Puppet
Master backup

Still Puppet Master
primary, or else Puppet
Master backup

To see what specialized service role(s) a restored node is currently playing, go to the CMC's Cluster Inform-
ation page.

If you want to change the node’s current role assignment(s), see the instructions for "Change Node Role
Assignments" (page 457).

6.7.1. 6.7.1 Repairing a Node That's Been Down for Longer than the Pro-
active Repair Limit
In mts.properties.erb the setting "hyperstore.proactiverepair.queue.max.time" (page 579) sets the max-
imum time for which proactive repair jobs can be queued for a node that is unavailable. The default is 4 hours.
This time limit prevents Cassandra from being over-loaded with metadata relating to proactive repair, and
ensures that proactive repair is used only for its designed purpose, which is to repair object data from a rel-
atively brief time period.

If a node is unavailable for longer than hyperstore.proactiverepair.queue.max.time, then the metadata
required for implementing proactive repair on the node will stop being written to Cassandra, and an alert will
display in the CMC's Alerts page. When the node comes back online you will need to:

1. Monitor the automatic proactive repair that initiates on the node when the node starts up, until the pro-
active repair completes. You can check the CMC's Repair Status page periodically to see whether pro-
active repair is still running on the node that you've brought back online. This proactive repair will repair
the new and changed objects from during the period when proactive repair metadata was still being
written to the Cassandra for the node.

2. After proactive repair on the node completes, manually initiate a full repair of the node. For information
on manually initiating a repair see hsstool repair and hsstool repairec. This will repair the new and
changed objects from the period after the proactive repair queueing time maximum was reached and
before the node came back online.

454

6.8. Changing a Node's IP Address

6.8. Changing a Node's IP Address
Changing the IP address of an existing node in your cluster would have many repercussions for the cluster and
is not recommended. There is no standardized, supported way of changing a HyperStore node's IP address
through the CMC or through command line tools. For more detail on this topic contact Cloudian Support.

6.9. Backing Up and Restoring a Cluster
Subjects covered in this section:

l Introduction (immediately below)

l "Backing Up an Entire Cluster" (page 455)

l "Restoring an Entire Cluster" (page 456)

This procedure is for backing up and restoring an entire HyperStore cluster (i.e. an entire HyperStore service
region). This procedure should not be used for partial backups and restores.

IMPORTANT ! Make sure you have enough space for the backup. If you back up on to nodes in your
HyperStore cluster, this will double disk usage within the cluster.

Note Throughout this procedure, it’s assumed that you have used the default installation directories for
HyperStore binaries. If not, adjust the command paths stated in the procedure.

6.9.1. Backing Up an Entire Cluster

Note Daily at 11PM HyperStore implements a Redis cron job (configured in /etc/cron.d/redis-crontab)
that invokes a script (/opt/redis/redisBackup) on your Redis Credentials master node and on your
Redis QoS master node. The script backs up the Redis Credentials database into a /var/lib/redis/dump-
credentials.rdb file and backs up the Redis QoS database into a /var/lib/redis/dump-qos.rdb file. Prior
to doing so it first moves the previous day’s dump-credentials.rdb or dump-qos.rdb file into a /var/lib/re-
dis/backup directory, compresses the file, and appends a date-time stamp to its name (for example
/var/lib/redis/backup/dump-credentials.rdb.2019111616.gz). In the /var/lib/redis/backup directory, files
are rotated such that the most recent seven days worth of Redis backups are retained and older
backups are deleted.

So you always have access to Redis backup files that are generated at 11PM daily (more specifically,
the backup starts at 11PM -- it may take some time to complete). However, if you want a more current
Redis backup you can follow steps 1a and 1b below to re-generate the dump-credentials.rdb and
dump-qos.rdb files.

Logging output from the redisBackup script runs is written to /var/log/redis/redisBackup.log. (A separate
log file cloudian-redisBackup.log merely records information regarding the launching of the backup
script by cron.d.)

1. Back up the Redis Credentials and Redis QoS databases.

455

Chapter 6. Node and Cluster Operations

a. On the Redis Credentials master node, use the Redis CLI to perform a BGSAVE operation:

/opt/redis/redis-cli -h <hostname> -p 6379 BGSAVE

The above command will update the dump-credentials.rdb file in the Redis data directory
(/var/lib/redis by default).

Note The BGSAVE operation saves the database in the background. To check when the
save is done you can use the Redis CLI LASTSAVE command, which returns the Unix
time of the most recently completed save.

b. On the Redis QoS master node, use the Redis CLI to perform a BGSAVE operation:

/opt/redis/redis-cli -h <hostname> -p 6380 BGSAVE

The above command will update the dump-qos.rdb file in the Redis data directory.

c. Place a copy of the dump-credentials.rdb, dump-qos.rdb, appendonly_cred.aof, and appen-
donly_qos.aof files in a safe place.

2. Back up Cassandra and Hyperstore data on each of your HyperStore nodes, using the third party
backup tool of your choice:

l For Cassandra data, on each node:

o First flush Cassandra:

/opt/cassandra/bin/nodetool –h <hostname> flush

o Then with your third party tool, back up the Cassandra data directory. (To check which dir-
ectory is the Cassandra data directory, see the configuration setting common.csv: "cas-
sandra_data_directory" (page 535)).

l For HyperStore data, on each node: With your third party tool, back up the HyperStore data dir-
ectories. (To check which directories are the HyperStore data directories, see the configuration
setting common.csv: "hyperstore_data_directory" (page 517)).

3. Back up HyperStore binaries and configuration files:

l On the Puppet master node:

o /etc/cloudian-<version>-puppet for HyperStore version 5.2 or later, or /etc/puppet for ver-
sions older than 5.2

o The current HyperStore installation staging directory (where the cloudianInstall.sh tool is)

l On each of your HyperStore nodes:

o /opt/cloudian

o /opt/cassandra

o /opt/redis

o /opt/tomcat

o /opt/cloudianagent

o /opt/dnsmasq

6.9.2. Restoring an Entire Cluster
This restore procedure assumes that the restored cluster is the same configuration as what you backed up —
i.e. the same IP addresses and mount points.

456

http://redis.io/commands/bgsave
http://redis.io/commands/lastsave
http://redis.io/commands/bgsave

6.10. Change Node Role Assignments

1. Restore HyperStore binaries and configuration files.

l On the Puppet master node:

o /etc/cloudian-<version>-puppet for HyperStore version 5.2 or later, or /etc/puppet for ver-
sions older than 5.2

o The HyperStore installation staging directory (where the cloudianInstall.sh tool is)

l On each of your HyperStore nodes:

o /opt/cloudian

o /opt/cassandra

o /opt/redis

o /opt/tomcat

o /opt/cloudianagent

o /opt/dnsmasq

2. Restore Cassandra and HyperStore data directories on each of your HyperStore nodes.

3. Restore the Redis Credentials and Redis QoS databases.

6.10. Change Node Role Assignments
In a HyperStore cluster there are certain specialized service roles that are assigned to some nodes and not to
others. When you install a HyperStore system, the installer assigns these roles automatically and in a way
that's appropriate to your cluster topology. The roles are implemented in such a way that no node constitutes a
single point of failure.

For a summary of where specialized service roles are currently assigned in your cluster, go to the CMC's
Cluster Information page.

If you wish you can change node role assignments by using the HyperStore installer on the Puppet master
node. The installer supports the role assignment operations listed below.

Note Each of the role assignment change operations listed below entails doing a Puppet push and a
restart of the affected service (as described in the instructions for each operation). If you need to per-
form multiple of these role assignment change operations, do them one operation at a time and with a
Puppet push and affected service restart at the end of each operation. Do not perform multiple different
role assignment change operations while deferring the Puppet push and service restart.

l "Move the Redis Credentials Master or QoS Master Role" (page 458)

l "Move or Add a Redis Credentials Slave or Redis QoS Slave" (page 461)

l "Move the Cassandra Seed Role" (page 462)

l "Reduce or Change the List of CMC Hosts" (page 464)

l "Move the Redis Monitor Primary or Backup Role" (page 465)

l "Move the Cron Job Primary or Backup Role" (page 466)

l "Move the Puppet Master Primary or Backup Role" (page 468)

l "Change Internal NTP Servers or External NTP Servers" (page 471)

457

Chapter 6. Node and Cluster Operations

6.10.1. Move the Redis Credentials Master or QoSMaster Role
The Redis Credentials master role is assigned to just one node in your entire HyperStore system (the system
has just one master even if there are multiple service regions). The Redis QoS master role is assigned to one
node in each of your service regions (each region has its own master). The HyperStore installer automatically
makes these role assignments when you install your system.

If you wish you can move the Redis Credentials master role to a current Redis Credentials slave node, or move
a Redis QoS master role to a current Redis QoS slave node, by following the procedure in this section. If you
do so, the node that had been master will automatically become a slave.

Note The system does not support moving the master role to a node that is not currently a slave.

6.10.1.1. Preparing to Move the Redis Master Role

For safety, before moving a Redis master role make a backup copy of the current database from the master.
You can do so by using the Redis CLI command BGSAVE as described below.

To back up a Redis Credentials master database:

/opt/redis/redis-cli -h <hostname_of_master_node> -p 6379 BGSAVE

The above command will update the dump-credentials.rdb file in the Redis data directory (/var/lib/redis by
default).

To back up a Redis QoS master database:

/opt/redis/redis-cli -h <hostname_of_master_node> -p 6380 BGSAVE

The above command will update the dump-qos.rdb file in the Redis data directory (/var/lib/redis by default).

Note The BGSAVE operation saves the database in the background. To check to see whether the
save is completed yet you can use the Redis CLI LASTSAVE command, which returns the Unix time of
the most recently completed save.

6.10.1.2. Moving the Redis Master Role

1. Submit a Redis CLI info command to the Redis slave node to which you want to move the master role.
Confirm that the slave node returns the following status information:

l role is slave

l master_host is the current master

l master_link_status is up

l master_sync_in_progress is 0

When submitting the Redis CLI command, use port 6379 if the target node is a Redis Credentials
slave, or use port 6380 if the target node is a Redis QoS slave.

For example, if the Redis Credentials master role is currently on host "cloudian-node2" and you
want to move it to host "cloudian-node7" where there is currently a Redis Credentials slave:

458

http://redis.io/commands/bgsave
http://redis.io/commands/lastsave

6.10. Change Node Role Assignments

/opt/redis/redis-cli -h cloudian-node7 -p 6379 info | egrep

"role|master_host|master_link_status|master_sync_in_progress"

role:slave

master_host:cloudian-node2

master_link_status:up

master_sync_in_progress:0

2. Dynamically switch the master role to the slave:

Log into the CMC and go to Cluster → Nodes → Advanced. Select Command Type "Redis Monitor
Operations", then select a Cluster type (Credentials or QoS) and select Command "setClusterMaster".

For "Hostname" select the host to which you want to move the Redis master role. The drop-down list will
show only nodes that are currently slaves within the Cluster type that you selected.

After making your selections, click Execute. The chosen slave will become the master, while the master
becomes a slave. The change happens immediately upon command execution.

3. Make the switch of the master and slave permanent by updating your system configuration:

a. On the Puppet master node, change into the installation staging directory and then launch the
HyperStore installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Pup-
pet master node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the
same regardless of whether it was launched from the HSH command line or the OS command
line.

b. From the installer’s main menu, select "Advanced Configuration Options". Then from the
Advanced Configuration Options menu select "Change server role assignments". This displays
the Change Server Role Assignments menu.

459

Chapter 6. Node and Cluster Operations

c. From the Change Server Role Assignments menu select the option for the master that you want
to move — Credentials master or QoS master.

d. At the prompt indicate the host to which you want to move the Redis master role. This should be
the same host that you checked in Step 1.

e. After completing the interaction for specifying the new master host, return to the Change Server
Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm
that you want to apply the updated configuration to the Puppet master.

f. Return to the installer’s main menu, then choose "Cluster Management" → "Push Configuration
Settings to Cluster" and follow the prompts. This triggers Puppet to push your configuration
change out to the cluster.

g. Return to the "Cluster Management" menu, then choose "Manage Services" and restart the fol-
lowing services:

l The Redis service for which you’ve changed the master role (either Redis Credentials or
Redis QoS)

l Redis Monitor

l S3 Service (restarting this service also results in a restart of the Admin Service)

After these services have successfully restarted you can exit the installer.

To verify your change, log into the CMC and go to the Cluster Information page. Review the service inform-
ation section to confirm that the Redis master that you moved is now where you want it to be.

Now, the former Redis slave has been promoted to master and the former master has been demoted to slave.

IMPORTANT ! If you want to remove the demoted host (the former master that’s now a slave) from
your cluster, you must first move its slave role to a different host in your cluster. For instructions see
"Move or Add a Redis Credentials Slave or Redis QoS Slave" (page 461).

460

6.10. Change Node Role Assignments

6.10.2. Move or Add a Redis Credentials Slave or Redis QoSSlave
By default the HyperStore installer deploys two Redis Credentials slaves and one Redis QoS slave per data
center. The system supports moving a slave from its current host to a different host -- for example, moving a
Redis Credentials slave to a host that is not currently running the Redis Credentials service. It also supports
adding a new Redis Credentials or QoS slave rather than moving one — so that you end up with more slaves
than when you started.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

3. From the Change Server Role Assignments menu select the option for Credentials slave nodes or the
option for QoS slave nodes.

4. The installer prompts you to specify a comma-separated list of all the hosts on which you want slaves to
run. The installer’s prompt text indicates [in brackets] which hosts are the current slaves. You can use
your entry at the prompt to either move a slave or add a slave.

461

Chapter 6. Node and Cluster Operations

Example of moving a slave:

Enter a comma separated list of Credentials slave hosts in region1's

DC1 data center [deneb,vega]: deneb,altair

Example of adding a slave:

Enter a comma separated list of Credentials slave hosts in region1's

DC1 data center [deneb,vega]: deneb,vega,altair

Note If your HyperStore system has multiple data centers, the installer will prompt you sep-
arately for each data center’s slave host list. If for some data centers you want to continue using
the same slave(s) you can just press enter at the prompt rather than entering a host list.

5. After completing the interaction for specifying the slave locations, return to the Change Server Role
Assignments menu and select "Review cluster configuration". Then at the prompt confirm that you want
to apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu, then choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster.

7. Return to the "Cluster Management" menu, then choose "Manage Services" and restart the following
services:

l Redis Credentials or Redis QoS (whichever service you moved or added a slave for)

l Redis Monitor

l S3 Service (restarting this service also results in a restart of the Admin Service)

After these services have successfully restarted you can exit the installer.

To verify your change, log into the CMC and go to the Node Status page. Review the service status inform-
ation for the node(s) on which you’ve located the slave(s). Among the listed services on the node(s) should be
"Redis Cred" (for a Redis Credentials slave) or "Redis QoS" (for a Redis QoS slave). The absence of "(Master)"
appended to the service name indicates it’s a slave instance, not a master.

6.10.3. Move the Cassandra Seed Role
Cassandra "seed" nodes serve to bootstrap the Gossip process for new nodes when you add new nodes to
your cluster. Gossip is the peer-to-peer communication protocol by which Cassandra nodes regularly
exchange state information. The recommended configuration is to have three of your Cassandra nodes act as
"seed" nodes in each data center in which you have deployed HyperStore. The HyperStore installer auto-
matically makes these role assignments when you install your system.

If you wish you can change the list of Cassandra seed nodes for your system, by following the steps below.

Note Cassandra runs on every one of your HyperStore nodes. So any of your nodes can play the
"seed" role. But bear in mind the recommendation that you have three seed nodes per data center. For
performance reasons it's not advisable to have more seed nodes than this.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

462

6.10. Change Node Role Assignments

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

3. From the Change Server Role Assignments menu select "Cassandra seed nodes".

4. At the prompt enter a comma-separated list of hosts that you want to serve as Cassandra seed nodes. If
you want to keep the same host just press Enter rather than specifying a different host. (If you have a
multi-region system, you will be prompted for a list of Cassandra seed nodes for each region.)

5. After completing the interaction for specifying NTP Server Configuration, return to the Change Server
Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm that you
want to apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster.

7. Return to the "Cluster Management" menu, then choose "Manage Services" and restart the Cassandra
service. After the Cassandra service has successfully restarted you can exit the installer.

To verify your change, you can look at the /opt/cassandra/conf/cassandra.yaml configuration file on any one of
your nodes and confirm that the "seeds:" parameter is set to the list of hosts that you specified.

463

Chapter 6. Node and Cluster Operations

6.10.4. Reduce or Change the List of CMCHosts
By default the Cloudian Management Console (CMC) is installed and runs on all of your HyperStore hosts. If
you wish, after initial deployment of your system you can use the installer to specify a list of HyperStore hosts
on which to have the CMC run, rather than having it run on all nodes.

below.

Note Cassandra runs on every one of your HyperStore nodes. So any of your nodes can play the
"seed" role. But bear in mind the recommendation that you have three seed nodes per data center. For
performance reasons it's not advisable to have more seed nodes than this.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

464

6.10. Change Node Role Assignments

3. From the Change Server Role Assignments menu select "CMC nodes".

4. At the prompt enter a comma-separated list of hosts on which you want the CMC to run.

5. After completing the interaction for specifying your CMC host list, return to the Change Server Role
Assignments menu and select "Review cluster configuration". Then at the prompt confirm that you want
to apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster.

7. Return to the "Cluster Management" menu, then choose "Manage Services" and restart the CMC ser-
vice. After the CMC service has successfully restarted you can exit the installer.

6.10.5. Move the Redis Monitor Primary or Backup Role
The Redis Monitor runs on two nodes in your cluster, with one being the primary Redis Monitor instance and
the other being a backup instance. In the event that the Redis Monitor primary goes offline the Redis Monitor
backup automatically detects this and takes over as the active Redis Monitor.

Note In a multi- data center HyperStore system, the Redis Monitor backup should remain in the same
data center as the Redis Monitor primary, and this should be the same data center as where the Redis
Credentials master is located.

The system supports moving the primary or backup Redis Monitor to a different host as described below.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

465

Chapter 6. Node and Cluster Operations

3. From the Change Server Role Assignments menu select the option for the Redis Monitor instance that
you want to move (Primary Redis Monitor or Backup Redis Monitor).

4. At the prompt specify the host to which you want to move the Redis Monitor instance.

5. After completing the interaction for specifying the new Redis Monitor location, return to the Change
Server Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm
that you want to apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster.

7. From the "Cluster Management" menu choose "Manage Services" and restart the Redis Monitor ser-
vice. After the Redis Monitor successfully restarts you can exit the installer.

To verify your change, log into the CMC and go to the Cluster Information pagee. Review the service inform-
ation section to confirm that your Redis Monitor primary and backup hosts are what you want them to be.

6.10.6. Move the Cron Job Primary or Backup Role
Certain HyperStore system maintenance tasks are implemented by cron jobs that run on a regular sched-
ule, as configured by a crontab. When your HyperStore system is installed the install script designates one
node to host the crontab configuration and run the cron jobs, and a second node to serve as a backup. In the
event that the primary cron job host goes offline (or if crond goes down) the backup host automatically takes
over as the active cron job host.

The HyperStore Monitoring Data Collector resides on the same primary host and backup host as the cron
jobs. If the cron jobs role automatically fails over from the primary host to the backup host, the Monitoring Data
Collector role also fails over to the backup.

466

6.10. Change Node Role Assignments

The system supports moving the primary cron job role (and with it, the primary Monitoring Data Collector role)
to a different host as described below. The same procedure also supports moving the backup cron job role
(and with it, the backup Monitoring Data Collector role) to a different host.

Note Do not assign the primary cron job role to the same host as your Puppet Master role. If the cron
job primary and the Puppet Master are on the same host and that host goes down, automated fail-over
from the cron job primary to the cron job backup will not work.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

3. From the Change Server Role Assignments menu select "Cronjob/Cluster Monitor node".

4. At the prompts specify your desired primary host and backup host for the cron jobs / cluster monitor.

467

Chapter 6. Node and Cluster Operations

5. After completing the interaction for specifying cron job hosts, return to the Change Server Role Assign-
ments menu and select "Review cluster configuration". Then at the prompt confirm that you want to
apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. When Puppet pushes the current configuration settings to the cluster it
will also automatically restart cron.d on the affected nodes. You do not need to manually restart any ser-
vices..When the Puppet push completes you can exit the installer.

To verify your change, log into the CMC and go to the Cluster Information page. Review the service inform-
ation section to confirm that your System Monitoring/Cronjob primary and backup hosts are what you want
them to be.

6.10.7. Move the Puppet Master Primary or Backup Role
When you install your HyperStore system, you choose the node that you want to serve as the Puppet Master for
cluster configuration management, and you run the installer on that node. The installer configures that node to
be the primary Puppet Master, and also configures a second node to be the Puppet Master backup. Any edits
that you make to configuration templates on the Puppet Master primary are automatically sync’d to the Puppet
Master backup. If the primary goes down, you can manually fail over the active Puppet Master role to the
backup host.

There are two different operations that you can perform in regard to the Puppet Master role:

Move the Puppet Master Backup
In this scenario your primary Puppet Master is fine, and you’re simply looking to relocate the Puppet Master
backup role to a different host than it is currently on.

Note You can find out which host is currently the Puppet Master backup host in the CMC's Cluster
Information page.

1. On the Puppet Master primary host, change into the installation staging directory and then launch the
HyperStore installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

468

6.10. Change Node Role Assignments

3. From the Change Server Role Assignments menu select "Installer/Config Manager backup node".

4. At the prompt specify the host to which you want to move the Puppet Master backup role.

5. After completing the interaction for specifying the Puppet Master backup host, return to the Change
Server Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm
that you want to apply the updated configuration to the Puppet master.

6. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster. There is no need to restart any services.

7. Exit the installer, wait at least one minute, then log into the CMC and go to the Cluster Information
page. Review the service information section to confirm that your Puppet Master primary and backup
hosts are what you want them to be.

Manually Fail Over the Puppet Master Role from the Primary to the Backup
In this scenario there is a problem with your primary Puppet Master, and you want the backup Puppet Master to
become active.

IMPORTANT ! For this procedure you log into the current Puppet Master backup host and imple-
ment the whole procedure from that host. You can find out which host is currently the Puppet Master
backup host in the CMC's Cluster Information page.

1. On the Puppet Master backup host, change into the installation directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Start or stop Puppet daemon".

469

Chapter 6. Node and Cluster Operations

3. At the prompt specify that you want to stop Puppet. This stops any Puppet daemons that are currently
running in your cluster.

4. After the installer indicates that Puppet has been stopped, return to the Advanced Configuration
Options menu and select "Remove existing Puppet SSL certificates". This will remove existing Puppet
SSL certificates, with no further prompts.

5. Return to the Advanced Configuration Options menu and select "Change server role assignments".
This displays the Change Server Role Assignments menu.

6. From the Change Server Role Assignments menu select "Installer/Config Manager backup node".

7. At the prompt specify the host to which you want to move the Puppet Master (config manager) backup
role. You need a new backup because you are converting the original backup into the primary (by run-
ning through this procedure using the installer on the original backup -- this has the effect of turning it
into the new primary).

8. After completing the interaction for specifying the Puppet Master backup host, return to the Change
Server Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm
that you want to apply the updated configuration to the Puppet master.

9. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. This triggers Puppet to push your configuration change out to the
cluster. Then do "Cluster Management" → "Manage Services" and restart the CMC.

10. Optionally, if you want to leave the Puppet daemons running, from the installer’s main menu select
"Advanced Configuration Options". Then from the Advanced Configuration Options menu select "Start
or stop Puppet daemon", and choose to start the daemons. After the daemons have successfully started
you can exit the installer.

To verify your change, log into the CMC and go to the Cluster Information page. Review the service inform-
ation section to confirm that your Puppet Master primary and backup hosts are what you want them to be. The
former backup (from which you implemented the above procedure) should now be the primary and the new
backup should be as you specified during the procedure.

470

6.10. Change Node Role Assignments

Note If the Puppet Master primary is now on the same host as the cron job primary role you should
move the cron job primary role to a different host. If the cron job primary and the running Puppet
Master are on the same host and that host goes down, automated fail-over from the cron job primary to
the cron job backup will not work.

6.10.8. Change Internal NTPServers or External NTPServers
When you install your HyperStore cluster, for each of your data centers the installation script automatically con-
figures four of your HyperStore nodes to act as internal NTP servers for the cluster. These internal NTP servers
synchronize with external NTP servers. By default the set of external servers is:

l 0.centos.pool.ntp.org

l 1.centos.pool.ntp.org

l 2.centos.pool.ntp.org

l 3.centos.pool.ntp.org

Note For more on how HyperStore automatically configures an NTP set-up for the cluster, see "NTP
Automatic Set-Up" (page 598)

As described below, the system supports changing the list of internal NTP servers (for data centers in which
you have more than four HyperStore nodes) and/or changing the list of external NTP servers.

1. On the Puppet master node, change into the installation staging directory and then launch the Hyper-
Store installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer’s main menu, select "Advanced Configuration Options". Then from the Advanced Con-
figuration Options menu select "Change server role assignments". This displays the Change Server
Role Assignments menu.

471

Chapter 6. Node and Cluster Operations

3. From the Change Server Role Assignments menu select "NTP Server Configuration".

4. At the first prompt specify the HyperStore hosts that you want to act as the internal NTP servers, as a
comma-separated list. You must use host names, not IP addresses. If you want to keep the same hosts
that the system is currently using, just press Enter rather than specifying different hosts.

Note If you have multiple HyperStore data centers you will be prompted separately for the
internal NTP host list for each data center.

5. At the next prompt specify the external NTP servers with which you want the internal NTP servers to syn-
chronize, as a comma-separated list. For these external servers you can use either FQDNs or IP
addresses. If you want to keep the same external servers that the system is currently using, just press
Enter rather than specifying a different server list.

6. After completing the interaction for specifying NTP Server Configuration, return to the Change Server
Role Assignments menu and select "Review cluster configuration". Then at the prompt confirm that you
want to apply the updated configuration to the Puppet master.

7. Go to the installer’s main menu and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts. When Puppet pushes the current configuration settings to the cluster it
will also automatically restart ntpd on the affected nodes. You do not need to manually restart ntpd.
When the Puppet push completes you can exit the installer.

To verify your change, log into the CMC and go to the Cluster Information page. Review the service inform-
ation section to confirm that your internal NTP hosts and external NTP hosts are what you want them to be.

6.11. Cron Jobs and Automated System Maintenance
The HyperStore system automatically executes a variety of maintenance tasks. This section describes the auto-
mated maintenance jobs that the system implements. The covered topics are:

472

6.11. Cron Jobs and Automated System Maintenance

l "System cron Jobs" (page 473)

l "Scheduled Auto-Repair" (page 478)

l "Cassandra Data Compaction" (page 478)

6.11.1. System cron Jobs
Most HyperStore automated maintenance routines are implemented as cron jobs. Maintenance cron jobs are
run from one HyperStore node in each of your service regions. To see which of your nodes is running the cron
jobs, go to the CMC's Cluster Information page. In the Service Information section you will see the identity of
the System Monitoring / Cronjob Primary Host, from which the cron jobs are run.

Note You will also see the identity of the System Monitoring / Cronjob Backup Host. If the primary cron
job instance goes down (due to the host going down or crond going down on the host) and remains
down for 10 minutes, the backup cron job instance will automatically take over the primary role and
start running the system cron jobs.

The cron jobs themselves are configured in the /etc/cron.d/cloudian-crontab file on the host node. If you want to
adjust the scheduling of these cron jobs you should do so via Puppet configuration management, by editing
the configuration template file /etc/cloudian-<version>-puppet/modules/cloudians3/templates/cloudian-
crontab.erb on the Puppet master node. For general information on how to configure cron job scheduling, refer
to any reputable resource on the topic.

Note that most of the cron jobs configured in cloudian-crontab.erb have "> /dev/null 2>&1" appended to them
and therefore they direct all output to /dev/null.

System cron jobs are implemented for the following system maintenance tasks:

System Monitoring Data Collection
Scope: One job per region

Frequency: Every 1 minute

Operation invoked: S3 Service internal process /bin/snapshotData

This cron job invokes a process that logs "snapshot" system statistics each minute in support of the Cloudian
Management Console’s system monitoring functionality.

Diagnostic Log Upload
Scope: One job per region

Frequency: Once per day

Operation invoked: S3 Service internal process /bin/phoneHome

This cron job uploads a daily diagnostics file to a configurable S3 URI, if the HyperStore "Phone Home" feature
(also known as "Smart Support") is enabled. Typically this would be the S3 URI of Cloudian Support.

Note The upload will occur within an hour of the time specified in the crontab. A random wait time is
built into the upload process so that not all Cloudian customer environments are uploading to Cloudian
Support at the same time.

473

Chapter 6. Node and Cluster Operations

Usage Data Processing
Several cron jobs are involved in processing service usage data for users and groups.

Note For an overview of how the HyperStore system tracks service usage by groups and users, see
"Usage Reporting and Billing Feature Overview" (page 138).

6.11.1.0.1. Saving Storage Usage Data for Active Users

Scope: One job per region

Frequency: Every 5 minutes

Operation invoked: Admin API method POST /usage/storage

This cron job writes snapshots of per-user and per-group counts for stored bytes and number of stored objects
from the Redis QoS database over to the "Raw" column family in the Cassandra "Reports" keyspace. The oper-
ation is applied only to users and groups that have uploaded or deleted objects in the time since the operation
was last executed.

6.11.1.0.2. Saving Storage Usage Data for All Users

Scope: One job per region

Frequency: Once a day

Operation invoked: Admin API method POST /usage/storageall

This cron job writes snapshots of per-user and per-group counts for stored bytes and number of stored objects
from the Redis QoS database over to the "Raw" column family in the Cassandra "Reports" keyspace. The oper-
ation is applied to all users and groups.

6.11.1.0.3. Repairing Usage Data for Active Users

Scope: One job per region

Frequency: Every 12 hours

Operation invoked: Admin API method POST /usage/repair/dirtyusers

This cron job repairs Redis QoS stored bytes and stored object counts for up to 1000 active or "dirty" users.
See the Admin API method description for more detail.

6.11.1.0.4. Creating Usage Roll-Up Reports

Scope: One job per region for each roll-up granularity (hour, day, month)

Frequency: Hourly, daily, monthly

Operation invoked: Admin API method POST /usage/rollup

l One job with granularity=hour (runs once per hour)

l One job with granularity=day (runs once per day)

l One job with granularity=month (runs once per month)

474

6.11. Cron Jobs and Automated System Maintenance

These three cron jobs create summary (or "roll-up") usage reports data from more granular reports data. The
hourly roll-up data is derived from the raw data (the transactional data and stored bytes/stored object count
snapshot data). The daily roll-up data and monthly roll-up data are both derived from the hourly roll-up data.

Note Hourly rollup jobs that fail -- such as if a relevant service is down or unreachable -- will be retried.
The time span for which failed rollup jobs are eligible for retry is configuration by the "usage.rol-
lup.hour.maxretry" (page 569) property in mts.properties.erb. The default is 6 hours.

Bucket Log Processing
Scope: One job per region

Frequency: Once every 10 minutes

Operation invoked: S3 Service internal process /.system/dumpbucketlogs

This cron job moves bucket logging data from the Cassandra BucketLog column family into the S3 storage sys-
tem, in support of the S3 Bucket Logging feature.

Bucket Lifecyle Processing
Two cron jobs are involved in S3 Bucket Lifecycle implementation.

6.11.1.0.5. Auto-Tiering and Auto-Expiring Objects

Scope: One job per region

Frequency: Once a day

Operation invoked: S3 Service internal process /.system/autoexpire

This cron job performs two tasks in support of S3 bucket lifecycle policies:

l Transitions (auto-tiers) objects to a tiering destination system, if the objects have reached their sched-
uled auto-tiering interval or date.

l Deletes objects from HyperStore storage (or from the remote tiered storage system if they’ve been auto-
tiered), if the objects have reached their scheduled expiration interval or date.

Note This cron job for auto-tiering and auto-expiring objects distributes the required processing work
across all nodes in the same service region as the cron job primary host.

Note For more information on the HyperStore auto-tiering feature, see "Auto-Tiering Feature Over-
view" (page 176).

6.11.1.0.6. Restoring Auto-Tiered Objects

Scope: One job per region

Frequency: Every six hours

Operation invoked: S3 Service internal process /.system/restore

475

Chapter 6. Node and Cluster Operations

This cron job executes queued object-restore jobs. Restore jobs are placed in queue when S3 clients invoke
the S3 API method "RestoreObject" (page 988), to restore a local copy of objects that have been auto-tiered
to a remote storage system. The cron job executes queued restored jobs every six hours.

Tombstone Cleanup Processing
Scope: One job per region

Frequency: Every hour

Operation invoked: S3 Service internal process /.system/cleantombstones

This hourly operation cleans (removes) Cassandra "tombstones", which are markers that indicate that a cell or
row has been deleted.

6.11.1.0.7. Dealing with Excessive Tombstone Build-Up

Under normal circumstances the hourly running of the /.system/cleantombstones cron job should ensure that
there is no excessive build-up of Cassandra tombstones. However, it is possible to encounter Tomb-
stoneOverwhelmingException errors in Cassandra logs and an inability to successfully execute an S3 GET
Bucket (List Objects) operation against a specific bucket, in either of these unusual circumstances:

l An S3 client application has attempted to delete more than 100,000 objects from the bucket in less than
an hour.

l Over the course of multiple hours an S3 client application has attempted to delete more than 100,000
objects from the bucket and during that time the hourly /.system/cleantombstones cron job has failed to
purge tombstones for one reason or another.

In such circumstances you can trigger tombstone removal by connecting to any S3 server’s JMX port (19080)
and submitting a purgeTombstone command with the bucket name as input. If you are using JConsole, after
connecting to port 19080 on an S3 node select the MBeans tab, then select com.cloudian.ss.cassandra.cl →
BatchJobs → Operations → purgeTombstone. On the right side of the console enter the bucket name as the p1
value and then execute the operation (by clicking purgeTombstone on the right side of the console).

User Deletion Cleanup
Scope: One job per HyperStore system (run only in default region)

Frequency: Once a day

Operation invoked: Admin API method POST /system/deletedUserCleanup (for system use only; this API
method is not documented)

This cron job attempts to complete the user deletion process for users for whom the deletion process failed to
complete on the original attempt. These are users who are stuck in "Deleting" status for one reason or another.

Storage Policy Deletion or Creation Processing
Scope: One job per HyperStore system (run only in default region)

Frequency: Once a day

Operation invoked: Admin API method POST /system/processProtectionPolicy

This cron job processes any pending storage policy delete jobs. System operators can initiate the deletion of
an unused storage policy (a storage policy that is not assigned to any buckets) through the CMC's Storage
Policies page. This operator action marks the policy with a "DELETED" flag and makes it immediately

476

6.11. Cron Jobs and Automated System Maintenance

unavailable to service users. However, the full deletion of the storage policy from the system (specifically, the
deletion of the Cassandra keyspace associated with the policy) is not processed until this cron job runs.

This cron job also processes any pending storage policy creation jobs, in the event that multiple storage policy
creation requests have been initiated in a short amount of time -- which can result in queueing of storage policy
creation jobs. More typically, storage policy creation completes shortly after the creation is initiated through the
CMC.

Retries of Pending Cross-Region Replication Jobs
Scope: One job per region

Frequency: Every four hours

Operation invoked: S3 Service internal process /.system/processcrr

This cron job processes any pending cross-region replication jobs. These pending jobs result when an
attempt to replicate an object from the source bucket to the destination bucket results in a temporary error such
as a connection failure or an HTTP 5xx error. This cron job retries the replication of such objects. For such
objects, the retries will recur once every four hours until either the objects are successfully replicated to the des-
tination system or a permanent error is encountered.

Retries of Pending "Bridge Mode" Auto-Tiering Jobs
Scope: One job per HyperStore system (run only in default region)

Frequency: Every six hours

Operation invoked: S3 Service internal process /.system/processproxy

This cron job processes any pending "bridge mode" auto-tiering jobs. When a HyperStore source bucket has
auto-tiering configured in bridge mode, HyperStore moves objects to the auto-tiering destination immediately
after they are uploaded to the source bucket. This cron job is for retrying to move objects for which the original
attempt at moving the objects failed. For such objects, the once-every-six-hours retries will continue indefinitely
until the objects are successfully moved to the tiering destination system.

For more information on this feature see "Bridge Mode" (page 178).

Processing of Pending Elasticsearch Update Requests
Scope: One job per HyperStore system (run only in default region)

Frequency: Every hour

Operation invoked: S3 Service internal process /.system/processelasticsearch

All insertions, updates, and deletes of HyperStore object metadata in your Elasticsearch cluster are imple-
mented by this cron job. Until the cron job runs the Elasticsearch update requests are queued in Cassandra.
Any requests that fail when this cron job runs are retried at the next running of the cron job.

Note In the event that your Elasticsearch cluster is unavailable for more than a few hours, the request
queue will become full and when the cluster is available again you should use the elasticsearchSync
tool to update the metadata in Elasticsearch. For more information about this tool see "Elasticsearch
Integration for Object Metadata" (page 171). For general information about the Elasticsearch integ-
ration feature see "Elasticsearch Integration for Object Metadata" (page 171).

477

Chapter 6. Node and Cluster Operations

6.11.2. Scheduled Auto-Repair
On a configurable schedule, the HyperStore "auto-repair" feature automatically checks and if necessary repairs
S3 object data in the HyperStore File System as well as metadata in Cassandra. For more information on
scheduled auto-repair and other HyperStore mechanisms for ensuring that data in your system is complete
and correct, see "Automated Data Repair Feature Overview" (page 150).

6.11.3. Cassandra Data Compaction
Cassandra stores data to disk in the form of "Sorted String Tables" (SSTables), a type of append-only commit
log. During Cassandra operations, many SSTables may be written to disk for each column family. It’s important
that SSTables be compacted regularly to minimize the amount of disk space that they use. Compaction merges
multiple SSTables into one.

Cassandra regularly implements a "minor" compaction process that occurs automatically. This automatic com-
paction process is sufficient in the context of the HyperStore system. For the HyperStore system, you do not
need perform "major" compactions using the nodetool utility.

You can monitor the compaction process by using JConsole or another JMX client to connect to a Cassandra
node’s JMX listening port (7199 by default). By accessing the CompactionManagerMBean through the JMX
console, you can check the progress of any compactions that are currently executing, and also check on the
number of completed and pending compactions.

478

Chapter 7. Disk Operations

7.1. Disabling a HyperStore Data Disk
Subjects covered in this section:

l Introduction (immediately below)

l "The Impact of Disabling a Disk" (page 479)

l "Disabling a Disk" (page 479)

HyperStore supports a method for temporarily disabling a HyperStore data disk drive so that you can per-
form planned maintenance such as a firmware upgrade.

Note If you are replacing a disk, follow the instructions for "Replacing a HyperStore Data Disk"
(page 482) rather than the instructions below.

7.1.1. The Impact of Disabling a Disk
When you execute the HyperStore disableDisk function, the system automatically does the following:

l Unmounts the disk's file system, comments out its entry in /etc/fstab, and marks the disk as unavailable
for HyperStore reads and writes.

l Moves the disk’s assigned storage tokens to the remaining HyperStore data disks on the same host, in
a way that’s approximately balanced across those disks. This is a temporary migration of tokens which
will be reversed when you later re-enable or replace the disk. While the tokens are on the other disks,
writes of new or updated S3 object data that would have gone to the disabled disk will go to the other
disks on the host instead.

The existing object data on the disabled disk is not recreated on the other disks and therefore that data will be
unreadable on the host. Whether the system as a whole can still provide S3 clients with read access to the
affected S3 objects depends on the availability of other replicas or erasure coded fragments for those objects,
elsewhere within the cluster.

7.1.2. Disabling a Disk
1. In the CMC's Node Advanced page, select command type "Disk Management" and then select the "dis-

ableDisk" command.

479

Chapter 7. Disk Operations

2. Choose the Target Node (the node on which the disk resides), and enter the Mount Point of the disk
that you want to disable (for example /cloudian6).

3. Click Execute.

After the disableDisk operation completes, go to the CMC's Node Status page. In the "Disk Detail Info" section,
the device that you disabled should now have this red status icon (indicating that it’s disabled and its tokens
have been migrated to other disks on the same host):

Later, after completing your maintenance work on the disk, follow the instructions for "Enabling a HyperStore
Data Disk" (page 480). When you re-enable the disk, the tokens that had been moved away from the disk will
be moved back to it.

7.2. Enabling a HyperStore Data Disk
Subjects covered in this section:

l Introduction (immediately below)

l "The Impact of Enabling a Disk" (page 481)

l "Enabling a Disabled Disk" (page 481)

HyperStore supports a method for enabling an existing HyperStore data disk that is currently disabled. You
can tell that a disk is disabled by viewing its status in the "Disk Detail Info" section of the CMC's Node Status
page. A disk can go into a disabled state either because you disabled it by using the HyperStore disableDisk
function (as described in "Disabling a HyperStore Data Disk" (page 479)) or because the HyperStore system
automatically disabled it in response to disk errors (as described in "Automatic Disk Failure Handling" (page
160)).

You can enable a disk if you know that the disk problem was only temporary and that the disk is still healthy
enough to use.

480

7.2. Enabling a HyperStore Data Disk

Note If you are replacing a disk, follow the instructions for "Replacing a HyperStore Data Disk"
(page 482) rather than the instructions below.

7.2.1. The Impact of Enabling a Disk
When you execute the HyperStore enableDisk function, the system automatically does the following:

l Remounts the disk (using the same mount point that the disk previously had), uncomments its entry in
/etc/fstab, and marks the disk as available for HyperStore reads and writes.

l Moves back to the disk the same set of storage tokens that were automatically moved away from the
disk when it was disabled.

After a disk is re-enabled in this way, writes of new or updated S3 object data associated with the returned
tokens will go to the re-enabled disk. And the existing object data that was already on the disk will once again
be readable. Meanwhile object data that was written to the affected token ranges while the disk was disabled
— while the tokens were temporarily re-assigned to other disks on the host — will remain on those other disks
and will be readable from those disks. That data will not be moved to the re-enabled disk.

Note For information on how HyperStore tracks token location over time so that objects can be written
to and read from the correct disks, see "Dynamic Object Routing" (page 160).

7.2.2. Enabling a Disabled Disk
1. In the CMC's Node Advanced page, select command type "Disk Management" and then select the

"enableDisk" command.

2. Choose the Target Node (the node on which the disk resides), and enter the Mount Point of the disk
that you want to enable.

3. Click Execute.

After the enableDisk operation completes, go to the CMC's Node Status page. In the "Disk Detail Info" section,
the device that you enabled should now have this green status icon (indicating that its status is OK):

481

Chapter 7. Disk Operations

If instead the disk icon is displaying in red (indicating an "Error" status), click the Clear Error History button.
Doing so should return the disk to OK status.

Note If the CMC continues to show status information for the disk's old device address (as well as a
new device address), and if clicking the Clear Error History button fails to clear the old information,
ssh into the node on which you enabled the disk and run the command systemctl restart cloudian-
agent. Then wait at least one minute, and check the CMC again. If the old information is still displaying,
click the Clear Error History button again.

7.3. Replacing a HyperStore Data Disk
Subjects covered in this section:

l Introduction (immediately below)

l "The Impact of Replacing a Disk" (page 482)

l "Replacing a Disk" (page 483)

HyperStore supports a method for activating a replacement HyperStore data disk and restoring data to it.
This procedure applies to either of these circumstances:

l You are replacing a disk that is currently disabled. You can tell that a disk is disabled by viewing its
status in the "Disk Detail Info" section of the CMC's Node Status page. A disk can go into a disabled
state either because you disabled it by using the HyperStore disableDisk function (as described in "Dis-
abling a HyperStore Data Disk" (page 479)) or because the HyperStore system automatically dis-
abled it in response to disk errors (as described in "Automatic Disk Failure Handling" (page 160)).

l You are replacing a disk that is not currently disabled. In this case, it is not necessary for you to use the
disableDisk function before replacing the disk. When you pull the disk from the host machine Hyper-
Store will automatically disable the associated mount point, and you can proceed to replace the disk.

After you’ve pulled the bad disk and physically installed the replacement disk, HyperStore will take care of
the rest when you follow the steps in this section.

Note If you have a HyperStore HSA1500, HSA4000, or HSX-4500 series appliance, or a Lenovo Stor-
age DX8200C appliance, and you need assistance physically locating the failed disk that you want to
pull and replace, you can use the blink light feature on the CMC Node Status page.

Note The procedure below is for HyperStore data disks only. For an OS/Cassandra drive (typically an
SSD), see "Replacing a Cassandra Disk" (page 484).

7.3.1. The Impact of Replacing a Disk
When you physically install a new disk and then execute the HyperStore replaceDisk function, the system auto-
matically does the following:

482

7.3. Replacing a HyperStore Data Disk

l Creates a primary partition and an ext4 file system on the new disk.

l Establishes appropriate permissions on the mount.

l Remounts the new disk (using the same mount point that the prior disk had), uncomments its entry in
/etc/fstab, and marks the disk as available for HyperStore reads and writes.

l Moves back to the new disk the same set of storage tokens that were automatically moved away from
the prior disk when it was disabled.

l Performs a data repair for the new disk (populating the new disk with its correct inventory of object rep-
licas and erasure coded object fragments).

Going forward, writes of new or updated S3 object data associated with the returned tokens will go to the new
disk. Meanwhile object data that was written to the affected token ranges while the mount point was disabled
— while the tokens were temporarily re-assigned to other disks on the host — will remain on those other disks
and will be readable from those disks. That data will not be moved to the new disk.

Note For information on how HyperStore tracks token location over time so that objects can be written
to and read from the correct disks, see "Dynamic Object Routing" (page 160).

7.3.2. Replacing a Disk
After you’ve physically installed the replacement disk, follow these steps to activate the replacement disk and
restore data to it:

1. In the CMC's Node Advanced page, select command type "Disk Management" and then select the
"replaceDisk" command.

2. Choose the Target Node (the node on which the disk resides), and enter the Mount Point of the replace-
ment disk. This must be the same as the mount point of the disk that you replaced.

3. Click Execute.

After the replaceDisk operation completes, go to the CMC's Node Status page. In the "Disk Detail Info" section,
the replacement disk should now have this green status icon (indicating that its status is OK):

483

Chapter 7. Disk Operations

If instead the disk icon is displaying in red (indicating an "Error" status), click the Clear Error History button.
Doing so should return the disk to OK status.

Note If the CMC continues to show status information for the old disk (as well as the new disk), and if
clicking the Clear Error History button fails to clear the old information, ssh into the node on which you
replaced the disk and run the command systemctl restart cloudian-agent. Then wait at least one
minute, and check the CMC again. If the old information is still displaying, click the Clear Error History
button again.

Note You do not need to manually run a repair operation after you replace a disk. The system auto-
matically runs repair and repairec on the disk mount point. You can monitor the repair progress in the
Operation Status page.

7.4. Replacing a Cassandra Disk

Note The procedure that follows is valid for systems on CentOS/RHEL 6.x. For systems on
CentOS/RHEL 7.x the procedure that follows is not valid. Please contact Cloudian Support if your sys-
tem is on CentOS/RHEL 7.x and you need to replace a Cassandra disk.

Cloudian, Inc. recommends using RAID mirroring (RAID1) for the drives that store the OS and Cassandra.
HyperStore Appliance machines are configured in this way, using software RAID1. If a single drive fails, the
other mirrored drive will continue to serve I/O. The recommended procedure for replacing a failed OS/Cas-
sandra drive in the context of software RAID1 is described below.

The procedure described below uses the following sample setup:

l /dev/sda with partitions /dev/sda1 and /dev/sda2

l /dev/sdb with partitions /dev/sdb1 and /dev/sdb2

l /dev/sda1 + /dev/sdb1 = /dev/md0 (RAID1 array /dev/md0 mounted on /boot)

l /dev/sda2 + /dev/sdb2 = /dev/md1 (RAID1 array /dev/md1 mounted on /)

In this example /dev/sda has failed, and we want to replace it.

1. Identify the failed drive by checking /proc/mdstat.

cat /proc/mdstat

Personalities : [raid1]

md0 : active raid1 sdb1[3]

511936 blocks super 1.0 [2/1] [_U]

md1 : active raid1 sdb2[2]

468206592 blocks super 1.1 [2/1] [_U]

bitmap: 3/4 pages [12KB], 65536KB chunk

484

7.4. Replacing a Cassandra Disk

unused devices: <none>

To identify the status of the RAID array, look at the string containing [UU]. Each "U" is a representation of
a healthy partition member of the array.

From the above output, you can tell that RAID arrays md0 and md1 are missing a "U" [_U]. This means
that they are degraded and faulty. (For an example of the output for healthy arrays, look ahead to Step
4-d of this procedure.)

2. Remove the failed drive.

a. If the drive is not in the failed state yet, fail the partitions belonging to the drive:

mdadm --manage /dev/md0 --fail /dev/sda1

mdadm --manage /dev/md1 --fail /dev/sda2

b. Remove the partitions from the RAID array:

mdadm --manage /dev/md0 --remove /dev/sda1

mdadm --manage /dev/md1 --remove /dev/sda2

3. Physically replace the failed drive with a new drive of equal or greater capacity.

4. Add the new drive to the RAID array.

a. Create the exact same partitioning on the new drive.

sfdisk -d /dev/sdb | sfdisk --force /dev/sda

Note /dev/sda is the newly replaced drive.

b. Check that both drives have the same partition:

fdisk -l /dev/sdb

fdisk -l /dev/sda

c. Add the new partitions to the RAID array:

mdadm --manage /dev/md0 --add /dev/sda1

mdadm --manage /dev/md1 --add /dev/sda2

d. Wait for the arrays to be synchronized. You can check status of synchronization by executing:

cat /proc/mdstat

The output should look like this:

Personalities : [raid1]

md0 : active raid1 sda1[2] sdb1[3]

511936 blocks super 1.0 [2/2] [UU]

md1 : active raid1 sda2[0] sdb2[2]

468206592 blocks super 1.1 [2/1] [_U]

[===========>.........] recovery = 55.5% (260239360/468206592)

finish=13.4min speed=258048K/sec

bitmap: 2/4 pages [8KB], 65536KB chunk

unused devices: <none>

485

Chapter 7. Disk Operations

Once synchronization is complete, it will look like the output below:

Personalities : [raid1]

md0 : active raid1 sda1[2] sdb1[3]

511936 blocks super 1.0 [2/2] [UU]

md1 : active raid1 sda2[0] sdb2[2]

468206592 blocks super 1.1 [2/2] [UU]

bitmap: 0/4 pages [0KB], 65536KB chunk

unused devices: <none>

5. Install GRUB bootloader on the new hard drive.

a. Check if GRUB bootloader exists on the mirrored drives:

file -s /dev/sdb

/dev/sdb: x86 boot sector; GRand Unified Bootloader, stage1 version 0x3, stage2 address

0x2000,

stage2 segment 0x200, GRUB version 0.94; partition 1: ID=0xfd, active, starthead 32,

startsector 2048, 1024000 sectors; partition 2: ID=0xfd, starthead 221, startsector

1026048,

936675328 sectors, code offset 0x48

file -s /dev/sda

/dev/sda: x86 boot sector; partition 1: ID=0xfd, active, starthead 32, startsector

2048,

1024000 sectors; partition 2: ID=0xfd, starthead 221, startsector 1026048, 936675328

sectors,

code offset 0x0

From the above outputs, it looks like GRUB is only installed on /dev/sdb. It also needs to be
installed on /dev/sda to ensure that the system will boot regardless of which drive fails in the
future.

b. Check the device maps.

cat /boot/grub/device.map

The output will look like this:

this device map was generated by anaconda

(hd0) /dev/sda

(hd1) /dev/sdb

c. Locate GRUB setup files.

Enter the grub command line by executing:

grub

At the grub> prompt, type find /grub/stage1

For example:

grub> find /grub/stage1

find /grub/stage1

486

https://www.gnu.org/software/grub/

7.5. Responding to Data Disks Nearing Capacity

(hd0,0)

(hd1,0)

d. Install GRUB on /dev/sda.

First:

grub> root (hd0,0)

You will see the following output:

root (hd0,0)

Filesystem type is ext2fs, partition type 0xfd

Then:

grub> setup (hd0)

You will see the following ouput:

setup (hd0)

Checking if "/boot/grub/stage1" exists... no

Checking if "/grub/stage1" exists... yes

Checking if "/grub/stage2" exists... yes

Checking if "/grub/e2fs_stage1_5" exists... yes

Running "embed /grub/e2fs_stage1_5 (hd0)"... 27 sectors are

embedded.

succeeded

Running "install /grub/stage1 (hd0) (hd0)1+27 p (hd0,0)/grub/stage2

/grub/grub.conf"...

succeeded

Done.

Then:

grub> quit

e. Check that the GRUB bootloader is installed on /dev/sda.

file -s /dev/sda

/dev/sda: x86 boot sector; GRand Unified Bootloader, stage1 version 0x3, stage2 address

0x2000,

stage2 segment 0x200, GRUB version 0.94; partition 1: ID=0xfd, active, starthead 32,

startsector 2048,

1024000 sectors; partition 2: ID=0xfd, starthead 221, startsector 1026048, 936675328

sectors,

code offset 0x48

This completes the process of replacing a mirrored OS/Cassandra drive.

7.5. Responding to Data Disks Nearing Capacity
HyperStore implements an automatic mechanism for helping to ensure balanced disk usage among the
disks on a host. However, if service utilization is heavy for the size of your cluster, there may be times when
one or more disks nears their capacity.

487

Chapter 7. Disk Operations

Note For guidance about HyperStore capacity management and cluster resizing, see "Capacity Mon-
itoring and Expansion" (page 71).

If an individual disk or a node as a whole is running low on available capacity, HyperStore alerts admin-
istrators:

l Alerts are triggered if an individual disk drops below 15% available capacity or if a node as a whole
drops below 10% available capacity. When such alerts are triggered, they appear in the CMC’s Node
Status page and Alerts page as well as being sent to the system administrator email address(es).
Optionally, alerts can also be transmitted as SNMP traps. Alert thresholds and options are configurable
in the Alerts Rules page.

l If a node as a whole reaches 80% utilization of its data disk capacity, a Warning is display on the CMC's
Dashboard page.

If a HyperStore data disk (a disk storing S3 object data) is nearing capacity, the first two things to try are:

l Use hsstool cleanup (and hsstool cleanupec if you use erasure coding in your system) on the node to
clear it of any data that’s no longer supposed to be there. Such "garbage data" may be present if, for
example, S3 objects have been deleted from the system as a whole but the deletion operations on the
node in question failed.

l Delete S3 objects. Note that the associated files will not be deleted from the disk immediately since
HyperStore uses batch processing for deletion of S3 object data. The batch processing is triggered
hourly by a cron job (see "System cron Jobs" (page 473)).

Note For additional guidance on removing data to free up disk space, consult with Cloudian
Support.

If these measures do not free up sufficient disk space, the solution is to increase system capacity by adding
one or more new nodes to your cluster. For the procedure see "Adding Nodes" (page 420). When you add a
node, a portion of the data on your existing nodes is copied to the new node and then (when you subsequently
run a cleanup operation) deleted from the existing nodes — thereby freeing up space on the existing nodes.
The degree to which space will be freed up on existing nodes depends on the number of new nodes that you
add in proportion to the size of your existing cluster — for example, adding two nodes to a four node cluster
would free up a larger percentage of the existing nodes' disk space than would adding two nodes to a twenty
node cluster.

For information about managing a Cassandra data disk (a disk storing system and object metadata stored in
Cassandra) that is nearing capacity see "Responding to Cassandra Disks Nearing Capacity" (page 488).

7.6. Responding to Cassandra Disks Nearing Capacity
If a Cassandra data drive (a disk or SSD storing the Cassandra database) is nearing capacity, the first two
things to try are:

l Use hsstool cleanup on the host node, using the allkeyspaces option. This will clear any Cassandra
data that is no longer supposed to be on the node.

l Selectively delete Cassandra data. To do this, consult with Cloudian Support.

If these measures do not free up sufficient space, the solution is to increase system capacity by adding one or
more new nodes. For the procedure see "Adding Nodes" (page 420). When you add a node, a portion of the

488

7.7. Adding Disks is Not Supported

Cassandra data on your existing nodes is copied to the new node and then (when you subsequently run a
cleanup operation) deleted from the existing nodes — thereby freeing up space on the existing nodes.

7.7. Adding Disks is Not Supported
HyperStore does not support adding disks to an existing node within the cluster. To increase cluster stor-
age capacity, the only supported method is to add one or more nodes as described in "Adding Nodes" (page
420).

Note For guidance about HyperStore capacity management and cluster resizing, see "Capacity Mon-
itoring and Expansion" (page 71).

489

This page left intentionally blank

Chapter 8. SystemMonitoring

8.1. Using the CMC to Monitor Your HyperStore System
The Cloudian Management Console (CMC) provides extensive support for monitoring the health and per-
formance of your HyperStore system. The CMC also supports a configurable mechanism for alerting admin-
istrators when system events occur.

The table below shows the system monitoring and alert management tasks that are supported by the CMC.

Category Tasks CMC Page

System Monitoring

Check high level status information for each service region, including
current storage capacity usage and remaining available capacity, pro-
ject capacity usage for the next 120 days, recent S3 transaction per-
formance, and whether there are any system alerts

Dashboard

Check the remaining available storage capacity in each service
region, as well as capacity remaining in each data center and on each
node

Capacity
Explorer

Check how your storage capacity usage has changed over the past 30
days, per service region

Cluster
Usage

For each data center, see which nodes have any alerts and whether
any HyperStore services are down on any node

Data
Centers

Check a specific node's storage capacity usage and remaining avail-
able capacity, CPU and memory usage, recent S3 transaction per-
formance, and HyperStore services status. Also check capacity usage
and status information for individual disks on a node.

Node
Status

Check a specific node's performance trends over the past 30 days, for
metrics such as CPU utilization, disk read and write throughput, and
S3 transactions per second.

Node Activ-
ity

System Alerts Man-
agement

Configure system alert rules, for having the system automatically notify
administrators regarding system events. Also view pre-configured alert
rules that come with the system.

Alert
Rules

Review and acknowledge alerts generated by any node in the system Alerts

Review and acknowledge alerts generated by a specific node
Node
Status

8.2. Cloudian HyperIQ
Cloudian HyperIQ is a solution for dynamic visualization and analysis of HyperStore monitoring data. HyperIQ
is a separate product available from Cloudian that deploys as virtual appliance on VMware or VirtualBox and
integrates with your existing HyperStore system. For more information about HyperIQ contact your Cloudian
representative.

491

Chapter 8. System Monitoring

8.3. Additional Monitoring Tools

8.3.1. Using the Admin API toMonitor HyperStore
The HyperStore Admin API supports methods for monitoring HyperStore health and performance. The CMC
invokes these Admin API methods in implementing the CMC’s system monitoring functions. If you wish you can
invoke these Admin API methods directly, through a client application of your own making or through third party
command line tools that enable you to construct HTTP requests.

For more information see the Admin API methods associated with the "monitor" (page 781) resource.

8.3.2. Doing an HTTPHealth Check
The HyperStore system supports a health check that lets you quickly determine whether certain HTTP inter-
faces are responsive on particular hosts. This function is supported for:

l S3 Service (HTTP port 80 by default; or HTTPS port 443 if you've enabled SSL for the S3 service)

l Admin Service (HTTPS port 19443 by default; or HTTP port 18081 if you've configured the Admin Ser-
vice to accept regular HTTP connections)

l HyperStore Service (HTTP port 19090 by default)

To do the health check on a particular host, submit an HTTP(S) HEAD request to <host>:<port>/.healthCheck. If
the service is up and running and listening on its assigned port, you will receive back an HTTP 200 OK status.
If not, your request will time out.

For the CMC, you can check responsiveness by submitting an OPTIONS request to the CMC login URL
(https://<host>:8443/Cloudian/login.htm).

492

8.3. Additional Monitoring Tools

Note Sending a GET or HEAD request to the CMC login URL will result in the CMC sending a GET
/group/list call to the Admin Service which in turn sends a request to Cassandrda. To avoid this, the
more lightweight way to check CMC responsiveness is to send an OPTIONS request to the CMC login
URL.

The example below shows a health check of an S3 Service instance that is responsive.

HEAD http://192.168.2.16:80/.healthCheck

Status Code: 200 OK

Content-Length: 0

Date: Wed, 14 Aug 2019 12:51:50 GMT

Server: CloudianS3

Note To do health checks against an HTTPS port, the client executing the check must support
TLS/SSL. Note also that health checks against HTTPS ports are a more expensive operation (in terms
of resource utilization) than health checks against HTTP ports.

In the case of health checks of the S3 Service, each health check request results in a special entry in the S3
Request Log, such as in this example entry:

2019-08-16 15:01:33,757|127.0.0.1||healthCheck|||81|0|0|0|81|11820||200|

544cdd90-822f-1c98-b780-525400e89933|0|0|

For more information on the S3 Request Log, see "S3 Service Logs (including Auto-Tiering, CRR, and
WORM)" (page 619)

8.3.3. Using JMX toMonitor Java-Based HyperStore Services

IMPORTANT ! Cloudian recommends that you do not use JMX for monitoring a HyperStore production
system, as it may negatively impact performance (particularly if you run JConsole on one of your pro-
duction nodes). However, JMX may be useful for monitoring a HyperStore testing or evaluation system.

The S3 Service, Admin Service, HyperStore Service, and Cassandra Service support monitoring via Java Man-
agement Extensions (JMX). You can access JMX statistics using the graphical JMX client JConsole, which
comes with your Java platform. By default the full path to the JConsole executable is /us-
r/java/latest/bin/jconsole.

After launching JConsole, in the JConsole GUI specify the <host>:<jmx-port> that you want to connect to. Each
of the HyperStore system’s Java-based services has a different JMX listening port as indicated in the sections
that follow. The statistics that you view will be only for the particular node to which you are connected via
JConsole.

Note By default a JConsole connection does not require a user name and password, so in the JCon-
sole GUI these fields can be left empty. For general information about using JConsole, including pass-
word protection and security options, see the JConsole Help.

493

Chapter 8. System Monitoring

Note This section on JMX statistics presumes that you are using JConsole, but there are other JMX cli-
ents available. Your HyperStore system comes with two command-line JMX clients — cmdline-jmx-
client and jmxterm—which are in the /opt/cloudian/tools directory.

S3 Service JMX Statistics
Default JMX port: 19080

For the S3 Service, these categories of JMX statistics are supported:

S3 operation timing and rate stats

In JConsole’s MBeans tab, timing performance statistics for S3 operations are available under the metrics
MBean. Under metrics there is com.cloudian.s3.stats.<operation>, where <operation> is an S3 API operation
such as putObject, getObject, deleteObject, getBucket, and so on. For each operation type, under Attributes
there is a set of timing statistics including:

l Count — The total number of executions that were timed.

l Max — The maximum value in milliseconds of the logged execution times.

l Mean — The mean execution time, in milliseconds.

l Min — The minimum value in milliseconds of the logged execution times.

l StdDev — The standard deviation, in milliseconds.

For each operation type there are also rate stats including:

l MeanRate — Average transactions-per-second (TPS) since last restart.

l FifteenMinuteRate — 15 minute exponentially weighted moving average rate for TPS.

The statistics are initialized at each restart of the S3 Service. Statistics will only be available for operations that
have been performed since the last S3 Service restart — for example, if no deleteObject operations have been
performed since the last restart, then no deleteObject statistics will be available.

Note These timing and rates stats are implemented with the Metrics Core library.

S3 operation success stats

In JConsole’s MBeans tab, success rate statistics for S3 operations are available under com.gem-
ini.cloudian.s3 → Accounting → Success Rate → Attributes. For each S3 operation, the success rate is
expressed as a double between 0 and 1 indicating the percentage of successful processing for that S3 oper-
ation. The success rate statistics are cumulative since the last start of the S3 Service on the node to which you
are connected.

For example, the statistic "DeleteBucket" would have a value such as 1.0 or 0.92, indicating a 100% or 92%
success rate for S3 "DELETE Bucket" operations since the last start-up of the S3 Service.

S3 Service’s Cassandra client stats

For its client interface to Cassandra, the S3 Service leverages open source Hector technology. In JConsole’s
MBeans tab, Hector statistics are available under me.prettyprint.cassandra.service_Cloudian<regionName> →
hector → hector → Attributes. Descriptions of these statistics are available in the Health Check Attributes
Available for Hector section of the online Hector user guide.

The list of supported statistics is below.

494

https://github.com/hector-client/hector/wiki/User-Guide#health-check-attributes-available-for-hector
https://github.com/hector-client/hector/wiki/User-Guide#health-check-attributes-available-for-hector

8.3. Additional Monitoring Tools

l ExhaustedPoolNames

l KnownHosts

l NumActive

l NumBlockedThreads

l NumConnectionErrors

l NumExhaustedPools

l NumIdleConnections

l NumPoolExhaustedEventCount

l NumPools

l NumRenewedIdleConnections

l NumRenewedTooLongConnections

l ReadFail

l RecoverableErrorCount

l RecoverableLoadBalancedConnectErrors

l RecoverableTimedOutCount

l RecoverableTransportExceptionCount

l RecoverableUnavailableCount

l SkipHostSuccess

l StatisticsPerPool

l SuspendedCassandraHosts

l WriteFail

HTTP server thread pool stats

For serving HTTP requests, the S3 Service leverages open source Jetty technology. In JConsole’s MBeans
tab, Jetty thread pool statistics are available under org.eclipse.jetty.util.thread → queuedthreadpool → 0 →
Attributes. The statistics available are:

l threads

l idleThreads

l queueSize

Admin Service JMX Statistics
Default JMX port: 19081

In JConsole’s MBeans tab, timing performance statistics for Admin Service operations are available under the
metrics MBean. Under metrics there is com.cloudian.admin.stats.<operation>, where <operation> is an S3 API
operation such as getUser, createUser, and so on. For each operation type, under Attributes there is a set of
timing statistics including:

l Count — The total number of executions that were timed.

l Max — The maximum value in milliseconds of the logged execution times.

l Mean — The mean execution time, in milliseconds.

l Min — The minimum value in milliseconds of the logged execution times.

l StdDev — The standard deviation, in milliseconds.

495

Chapter 8. System Monitoring

For each operation type there are also rate stats including:

l MeanRate — Average transactions-per-second (TPS) since last restart.

l FifteenMinuteRate — 15 minute exponentially weighted moving average rate for TPS.

The statistics are initialized at each restart of the S3 Service (the Admin Service stops and starts together with
the S3 Service). Statistics will only be available for operations that have been performed since the last S3 Ser-
vice restart — for example, if no createUser operations have been performed since the last restart, then no cre-
ateUser statistics will be available.

Note These timing and rates stats are implemented with the Metrics Core library.

HyperStore Service JMX Statistics
Default JMX port: 19082

For the HyperStore Service, these categories of JMX statistics are supported:

HyperStore operation timing and rate stats

In JConsole’s MBeans tab, timing performance statistics for HyperStore Service operations are available under
the metrics MBean. Under metrics there is com.cloudian.hybrid.stats.<operation>, where <operation> is a
HyperStore Service operation such as put, getBlob, getDigest, or delete. For each operation type, under Attrib-
utes there is a set of timing statistics including:

l Count — The total number of executions that were timed.

l Max — The maximum value in milliseconds of the logged execution times.

l Mean — The mean execution time, in milliseconds.

l Min — The minimum value in milliseconds of the logged execution times.

l StdDev — The standard deviation, in milliseconds.

For each operation type there are also rate stats including:

l MeanRate — Average transactions-per-second (TPS) since last restart.

l FifteenMinuteRate — 15 minute exponentially weighted moving average rate for TPS.

The statistics are initialized at each restart of the HyperStore Service. Statistics will only be available for oper-
ations that have been performed since the last HyperStore Service restart — for example, if no delete oper-
ations have been performed since the last restart, then no delete statistics will be available.

Note These timing and rates stats are implemented with the Metrics Core library.

HyperStore operation success stats

In JConsole’s MBeans tab, HyperStore file system operations statistics are available under com.gem-
ini.cloudian.hybrid.server → HyperstoreOperationsStats → Attributes. The statistics available are:

l NumberOfSuccessfulDeleteOperations

l NumberOfSuccessfulReadOperations

l NumberOfSuccessfulWriteOperations

l TotalNumberOfDeleteOperations

496

8.3. Additional Monitoring Tools

l TotalNumberOfReadOperations

l TotalNumberOfWriteOperations

Cassandra client stats

For its client interface to Cassandra, the HyperStore Service leverages open source Hector technology. In
JConsole’s MBeans tab, Hector statistics are available under me.prettyprint.cassandra.service_Cloud-
ian<regionName> → hector → hector → Attributes.

The list of supported statistics is the same as indicated for the S3 Service’s Hector statistics. Descriptions of
these statistics are available in the Health Check Attributes Available for Hector section of the online Hector
user guide.

HTTP server thread pool stats

For serving HTTP requests, the HyperStore Service leverages open source Jetty technology. In JConsole’s
MBeans tab, Jetty thread pool statistics are available under org.eclipse.jetty.util.thread → queuedthreadpool →
0 → Attributes. The statistics available are:

l threads

l idleThreads

l queueSize

Cassandra Service JMX Statistics
Default JMX port: 7199

In JConsole’s MBeans tab, under org.apache.cassandra.metrics, Cassandra supports a wide range of stat-
istics.

The Compaction MBean exposes statistics including:

l Number of completed compactions.

l Number of pending compaction tasks.

l Progress of currently running compactions.

Note If the number of pending compaction tasks grows over time, this is an indicator of a need to
increase cluster capacity.

The ColumnFamily MBean exposes statistics for active, pending, and completed tasks for each of Cassandra’s
thread pools. This is the same information as is available through the nodetool tpstats command.

Note A significant and sustained increase in the pending task counts for the Cassandra thread pools is
an indicator of a need to increase cluster capacity.

The ColumnFamily MBean exposes individual column family statistics including:

l Memtable data size

l Number of live SSTables

l Average read latency

l Average write latency

497

https://github.com/hector-client/hector/wiki/User-Guide#health-check-attributes-available-for-hector

Chapter 8. System Monitoring

Note A sustained increase in read and write latencies may indicate a need to increase cluster capa-
city.

8.3.4. Using Native Linux Utilities for System ResourceMonitoring
The Linux OS on which the HyperStore system runs includes several useful commands for checking on system
resource utilization on individual host machines. For example, the top command returns a summary of host-
wide resource utilization as well as a breakdown of resource usage per process. Using top -c (which returns
more information in the "Command" column than top alone) makes it easier to distinguish between the several
Java-based HyperStore processes that will be running on each host — including Cassandra, the S3 Service
(cloudian_s3), the Admin Service (cloudian_admin), the HyperStore Service (storage_s3), and the CMC (tom-
cat).

Important statistics are the memory usage and CPU usage:

l VIRT: Virtual memory.

l RES: Resident memory. VIRT minus RES is the amount of memory swapped out.

l %CPU: Percentage of CPU used

Other useful Linux utilities for monitoring system resource usage include:

l vmstat

l iostat

l dstat

8.3.5. Using nodetool to Monitor Cassandra
Through the CMC's Node Status page you can monitor high-level status information for the Cassandra service
instance on a particular node. For more granular Cassandra monitoring you can optionally use the native Cas-
sandra utility nodetool.

The nodetool utility resides in each Cassandra host’s /opt/cassandra/bin directory. From that directory, the gen-
eral syntax for nodetool is:

./nodetool -h <host> [-p <CassandraJMXport>] <COMMAND>

The Cassandra JMX port defaults to 7199.

Some nodetool commands that you may find useful for monitoring a Cassandra cluster are summarized below.

cfstats [<Keyspace.ColumnFamily>]

Returns information about each keyspace and each column family, including:

l Read count

l Read latency

l Write count

l Write latency

l Pending tasks

For column families only (not keyspaces):

498

8.3. Additional Monitoring Tools

l Memtable stats

l Key cache capacity

l Key cache hit rate

cfhistograms <Keyspace> <ColumnFamily>

Returns information for a specific column family, including:

l Read latency

l Write latency

l Row size

l Column count

tpstats

Returns information for each thread pool, including:

l Active tasks

l Completed tasks

l Pending tasks

Note A significant and sustained increase in the pending task counts for the Cassandra thread
pools is an indicator of a need to increase cluster capacity.

compactstats

Returns information for an in-progress compaction, including:

l Compaction type (major or minor)

l Column family for which the compaction is being performed

l Bytes compacted so far

netstats

Returns network information, including:

l Status of streaming operations such as bootstrap, repair, move, or decommission

l Active, pending, and completed command counts

For more information about nodetool, see either the Apache Cassandra online documentation or the DataStax
Cassandra online documentation.

8.3.6. Using the Redis CLI to Monitor Redis
Through the CMC's Node Status page you can monitor high-level status information for the Redis service (the
Redis Credentials master instance or slave instance or the Redis QoS master instance or slave instance) on a
particular node. For more granular Redis monitoring you can optionally use the native Redis CLI.

To launch the Redis CLI on a Redis node, change into the node’s /opt/redis directory and do either of the fol-
lowing:

to connect to the CLI for the Redis Credentials DB:

./redis-cli

redis 127.0.0.1:6379>

499

Chapter 8. System Monitoring

to connect to the CLI for the Redis QoS DB:

./redis-cli -p 6380

redis 127.0.0.1:6380>

Once you’re in the Redis CLI mode, you can issue commands. Use "quit" to exit the CLI.

With the Redis INFO command you can retrieve statistics such as:

l Uptime since last start

l Memory usage as allocated by Redis

l Memory usage as seen by OS

l Memory fragmentation ratio

l Number of dataset-changing operations processed since last save

l Keyspace hits

l Keyspace misses

l Total keys

l Total expired keys

You can reset Redis statistics with the CONFIG RESETSTAT command.

To check just on the number of keys currently in the database, you can use the DBSIZE command.

Also useful is the MONITOR command, which enables you to monitor the complete sequence of commands
received by the DB in near real-time.

In addition to monitoring Redis through its CLI, you should also monitor the size of the Redis data files (in
default directory /var/lib/redis/) to ensure files are not growing excessively.

500

http://redis.io/commands/info
http://redis.io/commands/config-resetstat
http://redis.io/commands/dbsize
http://redis.io/commands/monitor

Chapter 9. SystemConfiguration

9.1. CMC's Configuration Settings Page
Through the CMC's Configuration Settings page you can dynamically change a variety of HyperStore system
configuration settings. For detail see "Configuration Settings" (page 337).

9.2. Installer Advanced Configuration Options
The HyperStore installation tool supports several types of advanced system configurations which can be imple-
mented at any time after initial installation of the system. In most cases, these are configuration tasks that can
also be performed manually by editing system configuration files. The installer makes these tasks easier by
enabling you to perform the configurations by responding to prompts from the installer.

Note As a best practice, you should complete basic HyperStore installation first and confirm that things
are working properly (by running the installer’s Validation Tests, under the "Cluster Management"
menu) before you consider using the advanced configuration options to make changes such as cus-
tomizing port assignments or implementing SSL for the S3 Service.

To access the advanced configuration options, on your Puppet master node change into your installation sta-
ging directory and launch the installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same regardless
of whether it was launched from the HSH command line or the OS command line.

At the installer main menu's Choice prompt enter 4 for Advanced Configuration Options.

501

Chapter 9. System Configuration

This opens the "Advanced Configuration Options" sub-menu.

From this menu you can choose the type of configuration change that you want to make and then proceed
through the interactive prompts to specify your desired settings.

a) Change server role assignments
This is for shifting role assignments — such as the Redis QoS master role or Redis Credentials master role —
from one of the hosts in your cluster to another. For the complete procedures, see "Change Node Role

502

9.2. Installer Advanced Configuration Options

Assignments" (page 457).

b) Change S3, Admin or CMC ports
This lets you interactively change listening ports for the S3, Admin, and CMC services. For instructions see
"Changing S3, Admin, or CMC Listening Ports" (page 599).

c) Change S3, Admin, CMC, or IAM endpoints
This lets you interactively change the S3 service endpoint, S3 static website endpoint, Admin service endpoint,
CMC endpoint, or IAM service endpoint. For instructions see "Changing S3, Admin, CMC, or IAM Service End-
points" (page 600).

d) Configure diagnostic data collection options
This lets you interactively configure Phone Home (Smart Support) settings.

1. After selecting this option from the Advanced Configuration Options menu, follow the prompts to specify
your desired settings. The prompts indicate your current settings. At each prompt press Enter to keep
the current setting value, or type in a new value. The final prompt will ask whether you want to save
your changes -- type yes to do so.

2. Go to the installer's main menu again and choose "Cluster Management" → "Push Configuration Set-
tings to Cluster" and follow the prompts.

3. Go to the "Cluster Management" menu again, choose "Manage Services", and restart the S3 Service.

e, f, g) Configure SSL for S3, CMC, or IAM
These options are for managing HTTPS and the associated certificate keystores, for the S3, CMC, and IAM ser-
vices. For instructions see "HTTPS Support (TLS/SSL)" (page 114).

h) Remove existing Puppet SSL certificates
This is a troubleshooting measure in the event of Puppet connectivity problems, as described in Installation
Troubleshooting.

This operation is specifically in regard to Puppet certificates and has nothing to do with SSL for the S3 Service.

i) Start or stop Puppet daemon
By default, after HyperStore installation the Puppet master and agent daemons are left running, and every 10
minutes the agents check the master to see if there are updated HyperStore configuration settings to download
to the agent nodes. Alternatively you can use this option from the Advanced menu to stop the Puppet agent
daemons.

Note that if you don’t leave the Puppet agent daemons running, you must remember to trigger a one-time Pup-
pet sync-up each time you make a HyperStore configuration change on the Puppet master. By contrast, if you
leave the Puppet agent daemons running, a sync-up will happen automatically every 10 minutes even if you
don’t specifically trigger a sync-up after making a configuration change.

If you ever want to check on the current status of your Puppet master and agent daemons, you can do so by
choosing "Cluster Management" from the installer’s main menu; then choose "Manage Services"; then in the
Service Management sub-menu choose "Puppet service (status only)".

503

Chapter 9. System Configuration

j) Remove Puppet access lock
When Puppet is performing a sync-up, the system temporarily locks Puppet access (so that no additional Pup-
pet instances are launched by other operators or systems). If the sync-up operation is terminated unexpectedly
— such as by a <CTRL>-c command, or a Puppet master node shutdown — the temporary lock may fail to
release. This unreleased lock would prevent any subsequent sync-ups from being implemented.

You can clear the lock by running the "Remove Puppet access lock" operation.

Afterwards, to confirm that the lock is cleared you can check to make sure that no /tmp/cloudian.installer.lock dir-
ectory exists on the Puppet master node.

k) Enable or disable DNSMASQ
This menu option is for either of these circumstances:

l When you ran the cloudianInstall.sh script to install your HyperStore system, you had the script auto-
matically install and configure dnsmasq to perform DNS resolution for HyperStore service domains.
(That is, you used the configure-dnsmasq option when you launched the install script.) However, now
you want to use your own DNS solution for resolving HyperStore domains, and you’ve completed your
DNS configuration as described in DNS Set-Up. You can use the installer’s "Enable or disable
DNSMASQ" menu option to disable dnsmasq. This stops dnsmasq on all HyperStore nodes and dis-
ables dnsmasq by configuration.

l When you ran the cloudianInstall.sh script to install your HyperStore system, you did not have it install
dnsmasq (the default installer behavior is not to install dnsmasq). However, now you want to use dns-
masq for HyperStore domain resolution. With the installer’s "Enable or disable DNSMASQ" menu
option you can enable dnsmasq:

1. After selecting this option from the Advanced Configuration Options menu, follow the prompts to
choose to enable dnsmasq.

2. Go to the installer's main menu again and choose "Cluster Management" → "Push Configuration
Settings to Cluster" and follow the prompts.

3. Go to the "Cluster Management" menu again, choose "Manage Services", and restart the
DNSMASQ service.

l) Configure Performance Parameters on Nodes
This lets you run a HyperStore performance configuration optimization script. The script runs automatically
when you install your cluster and when you add nodes, so under normal circumstances you should not need to
use this installer Advanced Configuration option. For instructions on using the option see "Tuning HyperStore
Performance Parameters" (page 602).

m) Disable the root password
For information on this option see "Enabling the HSH and Managing HSH Users" (page 90).

r) Exclude host(s) from configuration push and service restarts
Use this option if you want to temporarily exclude a particular node or nodes from installer-driven configuration
pushes and service restarts. One scenario where it would be appropriate to do this is if you have a node that's
down and can't be brought back up anytime soon, and in the interim you want to make a configuration change
to your system. With a node down, the installer's "Cluster Management" → "Push Configuration Settings to

504

http://www.thekelleys.org.uk/dnsmasq/doc.html

9.2. Installer Advanced Configuration Options

Cluster" function will fail if you try to push to the whole cluster. So before doing a push, use the "Advanced Con-
figuration Options" → "Exclude host(s) from configuration push and service restarts" to specify the down node.
Then, when you subsequently do a configuration push to the cluster, the installer will automatically exclude
that node and the push to the cluster will succeed.

The excluded host will also be excluded when you use the installer's "Cluster Management" → "Manage Ser-
vices" menu to stop, start, or restart particular services in the cluster (such as the S3 Service or the Cassandra
Service).

Note This "exclude from configuration push and service restarts" status is different than "maintenance
mode" (see "Start Maintenance Mode" (page 329)). The "excluded" status merely excludes a node
from the list of nodes that the installer uses when it pushes out configuration changes to the cluster or
restarts services across the cluster; it has no effect other than that. By contrast, when you put a node
into "maintenance mode" the system stops sending S3 requests to the node and stops collecting alerts
from the node.

If you put a node into "excluded" status, and you later exit the installer, then if you subsequently launch the
installer again it will display a message indicating that there is a node in excluded status. In the sample below
the node "cloudian-node6" is in this status.

./cloudianInstall.sh
The following nodes have been excluded for configuration updates and service
restarts: cloudian-node6
Press any key to continue ...

When the node is back up again and you are ready to have it again be eligible for installer-managed con-
figuration pushes and service restarts, return to the "Advanced Configuration Options" → "Exclude host(s) from
configuration push and service restarts" function and enter "none" at the prompt.

If you made a system configuration change when a node was down and excluded, then after the node is back
up and you've taken the node out of excluded status, do a configuration push and a service restart (whichever
service restart is appropriate to the configuration change you made). This will bring the node's configuration up
to date with the rest of the cluster.

Note There are a small number of circumstances where the system will automatically place a down
node into the "excluded" status. One such circumstance is when the system is executing automatic fail-
over of the system cronjob host role, in the event that the primary cronjob host goes down. The next
time that you launch the installer it will display a message identifying the node that's in "excluded"
status.

s) Configure Firewall
This lets you enable and configure the built-in HyperStore firewall, on all the HyperStore nodes in your system.
For instructions see "HyperStore Firewall" (page 100).

t) Configure 'force' behaviour
If you specify the force option when running the installer on the command line, the forceoption will "stick" and
will be used automatically for any subsequent times the installer is run to install additional nodes (such as
when you do an "Add Node" operation via the Cloudian Management Console, which invokes the installer in
the background). To turn the forceoption off so that it is no longer automatically used when the installer is run to

505

Chapter 9. System Configuration

add more nodes, launch the installer and go to the Advance Configuration Options. Then choose option t for
Configure 'force' behavior and follow the prompts.

Note For information about the force option see "cloudianInstall.sh Command Line Options" in the
Reference section of the HyperStore Installation Guide.

9.3. Pushing Configuration File Edits to the Cluster and Restart-
ing Services
Subjects covered in this section:

l "Puppet Overview" (page 506)

l "Installation Staging Directory" (page 507)

l "Using the Installer to Push Configuration Changes and Restart Services" (page 507)

l "Option for Triggering a Puppet Sync-Up from the Command Line" (page 509)

l "Excluding a Down Node from an Installer-Driven Configuration Push" (page 509)

l "Automatic Puppet Sync-Up on an Interval" (page 510)

9.3.1. Puppet Overview
During HyperStore installation, the open source version of Puppet is automatically installed and set up. The
Puppet framework consists of:

l A Puppet master node on which all the HyperStore configuration templates reside. This is one of your
HyperStore nodes -- specifically, the node on which you ran the HyperStore installation script.

l A Puppet agent on every node in your HyperStore system (including the node on which the master is
running).

The Puppet system enables you to edit HyperStore configuration templates in one location — on the Puppet
master node — and have those changes propagate to all the nodes in your HyperStore cluster, even across
multiple data centers and multiple service regions. There are two options for implementing Puppet sync-up:
you can use the HyperStore installer to trigger an immediate sync-up, or you can wait for an automatic sync-up
which by default occurs on a 10 minute interval. With either approach, after the sync-up you must restart the
affected service(s) to apply the configuration changes.

IMPORTANT ! Do not directly edit configuration files on individual HyperStore nodes. If you make edits
on an individual node, those local changes will be overwritten when the local Puppet agent does its
next sync-up with the Puppet master.

Note To ensure high availability of the Puppet master role, HyperStore automatically sets up a backup
Puppet master node and supports a method formanually failing over the master role in the event of
problems with the primary Puppet master node.

506

https://puppet.com/

9.3. Pushing Configuration File Edits to the Cluster and Restarting Services

9.3.2. Installation Staging Directory
During installation or upgrade of your HyperStore system, when you unpack the HyperStore product package
on your Puppet master node an installation staging directory is created. For HyperStore version 7.2.3, the
installation staging directory is:

/opt/cloudian-staging/7.2.3

If you forget the location of your staging directory, you can find it displayed in the CMC's Cluster Information
page toward the bottom of the "Service Information" section.

Among the important files in your installation staging directory is the HyperStore installation script cloud-
ianInstall.sh -- also known as the HyperStore installer -- which you can use for a variety of purposes including
pushing configuration changes out to the system and restarting services.

9.3.3. Using the Installer to Push Configuration Changes and Restart Ser-
vices
After you’ve edited configuration files on the Puppet master you can use the HyperStore installer to trigger a
Puppet sync-up restart the affected service(s):

1. After logging into the Puppet master node as root, change into your installation staging directory.
Once in the staging directory, launch the HyperStore installer:

./cloudianInstall.sh

This displays the installer’s main menu:

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

507

Chapter 9. System Configuration

2. Enter "2" for Cluster Management. This displays the Cluster Management menu.

3. Enter "b" for Push Configuration Settings to Cluster. You will then be prompted to list the hosts on which
you want the Puppet agents to sync up with the Puppet master. The default is all your HyperStore hosts;
for this you can just press enter at the prompt. In a multi-region system you are also given the option to
sync-up only the agents in a particular region.

4. After the Puppet run completes for all the Puppet agents (and a success message displays on the con-
sole), restart the affected service(s) to apply your configuration change:

a. From the Cluster Management menu, enter "c" for Manage Services. This displays the Service
Management menu.

b. From the Service Management menu, enter the number for the service to restart. The service to
restart will depend on which configuration setting(s) you edited. For example:

508

9.3. Pushing Configuration File Edits to the Cluster and Restarting Services

File in Which You Edited Setting(s) Service to Restart

hyperstore-server.properties.erb HyperStore Service

mts-ui.properties.erb CMC

mts.properties.erb
Typically the S3 Service (but instead
Cassandra in a small number of
cases; see mts.properties.erb)

common.csv
Depends on the specific setting(s);

see common.csv

c. After entering the service to manage, enter "restart". Watch the console for messages indicating
a successful stop and restart of the service. Note that the service restart occurs on each node on
which the service is running.

9.3.4. Option for Triggering a Puppet Sync-Up from the Command Line
HyperStore supports an alternative means of triggering a Puppet sync-up, from the command line. To use this
method you would run the install script like this:

./cloudianInstall.sh runpuppet="[<region>,<host>,<host>,...]"

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can run the following command to trigger a Puppet sync-up:

$ hspkg install runpuppet="[<region>,<host>,<host>,...]"

Here are some examples for how to specify the runpuppet option:

l runpuppet=""— Sync-up all the agents in your whole HyperStore system.

l runpuppet="region1"— Sync-up only all the agents in region1.

l runpuppet="region1,host1"— Sync-up only host1 in region1.

l runpuppet="region1,host1,host2"— Sync-up only host1 and host2 in region1.

Note If you use this method, you would still need to subsequently launch the installer in the normal
way and then restart the affected service(s) as described in Step 4 above, in order to apply your
changes.

9.3.5. Excluding a DownNode from an Installer-Driven Configuration Push
If you use the installer to push a configuration change out to your cluster (by triggering a Puppet sync-up
throughout the cluster) and the installer detects that a node is down or unreachable, the whole configuration
push operation will fail. Therefore, if you want to make a system configuration change at a time when a node is
down or unreachable you need to configure the installer to exclude that node from the cluster configuration
push. For instructions on place a node into "excluded" status (and how to take a node out of this status), see "r)
Exclude host(s) from configuration push and service restarts" (page 504).

Note There are a small number of circumstances where the system will automatically place a down
node into the "excluded" status. One such circumstance is when the system is executing automatic

509

Chapter 9. System Configuration

failover of the system cronjob host role, in the event that the primary cronjob host goes down. The next
time that you launch the installer it will display a message identifying the node that's in "excluded"
status.

9.3.6. Automatic Puppet Sync-Up on an Interval
If you leave the Puppet master and Puppet agents running as background daemons (as is the default behavior
after HyperStore installation), the Puppet agents on all of your up HyperStore nodes will automatically check
every 10 minutes to see if changes have been made to the HyperStore configuration templates on the Puppet
master node. If configuration changes have been made, each Puppet agent will download those changes to its
local host machine.

Note however that this automatic Puppet sync-up does not apply the configuration changes to the currently
running services. Applying the configuration changes requires a service restart.

To apply your changes, first wait long enough to be sure that the automatic Puppet sync-up has occurred
(again the default is every 10 minutes). Then, restart the affected service(s) by logging into your Puppet master
node, changing into the installation staging directory, launching the installer, then going to the Cluster Man-
agement menu and restarting the affected service(s) as described in Step 4 of the procedure above.

9.4. Using the HSH to Manage Configuration Files
If you are using the HyperStore Shell (HSH) to manage your HyperStore nodes, the HSH supports commands
for viewing and editing HyperStore configuration files. To use the HSH to view or edit HyperStore configuration
files, first log into the Puppet master node (via SSH) as an HSH user. Upon successful login the HSH prompt
will appear as follows:

<username>@<hostname>$

For example:

sa_admin@hyperstore1$

Note To use the HSH to manage configuration files you must be an HSH Trusted user.

To view the list of configuration files that you can view and edit using the HSH:

To see the complete list of configuration files that you can view and edit in the HSH run this command:

$ hspkg config --help

The list includes all the files covered in the "HyperStore Configuration Files" section of this documentation
as well as a few additional system configuration files.

To view a configuration file using the HSH:

$ hspkg config <filename>

Specify just the configuration file name (such as common.csv), not the full path to the file.

510

9.5. HyperStore Configuration Files

In the background this invokes the Linux command less to display the configuration file. Therefore you can use
the standard keystrokes supported by less to navigate the display; for example:

l f key or Space bar -- Page down

l b key -- Page up

l Down arrow key or Enter -- Go down one line

l Up arrow key -- Go up one line

l <n>f key or <n>Space bar -- Go down <n> number of lines

l <n>b key -- Go up <n> number of lines

l /string Enter-- Search down for the specified string

l ?string Enter -- Search up for the specified string

l q key -- Quit the file display and return to the HSH prompt

To edit a configuration file using the HSH:

$ hspkg config -e <filename> (or $ hspkg config --edit <filename>)

Specify just the configuration file name (such as common.csv), not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file; for example:

l Up or down arrow keys -- Move cursor up or down one line

l Left or right arrow keys -- Move cursor left or right one character

l i key -- Start insert mode (to actually make edits to file)

l Escape key -- End insert mode and return to command mode (so that in command mode you can save
or discard your changes)

l :w key combination -- In command mode, save changes and keep the file open so you can keep work-
ing on it

l :wq key combination -- In command mode, save changes, close the file, and return to the HSH prompt

l :q! key combination -- In command mode, discard changes, close the file, and return to the HSH prompt

l :q key combination -- In command mode, close the file and return to the HSH prompt (appropriate only if
you made no changes to the file)

Note For more information about using the vi text editor, see any reputable online source.

If you made and saved a change to a configuration file, to apply the change you must use the installer to push
the change out to the cluster and restart the relevant service(s). From the HSH you can launch the installer as
follows:

$ hspkg install

For more information about using the installer to push your configuration change and restart services, see
"Using the Installer to Push Configuration Changes and Restart Services" (page 507).

9.5. HyperStore Configuration Files
The main configuration file for your HyperStore system is common.csv. Under typical circumstances that is the
only configuration file that you might edit.

511

Chapter 9. System Configuration

On rare occasions you might -- in consultation with Cloudian Support -- edit the mts.properties.erb file, the
hyperstore-server.properties.erb file, or the mts-ui.properties.erb file.

There is no requirement to manually edit any HyperStore configuration file. Configuration customizations
that are required in order to tailor HyperStore to your environment are implemented automatically by the install-
ation script during the initial installation of your HyperStore system and during cluster expansions or con-
tractions.

Note The configuration settings that operators would most commonly want to adjust during the oper-
ation of a HyperStore system are editable through the CMC's Configuration Settings page. The only
reason to manually edit configuration files is for less-frequently-used settings that are not in the CMC's
Configuration Settings page.

9.5.1. common.csv
The common.csv file is the main HyperStore configuration file and under typical circumstances this is the only
configuration file that you may want to edit. On the Puppet master the path to the file is:

/etc/cloudian-<version>-puppet/manifests/extdata/common.csv

The settings in common.csv are grouped according to which HyperStore component they configure. The doc-
umentation that follows describes the settings in each section of common.csv, in the order in which they appear
in the file.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can edit this configuration file with this command:

$ hspkg config -e common.csv

Specify just the configuration file name, not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file.

IMPORTANT ! If you make any edits to common.csv, be sure to push your edits to the cluster and
restart the affected services to apply your changes. For instructions see "Pushing Configuration File
Edits to the Cluster and Restarting Services" (page 506).

Note The HyperStore system’s interactive installation script cloudianInstall.sh writes to this file. All com-
mon.csv settings that require environment-specific customization are automatically pre-configured by
the install script, based on information that you provided during the installation process. Making any fur-
ther customizations to this configuration file is optional.

GENERAL Section
release_version

Current HyperStore release version.

Default = 7.2.3

512

9.5. HyperStore Configuration Files

Do not edit.

cloudian_license_file_name

Name of your Cloudian license file.

Default = Set during installation based on operator input.

Do not edit manually. To apply an updated license file, use the CMC’s Update License function (Cluster →
Cluster Config→ Cluster Information→ Update License). That function will automatically update this con-
figuration setting as appropriate and dynamically apply the change to your live system. No service restart is
necessary.

default_region

The default service region for your S3 service. Must be one of the regions listed for the regions setting. In a
multi-region HyperStore system, the default region plays several roles in the context of S3 storage bucket Loca-
tionConstraint functionality. For example:

l For PUT Bucket requests that lack a CreateBucketConfiguration element in the request body, the
bucket will be created in the default region.

l For PUT Bucket requests that do include a CreateBucketConfiguration element (with Loca-
tionConstraint attribute), the PUT requests typically resolve to the default region, and S3 Service nodes
in the default region then initiate the process of creating the bucket in the requested region.

If your HyperStore system has only one service region, make that region the default region.

Default = Set during installation based on operator input.

Do not change this setting after your system is installed and running. If for some reason you need to change
which region is your default region, please consult with Cloudian Support.

regions

Comma-separated list of service regions within your HyperStore system. Region names must be lower case
with no dots, dashes, underscores, or spaces. Even if you have only one region, you must give it a name and
specify it here.

Default = Set during installation based on operator input.

javahome

Home directory of Java on your HyperStore nodes.

Default = Path to OpenJDK (set automatically during installation)

java_minimum_stack_size

Memory stack size to use for the HyperStore system’s Java-based services (Cassandra, S3 Service, Hyper-
Store Service, Admin Service)

Default = 256k

Note Optionally you can override this stack size value on a per-server-type basis by adding any of the
following settings to the configuration file and assigning them a value:

cassanda_stack_size
cloudian_s3_stack_size

513

Chapter 9. System Configuration

cloudian_hss_stack_size
cloudian_admin_stack_size

installation_root_directory

Directory in which HyperStore service packages will be physically installed.

Default = /opt/cloudian-packages

run_root_directory

Root directory in which HyperStore services will be run. Links will be created from this directory to the physical
installation directory.

Default = /opt

pid_root_directory

Root directory in which HyperStore service PID (process ID) files will be stored. A /cloudian sub-directory will
be created under this root directory, and the PID files will be stored in that sub-directory.

Default = /var/run

cloudian_user

User information for the user as which to run Cloudian HyperStore services, in format <user_name>,<group_
name>,<optional_numeric_UID>,<login_shell>. If you want this user to be something other than the default,
edit this setting and also the cloudian_runuser setting.

Default ="cloudian,cloudian,,/bin/bash"

cloudian_runuser

User name of the user as which to run Cloudian HyperStore services. This must match the first field from the
cloudian_user setting. If you edit the cloudian_runuser setting you must also edit the first field from the cloud-
ian_user setting.

Default = cloudian

user_bin_directory

Directory in which certain user-invocable scripts are stored.

Default = /usr/local/bin

user_home_directory

Directory under which to create the home directory of the HyperStore services runtime user. The system will
append the cloudian_runuser value to the user_home_directory value to get the full home directory path. For
example, with "cloudian" as the cloudian_runuser and "/export/home" as the user_home_directory, the Cloud-
ian user's home directory is "/export/home/cloudian".

Default = /export/home

cloudian_userid_length

Maximum number of characters allowed in a HyperStore user ID. The highest value you can set this to is 256.

514

9.5. HyperStore Configuration Files

Note This maximum applies also to the user full name. For example if this is set to 64, then when you
are creating a user through the CMC or the Admin API the user ID can be a maximum of 64 characters
long, and also the user full name can be a maximum of 64 characters long.

Default = 64

To apply change, after Puppet propagation restart S3 Service and CMC

service_starts_on_boot

Whether to have HyperStore services start on host reboot, true or false.

Default = true

cloudian_log_directory

Directory into which to write application logs for the S3 Service, Admin Service, HyperStore Service, Redis Mon-
itor, Cloudian performance monitoring Agent, and Cloudian performance monitoring Data Collector.

Default = /var/log/cloudian

cleanup_directories_byage_withmatch

The cleanup_directories_byage_* settings configure Puppet to automatically delete certain files from your
HyperStore nodes after the files reach a certain age. The cleanup_directories_byage_withmatch setting is a
comma-separated list of directories in which to look for such files.

This feature works only if you leave the Puppet daemons running on your HyperStore nodes (which is the
default behavior), or if you regularly perform a Puppet push.

To apply change, do a Puppet push. No service restart is necessary.

Default = "/var/log/cloudian,/tmp,/var/log/puppetserver"

cleanup_directories_byage_withmatch_timelimit

The cleanup_directories_byage_* settings configure Puppet to automatically delete certain files from your
HyperStore nodes after the files reach a certain age. The cleanup_directories_byage_withmatch_timelimit set-
ting specifies the age at which such files will be deleted (based on time elapsed since file creation). The age
can be specified as <x>m or <x>h or <x>d where <x> is a number of minutes, hours, or days.

This feature works only if you leave the Puppet daemons running on your HyperStore nodes (which is the
default behavior), or if you regularly perform a Puppet push.

To apply change, do a Puppet push. No service restart is necessary.

Default = 15d

cleanup_directories_byage_matches

The cleanup_directories_byage_* settings configure Puppet to automatically delete certain files from your
HyperStore nodes after the files reach a certain age. The cleanup_directories_byage_matches setting spe-
cifies the file types to delete.

This feature works only if you leave the Puppet daemons running on your HyperStore nodes (which is the
default behavior), or if you regularly perform a Puppet push.

To apply change, do a Puppet push. No service restart is necessary.

515

Chapter 9. System Configuration

Default = "diagnostics*.gz,diagnostics*.tgz,jna*.tmp,liblz4-java*.so,snappy-*.so,*.cloudian-bak,cloudian_sys-
tem_info*.tar.gz,puppetserver*.log.zip"

cleanup_sysinfo_logs_timelimit

Retention period for Node Diagnostics packages. After a package reaches this age, Puppet will automatically
delete the package.

A Node Diagnostics package is created under a /var/log/cloudian/cloudian_sysinfo directory on a node if you
use the Collect Diagnostics feature for that node. For general information on Node Diagnostics see "Smart
Support and Diagnostics Feature Overview" (page 190).

This cleanup feature works only if you leave the Puppet daemons running on your HyperStore nodes (which is
the default behavior).

Specify this value as a number of days, hours, or minutes, with the value formatted as <n>d or <n>h or <n>m
respectively (such as 15d or 12h or 30m).

Default = 15d

Note When you use the CMC to collect diagnostics on a node, the UI gives you the option to have the
diagnostics package automatically uploaded to Cloudian Support, and also the option to have the sys-
tem delete the package immediately after it's been successfully uploaded to Cloudian Support. The
retention period set by cleanup_sysinfo_logs_timelimit comes into play only if you do not use the
"upload and then immediately delete" options.

path_style_access

Whether the CMC (and also the installer's basic validation test script) should use "path style" request formatting
when submitting S3 requests to the HyperStore S3 Service. In path style S3 requests, the bucket name is part
of the request URI rather than being part of the Host header value.

Options are:

l true — The CMC will use path style HTTP request formatting when submitting S3 requests to the Hyper-
Store S3 Service. The bucket name associated with the request will be in the request URI. For example:

PUT /bucket1/objectname HTTP/1.1

Host: s3-region1.mycompany.com

l false — The CMC will not use path style HTTP request formatting when submitting S3 requests to the
HyperStore S3 Service. Instead it will use "virtual host" style access. The bucket name associated with
the request will be in the HTTP Host header. For example:

PUT /objectname HTTP/1.1

Host: bucket1.s3-region1.mycompany.com

If the CMC (or any other S3 client applications that you are using) uses virtual host style access to the
HyperStore S3 Service, then your DNS environment must be configured to resolve this type of Host
value. See DNS Set-Up.

Note that this setting affects only the behavior of the CMC and the behavior of the installer's basic validation
test script, in their role as S3 clients. Meanwhile the HyperStore S3 Service supports both path style access
and virtual host style access -- regardless of which method is being used by S3 clients.

Default = true

To apply change, after Puppet propagation restart CMC

516

9.5. HyperStore Configuration Files

fips_enabled

If you set this to true, then on each HyperStore node, sshd (the OpenSSH server daemon) will support only
FIPS-approved ciphers. This prevents SSH clients from connecting with weaker, non-FIPS-approved ciphers.
For more information regarding FIPS, see "FIPS Support" (page 113).

If this setting is left at its default value of false, then sshd will support its full, default set of ciphers -- which
includes some ciphers that are not FIPS-approved as well as ciphers than are FIPS-approved.

Default = false

To apply change, after Puppet propagation restart the S3 Service and the CMC

HyperStore SERVICE Section
hyperstore_data_directory

A quote-enclosed, comma-separated list of mount points to use for S3 object storage. In a production envir-
onment, use dedicated disks for S3 object storage. Do not use the same disk(s) that are storing the OS and
Cassandra.

The system will automatically assign virtual nodes (vNodes) to each of your S3 data mount points, in a manner
that allocates an approximately equal total token range to each mount point. For more information about
HyperStore vNodes see "How vNodes Work" (page 42).

Do not change the hyperstore_data_directory setting once your cluster is operational.

Do not use symbolic links when specifying your mount points for the hyperstore_data_directory setting. The
HyperStore system does not support symbolic links for these directories.

Example of a multiple mount point configuration = "/cloudian1,/cloudian2,/cloudian3,/cloudian4"

Default = Set during installation based on operator input, if host has multiple disks. For hosts with only one
disk, default is /var/lib/cloudian

hyperstore_listen_ip

The IP interface on which each HyperStore Service node listens for data operations requests from clients. This
setting must match the cassandra_listen_address setting.

Specify this as an IP address alias. Puppet will use the alias to determine the actual IP address for each
node.

Options are %{::cloudian_ipaddress}, %{::ipaddress_eth#}, %{::ipaddress_lo}, or %{::ipaddress_bind#}

Default = %{::cloudian_ipaddress}

To apply change, after Puppet propagation restart HyperStore Service

hyperstore_timeout

For the S3 Service’s connections to the HyperStore Service, the transaction completion timeout (session
timeout) in milliseconds.

Default = 10000

To apply change, after Puppet propagation restart S3 Service

For a diagram showing the place of this timeout within the S3 request processing flow, see the description of
mts.properties.erb: "cassandra.cluster.CassandraThriftSocketTimeout" (page 554).

517

Chapter 9. System Configuration

hyperstore_connection_timeout

For the S3 Service’s connections to the HyperStore Service, the connection establishment timeout in mil-
liseconds.

Default = 10000

To apply change, after Puppet propagation restart S3 Service

For a diagram showing the place of this timeout within the S3 request processing flow, see the description of
mts.properties.erb: "cassandra.cluster.CassandraThriftSocketTimeout" (page 554).

hyperstore.maxthreads.repair

Maximum number of simultaneous client threads for one S3 Service node to use on HyperStore File System
data repairs automatically performed during read operations. For more information on the "repair on read"
mechanism see "Automated Data Repair Feature Overview" (page 150).

Default = 50

hyperstore_jetty_minThreads

Each HyperStore Service node maintains a thread pool to process incoming HTTP requests from clients (S3
Service nodes). Idle threads are terminated if not used within a timeout period — unless the number of threads
in the pool is down to the required minimum pool size, in which case the idle threads are kept.

The hyperstore_jetty_minThreads parameter sets the minimum number of threads to keep in the thread pool.

Default = 100

auto_repair_computedigest_run_number

This property configures the scheduled auto-repair feature such that every Nth run of hsstool repair (for rep-
licated object data) and hsstool repairec (for erasure coded object data) will use the "-computedigest" option
in order to detect and repair any data corruption on disk ("bit rot"). For example, if this property is set to 3, then
on each node every 3rd run of repair will use the "-computedigest" option and for each data center every 3rd
run of repairec will use the "-computedigest" option.

By default the auto-repair interval for repair is 30 days, and each individual node has its own every-30-days
repair schedule. So if for example you set auto_repair_computedigest_run_number to 3, then on a given node
the automatically triggered repair runs would be implemented like this:

l Day 0: repair without "-computedigest"

l Day 30: repair without "-computedigest"

l Day 60: repair with "-computedigest"

l Day 90: repair without "-computedigest"

l Day 120: repair without "-computedigest"

l Day 150: repair with "-computedigest"

l etc

By default the auto-repair interval for repairec is 29 days. With erasure coded data repair, running hsstool
repairec on any one node repairs all the erasure coded data in the local data center. Consequently the auto-
repair feature runs the command on just one randomly selected node in each data center every 29 days.

So if for example you set auto_repair_computedigest_run_number to 3, then for a given data center the auto-
matically triggered repairec runs would be implemented like this:

518

9.5. HyperStore Configuration Files

l Day 0: repairec without "-computedigest"

l Day 29: repairec without "-computedigest"

l Day 58: repairec with "-computedigest"

l Day 87: repairec without "-computedigest"

l Day 116: repairec without "-computedigest"

l Day 145: repairec with "-computedigest"

l etc

Setting auto_repair_computedigest_run_number to 1 would result in all auto-repair runs using "-com-
putedigest".

By default auto_repair_computedigest_run_number is set to 0, which disables using "-computedigest" for auto-
repair runs. So by default no auto-repair runs will use the "-computedigest" option.

Default = 0

Note Because it entails recalculating a fresh MD5 hash of each replica or erasure coded fragment on
the target node, using "-computedigest" on repair runs is an expensive operation in terms of resource
utilization.

Note The auto_repair_computedigest_run_number setting has no impact on hsstool repair or hsstool
repairec runs that you manually execute on a node. The setting only impacts the auto-repair feature.

hyperstore.maxthreads.write

Maximum number of simultaneous client threads for one S3 Service node to use on writes to the HyperStore
File System.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore.maxthreads.read

Maximum number of simultaneous client threads for one S3 Service node to use on reads of the HyperStore
File System.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_maxperrouteconnections

The maximum allowed number of concurrently open connections between each S3 Service node and each
HyperStore Service node. This allows for limiting the traffic load between each front-end S3 Service node (as it
processes incoming requests from S3 clients) and any single HyperStore Service node.

Note that each of your S3 Service nodes has its own pool of connections to the HyperStore storage layer, so
the total possible connections from the S3 Service as a whole to a single HyperStore Service node would be
the number of S3 Service nodes multiplied by the value of "Max Connections from One S3 Service Node to
One HyperStore Service Node".

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

519

Chapter 9. System Configuration

hyperstore_maxtotalconnections

The maximum allowed number of concurrently open connections between each S3 Service node and all
HyperStore Service nodes, combined. This allows for limiting the traffic load between each front-end S3 Ser-
vice node (as it processes incoming requests from S3 clients) and the whole back-end HyperStore storage
layer.

Note that each of your S3 Service nodes has its own pool of connections to the HyperStore storage layer, so
the total possible connections from the front-end S3 Service as a whole to the back-end HyperStore storage
layer as a whole would be the number of S3 Service nodes multiplied by the value of "Max Connections from
One S3 Service Node to All HyperStore Service Nodes".

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_jetty_maxThreads

Each HyperStore Service node maintains a thread pool to process incoming HTTP requests from clients (S3
Service nodes). When there is a request to be serviced, a free thread from the pool is used and then returned
to the pool afterward. If a thread is needed for a job but no thread is free, a new thread is created and added to
the pool — unless the maximum allowed number of threads in the pool has been reached, in which case
queued jobs must wait for a thread to become free.

The hyperstore_jetty_maxThreads parameter sets the maximum number of threads to allow in the thread pool.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_messaging_service_threadpool

Maximum size of the thread pool used by the HyperStore inter-node messaging service. When there is a new
task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_repair_session_threadpool

Maximum size of the thread pool used for hsstool repair or hsstool repairec operations. When there is a new
task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_repair_digest_index_threadpool

Maximum size of the thread pool used for reading file digests on a node in order to build the index required by
Merkle Tree based repair (the default hsstool repair type). When there is a new task and there are no idle
threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

520

9.5. HyperStore Configuration Files

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_rangerepair_threadpool

Maximum size of the thread pool used for running multiple range repair tasks in parallel during hsstool repair.
When there is a new task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_stream_outbound_threadpool

Maximum size of the thread pool used for streaming files from one HyperStore node to another during Merkle
Tree based hsstool repair. When there is a new task and there are no idle threads available in the thread
pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_downloadrange_session_threadpool

Maximum size of the thread pool used for range download sessions conducted by a HyperStore Service node.
When there is a new task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_uploadrange_session_threadpool

Maximum size of the thread pool used for range upload sessions conducted by a HyperStore Service node.
When there is a new task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_decommission_threadpool

Maximum size of the thread pool used for uploading files away from a node that is being decommissioned.
When there is a new task and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

521

Chapter 9. System Configuration

hyperstore_cleanup_session_threadpool

This thread pool size limit determines the maximum number of blobs (object replicas or erasure coded frag-
ments) to process in parallel within each cleanup "job" taking place on a node. Processing a blob entails check-
ing the blob’s corresponding object metadata to determine whether the blob is supposed to be where it is or
rather should be deleted.

The maximum number of "jobs" running in parallel is set by "cleanupjobs.threadpool.corepoolsize" (page
549) in hyperstore-server.properties.erb.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

hyperstore_auto_repair_threadpool

Maximum size of the thread pool used by the HyperStore auto-repair feature. When there is an auto-repair to
kick off and there are no idle threads available in the thread pool:

l If fewer than this many threads are in the thread pool, the thread pool executor will create a new thread.

l If this many or more threads are in the thread pool, the thread pool executor will queue the new task.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

Note For more information about the auto-repair feature see "Automated Data Repair Feature Over-
view" (page 150).

hyperstore_repairec_sessionscan_threadpool

During an hsstool repairec operation, the threads in this thread pool are tasked with identifying erasure coded
objects in the system and batching them for evaluation. This parameter sets the maximum size of the thread
pool per node.

Default = 50

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairECSes-
sionScanThreadPoolCorePoolSize)

hyperstore_repairec_digestrequest_threadpool

During an hsstool repairec operation, the threads in this thread pool are tasked with reading the digests asso-
ciated with batches of erasure coded objects, to determine whether any of those objects need repair. This para-
meter sets the maximum size of the thread pool per node.

Default = 30

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairECDi-
gestRequestThreadPoolFixedPoolSize)

hyperstore_repairec_task_threadpool

During an hsstool repairec operation, the threads in this thread pool are tasked with repairing erasure coded
objects that have been determined to need repair. This parameter sets the maximum size of the thread pool
per node.

522

9.5. HyperStore Configuration Files

Default = 60

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairECTaskThreadPoolCorePoolSize)

hyperstore_repairec_rocksdbscan_threadpool

During an hsstool repairec operation, the threads in this thread pool enable concurrent reads of digest data in
each RocksDB instance, as digest read requests come in from multiple digest request threads on multiple
nodes. This parameter sets the maximum size of the thread pool per RocksDB instance.

Default = 30

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairECRock-
sDBScanThreadPoolFixedPoolSize)

hyperstore_disk_check_interval

The interval (in minutes) at which each HyperStore Service node will run a check to see if there is significant
imbalance in disk usage on the node. If an imbalance is found in excess of that configured by disk.bal-
ance.delta, then one or more tokens are automatically moved from the over-used disk(s) to one or more less-
used disk(s) on the same host. For more information see "Automated Disk Management Feature Overview"
(page 157).

Default = 4320 (72 hours)

To apply change, after Puppet propagation restart the HyperStore Service

Note This feature applies only to HyperStore data disks (on which are stored S3 object data). It does
not apply to disks that are storing only the OS and Cassandra.

S3/ADMIN SERVICES Section
phonehome_proxy_host

If you want HyperStore to use a local forward proxy when the Smart Support (or "Phone Home") feature sends
daily system diagnostics packages to Cloudian Support, use this setting to specify the hostname or IP address
of the proxy.

Default = empty

To apply change, after Puppet propagation restart the S3 Service

Note For this feature you should configure your forward proxy to support access to *.s3-sup-
port.cloudian.com (that is, to any sub-domain of s3-support.cloudian.com).

Note By default any proxy settings that you configure for the daily Smart Support uploads will also
apply to the sending of on-demand Node Diagnostics packages (triggered by your using the CMC's
Collect Diagnostics function). If you want to use a different proxy for Node Diagnostics sending than
you do for the daily Smart Support upload, use the sysinfo.proxy.* settings in mts.properties.erb to sep-
arately configure proxy information for Node Diagnostics sending.

523

Chapter 9. System Configuration

For more background information on these features see "Smart Support and Diagnostics Feature
Overview" (page 190).

phonehome_proxy_port

If you want HyperStore to use a local forward proxy when the Smart Support (or "Phone Home") feature sends
daily system diagnostics packages to Cloudian Support, use this setting to specify the proxy’s port number.

Default = empty

To apply change, after Puppet propagation restart the S3 Service

phonehome_proxy_username

If you want HyperStore to use a local forward proxy when the Smart Support (or "Phone Home") feature sends
daily system diagnostics packages to Cloudian Support, use this setting to specify the username that Hyper-
Store should use when connecting to the proxy (if a username and password are required by the proxy).

Default = empty

phonehome_proxy_password

If you want HyperStore to use a local forward proxy when the Smart Support (or "Phone Home") feature sends
daily system diagnostics packages to Cloudian Support, use this setting to specify the password that Hyper-
Store should use when connecting to the proxy (if are username and password are required by the proxy).

Default = empty

phonehome_uri

S3 URI to which to upload system-wide diagnostics data each day. By default this is the S3 URI for Cloudian
Support.

If you set this to a different S3 destination, include the HTTP or HTTPS protocol part of the URI (http:// or
https://).

Default = https://s3-support.cloudian.com:443

To apply change, after Puppet propagation restart the S3 Service

Note If you set phonehome_uri to a URI for your own HyperStore S3 Service (rather than the Cloudian
Support URI), and if your S3 Service is using HTTPS, then your S3 Service’s SSL certificate must be a
CA-verified certificate — not a self-signed certificate. By default the phone home function cannot
upload to an HTTPS URI that’s using a self-signed certificate. If you require that the upload go to an
HTTPS URI that’s using a self-signed certificate, contact Cloudian Support for guidance on modifying
the phone home launch script. For information on HTTPS set-up for the S3 Service, see "HTTPS Sup-
port (TLS/SSL)" (page 114).

phonehome_bucket

l If you leave phonehome_uri at its default value -- which is Cloudian Support S3 URI -- you can leave
the phonehome_bucket, phonehome_access_key, and phonehome_secret_key properties empty. The
Smart Support feature will automatically extract the Cloudian Support S3 bucket name and security cre-
dentials from your encrypted HyperStore license file.

524

9.5. HyperStore Configuration Files

l If you set phonehome_uri to an S3 URI other than the Cloudian Support URI, set the phonehome_
bucket, phonehome_access_key, and phonehome_secret_key properties to the destination bucket
name and the applicable S3 access key and secret key.

Default = empty

To apply change, after Puppet propagation restart the S3 Service

phonehome_access_key

See phonehome_bucket.

Default = empty

To apply change, after Puppet propagation restart the S3 Service

phonehome_secret_key

See phonehome_bucket.

Default = empty

To apply change, after Puppet propagation restart the S3 Service

phonehome_gdpr

To have the Smart Support feature comply with the European Union's General Data Protection Regulation
(GDPR) requirements, set this to true. The impact of this setting is as follows:

l With phonehome_gdpr set to true, the Smart Support feature will remove user IDs and client IP
addresses from the copies of the S3 request log (cloudian-request-info.log) and S3 application log
(cloudian-s3.log) that are uploaded to Cloudian Support each day. However the user IDs and client IP
addresses will remain in the original S3 request and application logs on your HyperStore nodes. In the
log file copies that get sent to Cloudian the user ID and IP address fields will say "Not Available".

l With phonehome_gdpr set to false, user IDs and client IP addresses will be not be removed from the S3
request and application log copies that are uploaded to Cloudian Support each day.

Default = false

To apply change, after Puppet propagation restart the S3 Service

Note If you set this to true, the system will also remove user IDs and client IP addresses from the cop-
ies of logs that get sent to Cloudian Support in on-demand Node Diagnostics packages (by way of the
Collect Diagnostics feature), while leaving this information in the original logs on your nodes.

admin_auth_user

If the Admin Service is configured to require HTTP(S) Basic Authentication from clients (if admin_auth_
enabled is set to true), this is the username for clients to use when submitting HTTP(S) requests to the Admin
Service.

Default = sysadmin

To apply change, after Puppet propagation restart S3 Service and CMC

admin_auth_pass

If the Admin Service is configured to require HTTP(S) Basic Authentication from clients (if admin_auth_

525

Chapter 9. System Configuration

enabled is set to true), this is the password for clients to use when submitting HTTP(S) requests to the Admin
Service. In this setting the password is configured as a comma-separated pair of "<Jetty_obfuscated_pass-
word>,<cleartext_password>".

For information about creating a Jetty-obfuscated password, see "HTTP/S Basic Authentication for Admin
API Access" (page 748).

Default if original HyperStore install was version 7.2.2 or newer = "<obfuscated>,<cleartext>" of a random pass-
word generated by the system upon installation.

Default if original HyperStore install was older than version 7.2.2 = "1uvg1x1n1tv91tvt1x0z1uuq,public"

To apply change, after Puppet propagation restart S3 Service and CMC

admin_auth_realm

If the Admin Service is configured to require HTTP(S) Basic Authentication from clients (if admin_auth_
enabled is set to true), this is the realm name used by the Admin Service for Basic Authentication purposes.

Default = CloudianAdmin

To apply change, after Puppet propagation restart S3 Service and CMC

admin_auth_enabled

Whether to have the Admin Service require HTTP(S) Basic Authentication from connecting clients. Set to true to
have the Admin Service require Basic Authentication, or false to not require it.

Default if original HyperStore install was version 6.0.2 or newer = true

Default if original HyperStore install was older than version 6.0.2 = false

To apply change, after Puppet propagation restart S3 Service

admin_secure

If set to "true", the Admin Service will accept only HTTPS connections from clients (through port 19443 by
default). If set to "false", the Admin Service will allow regular HTTP connections from clients (through port
18080) as well as HTTPS connections (through port 19443).

This setting also controls CMC client-side behavior when the CMC calls the Admin Service for tasks such as
creating users, creating storage policies, and retrieving system monitoring data. If admin_secure is "true", the
CMC will exclusively use HTTPS when making requests to the Admin Service. If admin_secure is "false", the
CMC will exclusively use regular HTTP when making requests to the Admin Service.

Note however that even if you set admin_secure to "false" -- so that the Admin Service accepts HTTP requests
as well as HTTPS requests; and so that the CMC sends only HTTP requests to the Admin Service -- the Admin
Service's HTTPS port will still be accessed by other HyperStore system components. In particular, some of the
"System cron Jobs" (page 473) use HTTPS to make calls to the Admin Service.

Default = true

Note If your original HyperStore install was older than version 6.0.2 and you have upgraded to the cur-
rent version, the admin_secure setting does not appear in the common.csv file and an internal default
value of "false" is used. In such systems, if you want the Admin Service to accept only HTTPS con-
nections from clients, add the line admin_secure,true to the common.csv file.

To apply change, after Puppet propagation restart S3 Service and CMC

526

9.5. HyperStore Configuration Files

cmc_admin_secure_port

If the CMC is using HTTPS to connect to the Admin Service (as it will if admin_secure is set to "true"), this is the
Admin Service listening port number to which it will connect. Note that this setting controls CMC client-side con-
figuration, not Admin Service configuration.

Default = 19443

To apply change, after Puppet propagation restart CMC.

user_password_min_length

For users' CMC passwords, the minimum required length in number of characters. The system will reject a
user's attempt to set a new password that does not meet this requirement.

Default = 9

To apply change, after Puppet propagation restart the S3 Service and CMC.

user_password_dup_char_ratio_limit

When a CMC user creates a new password, no more than this percentage of characters in the new password
can be characters that are in the user's current password. The system will reject a user's attempt to set a new
password that does not meet this requirement.

If this is set to 0, then none of the characters in a user's new password can be characters that are in the user's
current password.

If this is set to -1, then this password requirement is disabled.

Default = -1

To apply change, after Puppet propagation restart the S3 Service and CMC.

user_password_unique_generations

When a CMC user creates a new password, the new password cannot be the same as one of the user's past
passwords, going back this many passwords into the user's password history. The system will reject a user's
attempt to set a new password that does not meet this requirement.

For example if you set this to 10, then a user's new password cannot match against any of the user's past 10
passwords.

If this is set to 0, then this password requirement is disabled.

Default = 0

To apply change, after Puppet propagation restart the S3 Service and CMC.

user_password_rotation_graceperiod

When a CMC user creates a new password, they must wait at least this many days before replacing that pass-
word with another new password.

If this is set to 0, then this password requirement is disabled.

Default = 0

To apply change, after Puppet propagation restart the S3 Service and CMC.

user_password_rotation_expiration

After a CMC user has had the same password for this many days, the password expires and the CMC will

527

Chapter 9. System Configuration

require the user to create a new password before they can log in again. This will be enforced by the CMC's
login function.

If this is set to 0, then this password requirement is disabled.

Default = 0

To apply change, after Puppet propagation restart the S3 Service and CMC.

iam_service_enabled

If this is set to "true" then HyperStore's IAM Service is enabled and IAM functionality will display in the CMC. For
more information see "HyperStore Support for the AWS IAM API" (page 991).

Default = true

To apply change, after Puppet propagation restart the IAM Service.

iam_port

Port on which the HyperStore IAM Service listens for regular HTTP connections.

Default = 16080

To apply change, after Puppet propagation restart the IAM Service.

iam_secure

If set to "true", the IAM Service will accept only HTTPS connections from clients (through port 16443 by default).
If set to "false", the IAM Service will allow regular HTTP connections from clients (through port 16080) as well
as HTTPS connections (through port 16443).

This setting also controls CMC client-side behavior when the CMC calls the IAM Service for tasks such as cre-
ating IAM or creating IAM policies. If iam_secure is "true", the CMC will exclusively use HTTPS when making
requests to the IAM Service. If iam_secure is "false", the CMC will exclusively use regular HTTP when making
requests to the IAM Service.

Default = false

To apply change, after Puppet propagation restart the IAM Service and the CMC.

iam_secure_port

Port on which the HyperStore IAM Service listens for HTTPS connections.

Default = 16443

To apply change, after Puppet propagation restart the IAM Service.

iam_service_endpoint

IAM Service endpoint. This setting is controlled by the installer. Do not edit this setting directly. For instructions
on changing the IAM Service endpoint, see "Changing S3, Admin, CMC, or IAM Service Endpoints" (page
600).

Default = Set during installation based on operator input

cloudian_s3admin_min_threads

Minimum number of threads to keep in each Admin Service node’s HTTP request processing thread pool.

528

9.5. HyperStore Configuration Files

The Admin Service uses a thread pool to process incoming HTTP requests from clients. An initial pool of
threads is created at server initialization time, and additional threads may be added if needed to process
queued jobs. Idle threads are terminated if not used within a thread timeout period — unless the number of
threads in the pool is down to cloudian_s3admin_min_threads. If only this many threads are in the pool, then
threads are kept open even if they’ve been idle for longer than the thread timeout.

Default = 10

To apply change, after Puppet propagation restart S3 Service

cloudian_s3admin_max_threads

Maximum number of threads to allow in the Admin Service’s HTTP request processing thread pool. If there are
fewer than this many threads in the pool, new threads may be created as needed in order to handle queued
HTTP request processing jobs. If the maximum thread pool size is reached, no more threads will be created —
instead, queued HTTP request processing jobs must wait for an existing thread to become free.

Default = 50

To apply change, after Puppet propagation restart S3 Service

cloudian_s3admin_max_idletime

When the Admin Service processes HTTP requests from clients, the maximum allowed connection idle time in
milliseconds. If this much idle time passes before a new request is received on an open connection with a cli-
ent, or if this much idle time passes during the reading of headers and content for a request, or if this much idle
time passes during the writing of headers and content of a response, the connection is closed.

Default = 60000

To apply change, after Puppet propagation restart S3 Service

cloudian_s3admin_lowres_maxidletime

Special, "low resource" maximum idle time to apply to Admin Service HTTP connections when the number of
simultaneous connections to an Admin Service node exceeds cloudian_s3admin_lowres_maxconnections.
Configured in milliseconds. With this setting, you can have the Admin Service be less tolerant of connection
idle time during times of high concurrent usage. (For general idle timer behavior, see the description of cloud-
ian_s3admin_max_idletime above.)

Default = 5000

To apply change, after Puppet propagation restart S3 Service

cloudian_s3admin_lowres_maxconnections

If the number of simultaneous HTTP connections to an Admin Service node exceeds this value, the special idle
timer configured by cloudian_s3admin_lowres_maxidletime is applied to that node rather than the usual cloud-
ian_s3admin_max_idletime.

Default = 1000

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_max_threads

Maximum number of threads to allow in the S3 Service’s HTTP request processing thread pool. If there are
fewer than this many threads in the pool, new threads may be created as needed in order to handle queued
HTTP request processing jobs. If the maximum thread pool size is reached, no more threads will be created —

529

Chapter 9. System Configuration

instead, queued HTTP request processing jobs must wait for an existing thread to become free.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

cloudian_s3_max_idletime

When the S3 Service processes HTTP requests from clients, the maximum allowed connection idle time in mil-
liseconds. If this much idle time passes before a new request is received on an open connection with a client,
or if this much idle time passes during the reading of headers and content for a request, or if this much idle time
passes during the writing of headers and content of a response, the connection is closed.

Default = 60000

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_lowres_maxidletime

Special, low resource maximum idle timer to apply to S3 Service HTTP connections when the number of sim-
ultaneous connections to an S3 Service node exceeds cloudian_s3_lowres_maxconnections. Configured in
milliseconds.

Default = 5000

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_lowres_maxconnections

If the number of simultaneous HTTP connections to an S3 Service node exceeds this value, the special idle
timer configured by cloudian_s3_lowres_maxidletime is applied to that node.

Default = 2000

To apply change, after Puppet propagation restart S3 Service

cloudian_tiering_useragent

User agent string used by HyperStore when it acts as an S3 client for auto-tiering to an external S3 system.

Default = "APN/1.0 Cloudian/1.0 HyperStore/"

To apply change, after Puppet propagation restart the S3 Service

s3_proxy_protocol_enabled

If you are using HAProxy as the load balancer in front of your S3 Service -- or a different load balancer that
supports the PROXY Protocol -- you can set s3_proxy_protocol_enabled to true if you want the S3 Service to
support the PROXY Protocol. If you do so, the following will happen:

l The S3 Server will create dedicated PROXY Protocol connectors listening on port 81 (for regular
PROXY Protocol) and port 4431 (for PROXY Protocol with SSL/TLS). These connectors will be enabled
and configured in s3.xml.erb. By default these connectors are disabled that template.

l If you configure your load balancer to use the PROXY Protocol for communicating with the S3 Service,
the load balancer when relaying each S3 request to the S3 Service will pass along the originating cli-
ent's IP address.

Note For guidance on load balancer configuration consult with your Cloudian Sales Engin-
eering or Professional Services representative.

530

http://www.haproxy.org/
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

9.5. HyperStore Configuration Files

l In the S3 request log, the S3 request entries will then show the true client IP address as the source
address, rather than showing the loader balancer's IP address as the source. Also, the true client IP
address for each request will be available to support using S3 bucket policies that filter based on
source IP address; or billing rating plans that "whitelist" certain source IP addresses.

Setting s3_proxy_protocol_enabled to true is appropriate if you're using HAProxy for load balancing -- or a dif-
ferent load balancer that supports the PROXY Protocol -- and you want S3 Service request logging to show the
true origin address associated with S3 requests; and/or you want to implement bucket policies or rating plans
that are responsive to the origin address. If you're using a load balancer that supports PROXY Protocol, using
this protocol is the preferred method for providing the originating client IP address to the S3 layer, rather than
using the X-Forwarded-for header.

Note If you intend to use the PROXY Protocol with TLS/SSL (on S3 Service listening port 4431) you
must set up TLS/SSL for the S3 Service, if you have not already done so. For instructions see "HTTPS
Support (TLS/SSL)" (page 114).

If s3_proxy_protocol_enabled is set to true then when you configure TLS/SSL for the S3 Service your
configuration information will be applied to PROXY Protocol port 4431 as well as to the regular S3
HTTPS port 443.

Default = false

To apply change, after Puppet propagation restart the S3 Service

cloudian_s3_heap_limit

Maximum heap size limit for the S3 Service application. The JAVA_OPTS -Xmx value passed to the JVM will
be the lower of this value and the percent-of-system-RAM value set by cloudian_s3_max_heap_percent.

Default = 30g

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_max_heap_percent

Maximum heap size for the S3 Service application, as a percentage of host system RAM. The JAVA_OPTS -
Xmx value passed to the JVM will be the lower of this value and the limiting value set by cloudian_s3_heap_
limit.

Default = 15

To apply change, after Puppet propagation restart S3 Service

cloudian_hss_heap_limit

Maximum heap size limit for the HyperStore Service application. The JAVA_OPTS -Xmx value passed to the
JVM will be the lower of this value and the percent-of-system-RAM value set by cloudian_hss_max_heap_per-
cent.

Default = 30g

To apply change, after Puppet propagation restart HyperStore Service

cloudian_hss_max_heap_percent

Maximum heap size for the HyperStore Service application, as a percentage of host system RAM. The JAVA_
OPTS -Xmx value passed to the JVM will be the lower of this value and the limiting value set by cloudian_hss_

531

Chapter 9. System Configuration

heap_limit.

Default = 15

To apply change, after Puppet propagation restart HyperStore Service

cloudian_admin_heap_limit

Maximum heap size limit for the Admin Service application. The JAVA_OPTS -Xmx value passed to the JVM
will be the lower of this value and the percent-of-system-RAM value set by cloudian_admin_max_heap_per-
cent.

Default = 16g

To apply change, after Puppet propagation restart S3 Service

cloudian_admin_max_heap_percent

Maximum heap size for the Admin Service application, as a percentage of host system RAM. The JAVA_OPTS
-Xmx value passed to the JVM will be the lower of this value and the limiting value set by cloudian_admin_
heap_limit.

Default = 5

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_init_heap_percent

Initial heap size (JAVA_OPTS -Xms value) for the S3 Service application, as a percentage of the -Xmx value.

Default = 25

To apply change, after Puppet propagation restart S3 Service

cloudian_hss_init_heap_percent

Initial heap size (JAVA_OPTS -Xms value) for the HyperStore Service application, as a percentage of the -Xmx
value.

Default = 25

To apply change, after Puppet propagation restart HyperStore Service

cloudian_admin_init_heap_percent

Initial heap size (JAVA_OPTS -Xms value) for the Admin Service application, as a percentage of the -Xmx
value.

Default = 25

To apply change, after Puppet propagation restart S3 Service

cloudian_s3_new_heap_percent

New heap size (JAVA_OPTS -Xmn value) for the S3 Service application, as a percentage of the -Xmx value.
This is the heap size specifically for "young generation" objects.

Default = 25

To apply change, after Puppet propagation restart S3 Service

cloudian_hss_new_heap_percent

New heap size (JAVA_OPTS -Xmn value) for the HyperStore Service application, as a percentage of the -Xmx

532

9.5. HyperStore Configuration Files

value. This is the heap size specifically for "young generation" objects.

Default = 25

To apply change, after Puppet propagation restart HyperStore Service

cloudian_admin_new_heap_percent

New heap size (JAVA_OPTS -Xmn value) for the Admin Service application, as a percentage of the -Xmx
value. This is the heap size specifically for "young generation" objects.

Default = 25

To apply change, after Puppet propagation restart S3 Service

cassandras_per_s3node

Maximum number of Cassandra nodes to which an individual S3 Service node may keep simultaneous live
connections.

Default = 9

To apply change, after Puppet propagation restart S3 Service

cassandra_max_active

The maximum allowed number of simultaneously active connections in a Cassandra connection pool. If this
limit has been reached and a thread requires a new connection to Cassandra, the thread will wait for a period
configured by cassandra.cluster.MaxWaitTimeWhenExhausted in mts.properties.erb (default 9 seconds) before
returning an error to the client.

If this is set to a negative value (e.g. -1) this disables the limit on active connections.

This setting is controlled by a HyperStore performance optimization script that takes the local hardware envir-
onment into account. Do not manually edit this setting -- your edits will not be applied by the system.

AES-256 Encryption Section
cloudian_s3_aes256encryption_enabled

This setting is for enabling AES-256 in HyperStore, for use with server-side encryption. If AES-256 is not
enabled, AES-128 is used instead.

Default = false

REDIS Section
redis_credentials_master_port

Port on which the Redis Credentials master node listens for data storage requests from clients. The Redis Cre-
dentials slave nodes will listen on this port as well.

Default = 6379

To apply change, after Puppet propagation restart Redis Credentials, S3 Service, and HyperStore Service

redis_monitor_subscription_check

This setting controls certain aspects of HyperStore services start-up behavior, including during a HyperStore
version upgrade operation. Leave this setting at its default value.

Default = false

533

Chapter 9. System Configuration

redis_qos_master_port

Port on which the Redis QoS master node listens for data storage requests from clients. The Redis QoS slave
nodes will listen on this port as well.

Default = 6380

To apply change, after Puppet propagation restart Redis QoS, S3 Service, and HyperStore Service

redis_monitor_listener_port

Port on which the Redis Monitor can be queried for information about the Redis cluster state, via the Redis
Monitor CLI.

Default = 9078

To apply change, after Puppet propagation restart Redis Monitor Service

redis_lib_directory

Directory in which to store Redis data files.

Default = /var/lib/redis

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

redis_log_directory

Directory in which to store Redis log files.

Default = /var/log/redis

To apply change, after Puppet propagation restart Redis Credentials and Redis QoS

CASSANDRA Section
cassandra_max_heap_size

Max Heap size setting (memory allocation) for the Cassandra application. If this setting is assigned a value,
this value will be used for MAX_HEAP_SIZE in cassandra-env.sh. By default the cassandra_max_heap_size
setting is commented out and not used by the system. Instead, the default behavior for Cloudian HyperStore is
for MAX_HEAP_SIZE in cassandra-env.sh to be automatically set based on the host’s RAM size.

Default = commented out and unused

To apply change, after Puppet propagation restart Cassandra Service

cassandra_enable_gc_logging

Enable Java garbage collection (GC) logging for Cassandra. The log is written to /var/log/cassandra/gc.log.

Default = true

To apply change, after Puppet propagation restart Cassandra Service

Note GC logging is also enabled for the S3 Service, Admin Service, and HyperStore Service. These
GC logs are under /var/log/cloudian and are named s3-gc.log, admin-gc.log, and hss-gc.log, respect-
ively.

cassandra_heapdump_on_oomemerr

534

9.5. HyperStore Configuration Files

Whether to enable Java heap dump on a Cassandra application out-of-memory error. Set to "false" to disable
heap dumps on out-of-memory errors. This removes the JVM_OPTS -XX:+HeapDumpOnOutOfMemoryError
option from cassandra-env.sh.

Default = false

To apply change, after Puppet propagation restart Cassandra Service

cassandra_lib_directory

Directory in which to store Cassandra application state data.

Default = /var/lib/cassandra

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

cassandra_log_directory

Directory in which to store Cassandra application log files.

Default = /var/log/cassandra

To apply change, after Puppet propagation restart Cassandra Service

cassandra_saved_cache_directory

Directory in which to store the Cassandra saved_caches file.

Default = /var/lib/cassandra

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

cassandra_commit_log_directory

Directory in which to store the Cassandra commit log file.

Default = Set during installation based on operator input, if host has multiple disks. For hosts with only one
disk, default is /var/lib/cassandra_commit

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

cassandra_data_directory

Directory in which to store Cassandra data files. By default, Cassandra is used only for storing S3 object
metadata (metadata associated with individual objects) and service metadata such as account information,
usage data, and system monitoring data.

Default = Set during installation based on operator input, if host has multiple disks. For hosts with only one
disk, default is /var/lib/cassandra/data

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

IMPORTANT ! The Cassandra data directory should not be mounted on a shared file system such as a
NAS device.

cassandra_port

Port on which Cassandra listens for data operations requests from clients.

Default = 9160

535

Chapter 9. System Configuration

To apply change, after Puppet propagation restart Cassandra Service

concurrent_compactors

Number of simultaneous Cassandra compactions to allow, not including validation "compactions" for anti-
entropy repair. Simultaneous compactions can help preserve read performance in a mixed read/write work-
load, by mitigating the tendency of small sstables to accumulate during a single long running compaction.

Default = 2

cassandra_tombstone_warn_threshold

If while processing a Cassandra query it is found that a single row within a column family has more than this
many tombstones (deleted data markers), a tombstone warning is logged in the Cassandra application log.

An example of query that can potentially encounter a high number of tombstones is a metadata query triggered
by an S3 Get Bucket (List Objects) operation.

Default = 50000

To apply change, after Puppet propagation restart Cassandra

cassandra_tombstone_failure_threshold

If while processing a Cassandra query it is found that a single row within a column family has more than this
many tombstones (deleted data markers), the query fails and a tombstone error is logged in the Cassandra
application log.

An example of query that can potentially encounter a high number of tombstones is a metadata query triggered
by an S3 Get Bucket (List Objects) operation.

Default = 100000

To apply change, after Puppet propagation restart Cassandra

cassandra_tombstone_cleanup_threshold

If while processing a Cassandra query it is found that a single row within a CLOUDIAN_METADATA or MPSes-
sion column family has more than this many tombstones (deleted data markers), a tombstone purge process is
automatically triggered for that column family.

An example of query that can potentially encounter a high number of tombstones is a metadata query triggered
by an S3 Get Bucket (List Objects) operation.

Default = 75000

To apply change, after Puppet propagation restart the S3 Service

Note You can also manually trigger a tombstone purge for a specific bucket, as described in "Tomb-
stone Cleanup Processing" (page 476).

cassandra_tombstone_gcgrace

While doing a purge of tombstones (deleted data markers) in a CLOUDIAN_METADATA or MPSession column
family, the system will not purge tombstones that are fewer than this many seconds old.

If this is set to 0, then no tombstones are exempted from the purge.

Default = 0

536

9.5. HyperStore Configuration Files

To apply change, after Puppet propagation restart the S3 Service

cassandra_listen_address

For each Cassandra node, the IP interface on which the node will listen for cluster management com-
munications from other Cassandra nodes in the cluster. Specify this as an IP address alias. Puppet will use
the alias to determine the actual IP address for each node.

Options are %{::cloudian_ipaddress}, %{::ipaddress_eth#}, %{::ipaddress_lo}, or %{::ipaddress_bind#}

Default = %{::cloudian_ipaddress}

To apply change, after Puppet propagation restart Cassandra Service

cassandra_rpc_address

For each Cassandra node, the IP interface on which the node will listen for data operations requests from cli-
ents, via Thrift RPC. Specify this as an IP address alias. Puppet will use the alias to determine the actual IP
address for each node.

Options are %{::cloudian_ipaddress}, %{::ipaddress_eth#}, %{::ipaddress_lo}, or %{::ipaddress_bind#}

If desired, this can be the same IP address alias as used for cassandra_listen_address.

Default = %{::cloudian_ipaddress}

If you want to change this for a HyperStore system that’s already in operation, consult with Cloudian Support.

cassandra_default_node_datacenter

This instance of this setting is not used. Instead, the instance of cassandra_default_node_datacenter in
region.csv is used. Typically you should have no need to edit that setting.

Default = commented out

CMC Section
admin_whitelist_enabled

Whether to enable the billing "whitelist" feature that allows favorable billing terms for a specified list of source
IP addresses or subnets. If this feature is enabled, whitelist management functionality displays in the CMC.
This functionality is available only to HyperStore system administrators, not to group admins or regular users.

Default = true

To apply change, after Puppet propagation restart S3 Service and CMC

cmc_log_directory

Directory in which to store CMC application logs.

Default = /var/log/cloudian

To apply change, after Puppet propagation restart CMC

cmc_admin_host_ip

Fully qualified domain name for the Admin Service. The CMC connects to this service.

If you have multiple service regions for your HyperStore system, this FQDN must be the one for the Admin Ser-
vice in your default service region.

Default = Set during installation based on operator input.

537

Chapter 9. System Configuration

To apply change, after Puppet propagation restart CMC.

cmc_cloudian_admin_user

For the CMC, the login user name of the default system admin user. The system admin will use this user name
to log into the CMC.

Default = admin

This cannot be changed.

Note The default password for the default CMC system admin user is "public". You can change this
password when you are logged into the CMC as the default admin user. Hold your cursor over the user
name that displays in the upper right of the screen (by default, "Admin"), then select the Security Cre-
dentials option and change the password.

cmc_domain

Service endpoint (fully qualified domain name) for the CMC. This endpoint must be resolvable for CMC clients.

Default = Set during installation based on operator input.

To change this endpoint, use the "Installer Advanced Configuration Options" (page 501).

cmc_web_secure

Whether the CMC should require HTTPS for all incoming client connections, true or false.

Set this property to "true" to require HTTPS. In this mode of operation, requests incoming to the CMC’s regular
HTTP port will be redirected to the CMC’s HTTPS port.

Set this property to "false" to allow clients to connect through regular HTTP. In this mode of operation, requests
incoming to the CMC’s HTTPS port will be redirected to the CMC’s regular HTTP port.

Default = true

To apply change, after Puppet propagation restart CMC.

cmc_http_port

Port on which the CMC listens for regular HTTP requests.

Default = 8888

To apply change, after Puppet propagation restart CMC.

cmc_https_port

Port on which the CMC listens for HTTPS requests.

Default = 8443

To apply change, after Puppet propagation restart CMC.

cmc_admin_secure_ssl

If the CMC is using HTTPS to connect to the Admin Service (as it will if "admin_secure" (page 526) is set to
"true"), this setting controls the CMC's requirements regarding the Admin Service's SSL certificate:

538

9.5. HyperStore Configuration Files

l If set to "true", then when the CMC makes HTTPS connections to the Admin Service the CMC's HTTPS
client will require that the Admin Service's SSL certificate be CA validated (or else will drop the con-
nection).

l If set to "false", then when the CMC makes HTTPS connections to the Admin Service the CMC's HTTPS
client will allow the Admin Service's SSL certificate to be self-signed.

Note Note that the SSL certificate that is used with the Admin Service by default is self-signed.

Default = false

To apply change, after Puppet propagation restart CMC.

cmc_application_name

Name of the CMC web application, to be displayed in the URL paths for the various CMC UI pages. The CMC’s
URL paths are in the form https://<host>:<port>/<application_name>/<page>.htm.

Use only alphanumeric characters. Do not use spaces, dashes, underscores, or other special characters..

Default = Cloudian (and so URL paths are in form https://<host>:<port>/Cloudian/<page>.htm. For example
https://enterprise2:8443/Cloudian/dashboard.htm).

To apply change, after Puppet propagation restart CMC.

cmc_storageuri_ssl_enabled

If this is set to "true", the CMC uses HTTPS to connect to the HyperStore S3 Service (in implementing the CMC
Buckets & Objects functionality). If "false", the CMC uses regular HTTP to connect to the HyperStore S3 Ser-
vice.

Do not set this to "true" unless you have set up HTTPS for your HyperStore S3 Service (following the instruc-
tions in "HTTPS Support (TLS/SSL)" (page 114) . By default the HyperStore S3 Service does not use HTTPS.

Default = false

cmc_grouplist_enabled

This setting controls whether the CMC will show a drop-down list of group names when selection of a group is
necessary in interior parts of the CMC UI (parts other than the login page). This is relevant only for system
administrators, since only system administrators have the opportunity to choose among groups for certain fea-
tures (such as user management, group management, or usage reporting). Set this to "false" to have the UI
instead present a text box in which the administrator can type the group name.

Default = true

To apply change, after Puppet propagation restart CMC.

Note If the number of groups in your system exceeds the value of the cmc_grouplist_size_max setting
(100 by default), then group drop-down lists are not supported and the UI will display a text input box
for group name regardless of how you've set cmc_grouplist_enabled.

cmc_login_languageselection_enabled

This setting controls whether to display at the top of the CMC’s Sign In screen a selection of languages from
which the user can choose, for rendering the CMC's text (such as screen names, button labels, and so on). The

539

Chapter 9. System Configuration

supported languages are English, Japanese, Spanish, German, and Portuguese. With this set to "true", the
CMC language will initially be based on the user's browser language setting, but in the Sign In screen the user
will be able to select a different supported language if they wish.

If you set this to "false", then the language selection will not display at the top of the CMC’s Sign In screen, and
instead the CMC text language will be exclusively based on the user's browser language setting. If the user's
browser language setting matches one of the supported CMC languages, then that language will be used for
the CMC text. If the user's browser language setting does not match any of the CMC's supported languages,
the CMC text will display in English.

Default = true

To apply change, after Puppet propagation restart CMC.

cmc_login_grouplist_enabled

This setting controls whether to enable the Group drop-down list on the CMC’s Sign In screen. The Group
drop-down list lists all groups registered in the HyperStore system, and when users log in they can choose
their group from the list. If disabled, the drop-down list will not display and instead users will need to enter their
group name in a text input box when logging into the CMC.

Set this to "false" if you don’t want users to see the names of other groups.

Default = true

To apply change, after Puppet propagation restart CMC.

Note If the number of groups in your system exceeds the value of the cmc_grouplist_size_max setting
(100 by default), then group drop-down lists are not supported and the UI will display a text input box
for group name regardless of how you've set cmc_login_grouplist_enabled.

cmc_grouplist_size_max

Maximize number of groups that can be displayed in a CMC drop-down list.

If you have more than this many groups in your HyperStore system, then in parts of the CMC interface that
require the user to select a group the interface will display a text input box rather than a drop-down list of
groups to select from. The CMC will do this regardless of your setting for cmc_login_grouplist_enabled and
cmc_grouplist_enabled.

For example, if cmc_login_grouplist_enabled and cmc_grouplist_enabled are set to "true" and cmc_grouplist_
size_max is set to 100 (the default values), then the CMC will display drop-down lists for group selection if you
have up to 100 groups in your system, or text input boxes for group name entry if you have more than 100
groups in your system.

Default = 100

To apply change, after Puppet propagation restart CMC.

cmc_keystore_passwd

The password for the CMC's TLS/SSL keystore. This setting is managed automatically by the HyperStore
installer's Advanced Configuration functions. For more information see "HTTPS Support (TLS/SSL)" (page
114).

Default = 123cloudian456

cmc_keystore_file

540

9.5. HyperStore Configuration Files

The CMC's TLS/SSL keystore file. This setting is managed automatically by the HyperStore installer's
Advanced Configuration functions. For more information see "HTTPS Support (TLS/SSL)" (page 114).

Default = .keystore_cloudian

cmc_session_timeout

Session timeout for a user logged in to the CMC, as a number of minutes. After a logged-in user has been inact-
ive for this many minutes, the CMC will terminate the user's session.

Default = 30

To apply change, after Puppet propagation restart CMC.

cmc_view_user_data

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability of admin
users to access regular users' storage buckets. When allowed this access, admin users can view regular users'
data, add data to users' buckets, and delete users' data. Also when allowed this access, admin users can
change the properties of regular users' buckets and objects.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any admin users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = false

To apply change, after Puppet propagation restart CMC.

Note Regardless of how the cmc_view_user_data setting is configured, regular users can view and
manage their own object data through the Buckets & Objects section of the CMC.

cmc_crr_external_enabled

This controls whether settings for replicating to an external S3 system -- a system other than the HyperStore
system in which the source bucket resides -- will appear in the Cross Region Replication tab of the CMC's
Bucket Properties dialog. The default is false, so that such settings do not appear in the dialog. This setting is
relevant only if your organization is a legacy user of cross region replication to external systems. If so, and if
you want these settings to display for your users as they configure their buckets in the CMC, you can set cmc_
crr_external_enabled to true.

Default = false

To apply change, after Puppet propagation restart CMC.

cmc_login_banner_*

For information about using the cmc_login_banner_size, cmc_login_banner_title, cmc_login_banner_mes-
sage, and cmc_login_banner_button_confirm settings see "Configuring a Login Page Acknowledgment
Gate" (page 408).

cmc_bucket_tiering_default_destination_list

The list of auto-tiering destinations to display in the CMC interface that bucket owners use to configure auto-

541

Chapter 9. System Configuration

tiering for a bucket (for more information on this interface see "Configure a Bucket Lifecycle Policy for Object
Auto-Tiering or Expiration" (page 227)). Specify this as a quote-enclosed list, with comma-separation
between destination attributes and vertical bar separation between destinations, like this:

"<name>,<endpoint>,<protocol>|<name>,<endpoint>,<protocol>|..."

This can be multiple destinations (as it is by default), or you can edit the setting to have just one destination in
the "list" if you want your users to only use that one destination.

For multiple destinations you can have as many as you want, within reason (bear in mind that in the interface
the dialog box will expand to accommodate the additional destinations).

The <name> will display in the CMC interface that bucket owners use to configure auto-tiering, as the auto-tier-
ing destination name. The <protocol> must be one of the following:

l s3

l glacier

l azure

l spectra

If you wish you can include multiple destinations of the same type, if those destinations have different end-
points. For example, "Spectra 1,<endpoint1>,spectra|Spectra 2,<endpoint2>,spectra". Each such destination
will then appear in the CMC interface for users configuring their buckets for auto-tiering.

Default = "AWS S3,https://s3.amazonaws.com,s3|AWS GLACIER,https://s3.amazonaws.com,glacier|
Google,https://storage.googleapis.com,s3|Azure,https://blob.core.windows.net,azure"

To apply change, after Puppet propagation restart CMC.

Note If your original HyperStore version was older than 7.1.4, then after upgrade to 7.1.4 or later your
default value here will also include a Spectra destination.

Note For more information about setting up auto-tiering, see "Setting Up Auto-Tiering" (page 180).
That section includes information about how to enable the auto-tiering feature (which is disabled by
default in the CMC interface) and about the option of having all end users use the same system-con-
figured security credentials for accessing the tiering destination (rather than supplying their own secur-
ity credentials for tiering, which is the default behavior). Note that if you choose to have all users use
the same tiering security credentials you will need to specify a single system default tiering destination
-- using a setting in the CMC's Configuration Settings page, as described in "Setting Up Auto-Tier-
ing" (page 180) -- and that configuration setting will override the cmc_bucket_tiering_default_des-
tination_list setting.

AWS MMS Proxy Section
awsmmsproxy_host

If you are using the AWS Marketplace Metering Service version of Cloudian HyperStore, you must set this prop-
erty to the public IP address of your AWS Proxy Server running on an AWS EC2 instance. For more information
about this version of HyperStore, contact your Cloudian representative.

Default = empty

To apply change, after Puppet propagation restart S3 Service.

542

9.5. HyperStore Configuration Files

Usage Section
bucketstats_enabled

Whether to enable usage statistics reporting on a per-bucket basis, true or false. If you set this to true, you can
subsequently retrieve usage data for a specified bucket or buckets by using the Admin API's GET /usage and
POST /usage/bucket methods. Per-bucket usage statistics will be available only dating back to the point in
time that you enabled this feature. Per-bucket usage statistics are not tracked by default and will not be avail-
able for time periods prior to when you set this parameter to true.

Default = false

To apply change, after Puppet propagation restart S3 Service.

Elastic Search Section
cloudian_elasticsearch_hosts

For information about this setting, see "Elasticsearch Integration for Object Metadata" (page 171).

SQS Section
sqs_*

For information about these settings, see "HyperStore Support for the AWS SQS API" (page 1041).

Alerting Section
alert_suppression_list

With this setting you can configure a list of one or more log error message codes for which the system will sup-
press alerting. When the listed message codes appear in HyperStore logs, alerts will not appear in the CMC
and the system will not send notification emails or SNMP traps.

You may want to use this setting if you are seeing certain logging error based alerts too frequently or if you are
seeing alerts for logging errors that you don't consider important enough to merit an alert. Note that this setting
does not impact HyperStore logging behavior (it does not stop any messages from being written to HyperStore
logs), it only affects HyperStore alerting behavior.

If you list multiple message codes use comma-separation between the message codes, and enclose the list in
quotes.

For example, if you configure the setting as follows:

alert_suppression_list,"HS240113,HS233064"

Then if log entries with message codes HS240113 or HS233064 are written to HyperStore logs, no alerts
regarding those log entries will be generated in the CMC and no email or SNMP traps will be sent regarding
those log entries.

Default = empty

To apply change, after Puppet propagation restart S3 Service.

Note For a full list of log message codes see Log Message Codes.

543

Chapter 9. System Configuration

IMPORTANT ! Do not manually edit settings that appear below this point in the common.csv file.

9.5.2. hyperstore-server.properties.erb
The hyperstore-server.properties file configures the HyperStore Service. On each of your HyperStore nodes,
the file is located at the following path by default:

/opt/cloudian/conf/hyperstore-server.properties

Do not directly edit the hyperstore-server.properties file on individual HyperStore nodes. Instead, if you
want to make changes to the settings in this file, edit the configuration template file hyperstore-serv-
er.properties.erb on the Puppet master node:

/etc/cloudian-<version>-puppet/modules/cloudians3/templates/hyperstore-server.properties.erb

Certain hyperstore-server.properties.erb properties take their values from settings in common.csv or from set-
tings that you can control through the CMC's Configuration Settings page. In the hyperstore-serv-
er.properties.erb file these properties' values are formatted as bracket-enclosed variables, like <%= …%>. In
the property documentation below, the descriptions of such properties indicate "Takes its value from <loc-
ation>: <setting>; use that setting instead." . The remaining properties in the hyperstore-server.properties.erb
file -- those that are "hard-coded" with specific values -- are settings that in typical circumstances you should
have no need to edit. Therefore in typical circumstances you should not need to manually edit the hyper-
store-server.properties.erb file.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can edit this configuration file with this command:

$ hspkg config -e hyperstore-server.properties.erb

Specify just the configuration file name, not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file.

IMPORTANT ! If you do make edits to hyperstore-server.properties.erb, be sure to push your edits to
the cluster and restart the HyperStore Service to apply your changes. For instructions see "Pushing
Configuration File Edits to the Cluster and Restarting Services" (page 506).

The hyperstore-server.properties.erb file has the following settings:

cloudian.storage.datadir

Takes its value from common.csv: "hyperstore_data_directory" (page 517); use that setting instead.

secure.delete

Set this to true if you want HyperStore to use "secure delete" methodology whenever implementing the dele-
tion of an object from a bucket.

For information about how secure delete works, see "Secure Delete" (page 120)

544

9.5. HyperStore Configuration Files

IMPORTANT ! Using secure delete has substantial impact on system performance for delete oper-
ations. Consult with your Cloudian representative if you are considering using secure delete.

Default = false

messaging.service.listen.address

Takes its value from common.csv: "hyperstore_listen_ip" (page 517); use that setting instead.

messaging.service.listen.port

The port on which a HyperStore Service node listens for messages from other HyperStore Service nodes. This
internal cluster messaging service is used in support of cluster management operations such as node repair.

Default = 19050

messaging.service.read.buffer.size

When a HyperStore Service node reads data it has received over the network from other HyperStore Service
nodes -- such as during repair operations -- this is the read buffer size.

Default = 65536

messaging.service.write.buffer.size

When a HyperStore Service node writes data to the network for transferring to other HyperStore Service nodes
-- such as during repair operations -- this is the write buffer size.

Default = 1048576

messaging.service.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_messaging_service_threadpool" (page 520); use that setting
instead.

messaging.service.maxconnections

Maximum simultaneous number of connections that the HyperStore messaging service will accept.

Default = 2000

messaging.service.repairfile.timeout

Maximum time in seconds to allow for repair of a single file on a HyperStore node. File repair entails checking
other HyperStore nodes to find the most recent copy of the file and then downloading that copy.

Default = 120

messaging.service.connection.timeout

Maximum time in seconds that a HyperStore node will allow for establishing a connection to another Hyper-
Store node, for conducting inter-node operations.

Default = 300

repair.session.threadpool.corepoolsize

Takes its value from common.csv:"hyperstore_repair_session_threadpool" (page 520); use that setting
instead.

545

Chapter 9. System Configuration

repair.session.rangeslice.maxrows

During hsstool repair or hsstool repairec operations, the maximum number of row keys to retrieve per get_
range_slice query performed on Cassandra <GROUPID>_METADATA column families.

Default = 2

Note Cloudian, Inc recommends that you leave this setting at its default value. Do not set it to a value
lower than 2.

repair.session.columnslice.maxcolumns

During hsstool repair or hsstool repairec operations, the maximum number of columns to retrieve per get_
slice or get_range_slice query performed on Cassandra <GROUPID>_METADATA column families.

Default = 1000

repair.session.slicequery.maxretries

During hsstool repair or hsstool repairec operations, the maximum number of times to retry get_slice or get_
range_slice queries after encountering a timeout. The timeout interval is configured by cas-
sandra.cluster.CassandraThriftSocketTimeout in mts.properties, and retries are attempted as soon as a timeout
occurs.

Default = 3

repair.session.updateobjs.queue.maxlength

During hsstool repair operations, the target maximum number of object update jobs to queue for processing.
Object update jobs are placed in queue by a differencer mechanism that detects discrepancies between object
metadata on remote replicas versus object metadata on the local node.

This target maximum may be exceeded in certain circumstances as described for repair.ses-
sion.updateobjs.queue.maxwaittime (below).

Default = 1000

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairSessionJobQueueMaxLength)

repair.session.updateobjs.queue.waittime

If during hsstool repair operations the differencer detects that the number of queued object update jobs is at or
above the target maximum (as configured by repair.session.updateobjs.queue.maxlength), the number of
seconds to wait before checking the queue size again. During this interval the differencer adds no more object
update jobs to the queue.

Default = 2

repair.session.updateobjs.queue.maxwaittime

During hsstool repair operations, the maximum total number of seconds for the differencer to wait for the
object update job queue to fall below its target maximum size. After this interval, the differencer goes ahead
and writes its current batch of update requests to the queue. In this scenario, the queue can grow beyond the
target maximum size. The next time that the differencer has object update requests, it again checks the queue
size, and if it’s larger than the target maximum size, the wait time procedure starts over again.

Default = 120

546

9.5. HyperStore Configuration Files

repair.session.object.download.maxretries

During hsstool repair or hsstool repairec operations, the maximum number of times to retry object download
requests after encountering a timeout. The timeout interval is configured by mts.properties: cas-
sandra.cluster.CassandraThriftSocketTimeout, and retries are attempted as soon as a timeout occurs.

Default = 3

repair.session.inmemory.fileindex

When performing Merkle Tree based hsstool repair (the default repair type) for files in the HyperStore File Sys-
tem, whether to hold the file indexes in memory rather than writing them to disk. Options are:

l true — For each vNode being repaired, a file index directory is created and is held in memory unless its
size exceeds a threshold in which case it is written to disk (under the HyperStore data mount point that
the vNode is associated with). For most vNodes it will not be necessary to write the file indexes to disk.
If file indexes are written to disk, they are automatically deleted after the repair operation completes.

l false — For each vNode being repaired, a file index directory is created and written to disk (under the
HyperStore data mount point that the vNode is associated with), regardless of size. The file indexes are
automatically deleted after the repair operation completes.

Default = true

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairSessionInMemoryFileIndex)

repair.digest.index.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_repair_digest_index_threadpool" (page 520); use that set-
ting instead.

repair.merkletree.response.waittime

During hsstool repair operations, the repair coordinator node retrieves Merkle Trees from HyperStore endpoint
nodes. When contacted by the coordinator node, the endpoint nodes first must construct the Merkle Trees
before returning them to the coordinator node. Constructing the trees can take some time if a very large num-
ber of objects is involved.

The repair.merkletree.response.waittime property sets the maximum amount of time in minutes that the coordin-
ator node will wait for Merkle Trees to be returned by all endpoint nodes. If not all Merkle Trees have been
returned in this time, the repair operation will fail.

Default = 120

rangerepair.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_rangerepair_threadpool" (page 521); use that setting instead.

stream.outbound.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_stream_outbound_threadpool" (page 521); use that setting
instead.

repairec.sessionscan.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_repairec_sessionscan_threadpool" (page 522); use that set-
ting instead.

repairec.digestrequest.threadpool.fixedpoolsize

547

Chapter 9. System Configuration

Takes its value from common.csv: "hyperstore_repairec_digestrequest_threadpool" (page 522); use that
setting instead.

repairec.task.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_repairec_task_threadpool" (page 522); use that setting
instead.

repairec.rocksdbscan.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_repairec_rocksdbscan_threadpool" (page 523); use that set-
ting instead.

repairec.session.queue.maxlength

During "hsstool repairec" (page 697) operations, the target maximum number of object update jobs to queue
for processing. Object update jobs are placed in queue by a differencer mechanism that detects discrepancies
between object metadata on remote replicas versus object metadata on the local node.

This target maximum may be exceeded in certain circumstances as described for repair-
ec.session.queue.maxwaittime(below).

Default = 2000

repairec.session.queue.waittime

If during hsstool repairec operations the differencer detects that the number of queued object update jobs is at
or above the target maximum (as configured by repairec.session.updateobjs.queue.maxlength), the number of
seconds to wait before checking the queue size again. During this interval the differencer adds no more object
update jobs to the queue.

Default = 2

repairec.session.queue.maxwaittime

During hsstool repairec operations, the maximum total number of seconds for the differencer to wait for the
object update job queue to fall below its target maximum size. After this interval, the differencer goes ahead
and writes its current batch of update requests to the queue. In this scenario, the queue can grow beyond the
target maximum size. The next time that the differencer has object update requests, it again checks the queue
size, and if it’s larger than the target maximum size, the wait time procedure starts over again.

Default = 120

downloadrange.session.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_downloadrange_session_threadpool" (page 521); use that
setting instead.

uploadrange.session.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_uploadrange_session_threadpool" (page 521); use that set-
ting instead.

decommission.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_decommission_threadpool" (page 521); use that setting
instead.

cleanup.session.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_cleanup_session_threadpool" (page 522); use that setting

548

9.5. HyperStore Configuration Files

instead.

cleanup.session.deleteobjs.queue.maxlength

During hsstool cleanup or hsstool cleanupec operations, the target maximum number of object delete jobs to
queue for processing. Object delete jobs are placed in queue by a cleanup job that detects discrepancies
between object metadata in Cassandra versus object metadata on the local node.

This target maximum may be exceeded in certain circumstances as described for cleanup.ses-
sion.deleteobjs.queue.maxwaittime.

Default = 1000

cleanup.session.deleteobjs.queue.waittime

If during hsstool cleanup or hsstool cleanupec operations a cleanup job detects that the number of queued
object delete jobs is at or above the target maximum (as configured by cleanup.ses-
sion.deleteobjs.queue.maxlength), the number of seconds to wait before checking the queue size again. Dur-
ing this interval the cleanup job adds no more object delete jobs to the queue.

Default = 2

cleanup.session.deleteobjs.queue.maxwaittime

During hsstool cleanup or hsstool cleanupec operations, the maximum total number of seconds for the dif-
ferencer to wait for the object delete job queue to fall below its target maximum size. After this interval, the dif-
ferencer goes ahead and writes its current batch of delete requests to the queue. In this scenario, the queue
can grow beyond the target maximum size. The next time that the differencer has object delete requests, it
again checks the queue size, and if it’s larger than the target maximum size, the wait time procedure starts over
again.

Default = 120

cleanup.session.delete.graceperiod

During hsstool cleanup or hsstool cleanupec operations, only consider an object for deletion if at least this
many seconds have passed since the object’s Last Modified timestamp.

Default = 86400

cleanupjobs.threadpool.corepoolsize

During hsstool cleanup or hsstool cleanupec operations, this setting controls how many cleanup "jobs" can
run in parallel on a single HyperStore node. For each HyperStore data mount point on a node, the object data
directory structure is as follows:

<mountpoint>/<hsfs|ec>/<base62-encoded-vNode-token>/<policyid>/<000-255>/<000-255>/<filename>

Under the hsfs (for replica data) or ec (for erasure coded data) directory level, there are sub-directories for
each of the mount point's vNodes (identified by token), and under those, sub-directories for each storage policy
configured in your system (identified by system-generated policy ID). For more information on this directory
structure, see "HyperStore Service and the HSFS" (page 23).

When a physical HyperStore node is cleaned, there is a separate cleanup "job" for each <policyId> sub-dir-
ectory on the physical node. The cleanupjobs.threadpool.corepoolsize setting controls how many such jobs
can run in parallel on a given physical node. Each concurrent job will run on a different HyperStore data disk
on the node.

549

Chapter 9. System Configuration

Within each job, the separate setting common.csv:"hyperstore_cleanup_session_threadpool" (page 522)
controls how many blobs (object replicas or erasure coded fragments) can be processed in parallel. Pro-
cessing a blob entails checking the blob’s corresponding object metadata to determine whether the blob is sup-
posed to be where it is or rather should be deleted.

So for example with cleanupjobs.threadpool.corepoolsize = 4 and hyperstore_cleanup_session_threadpool =
10, then on a given physical node being cleaned a maximum of 4 cleanup jobs would run in parallel (with each
job working on a different disk), with a maximum of 10 blobs being processed in parallel within each of the 4
jobs.

Default = 4

max.cleanup.operations.perdc

Maximum number of hsstool cleanup or hsstool cleanupec operations to allow at one time, per data center.

The limit is applied separately to cleanup and cleanupec operations. For example, if this property is set to 1 (as
it is by default), then within a DC you can run one cleanup operation at a time and one cleanupec operation at
a time. The limit does not prevent you from running one cleanup operation and one cleanupec operation sim-
ultaneously.

If you have multiple DCs in your HyperStore system, the limit is applied separately to each DC. For example if
you have two data centers named DC1 and DC2, and if this property is set to 1, you can run one cleanup oper-
ation and one cleanupec operation in DC1 at the same time as you are running one cleanup operation and
one cleanupec operation in DC2.

If you are considering raising this limit from its default of 1, first consult with Cloudian Support.

Default = 1

hyperstore.proactiverepair.poll_time

At this recurring interval each HyperStore node checks to see whether any proactive repair jobs are queued for
itself, and executes those jobs if there are any. Configured as a number of minutes.

This check is also automatically performed when a HyperStore Service node starts up. Subsequently the recur-
ring check occurs at this configured interval.

For more information about the proactive repair feature, see "Automated Data Repair Feature Overview"
(page 150) .

Default = 60

Note If for some reason you want to trigger proactive repair on a particular node immediately, you can
do so by running the"hsstool proactiverepairq" (page 674) command with the "-start" option.

Note For information about temporarily disabling the proactive repair feature, see "Disabling or Stop-
ping Data Repairs" (page 154).

stream.throughput.outbound

During hsstool cleanup or hsstool cleanupec operations, HyperStore nodes may stream large amounts of
data to other HyperStore nodes. This setting places an upper limit on outbound streaming throughput during
repair operations, in megabits per second.

Default = 800

550

9.5. HyperStore Configuration Files

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileStreamingService → Attributes → MaxStreamThroughputOutbound)

auto.repair.threadpool.corepoolsize

Takes its value from common.csv: "hyperstore_auto_repair_threadpool" (page 522); use that setting instead.

auto.repair.scheduler.polltime

Interval (in minutes) at which each HyperStore node’s auto-repair scheduler will check the auto-repair queues
for HSFS repair, Cassandra repair, and erasure coded data repair to see whether it’s time to initiate a repair on
that node.

Default = 10

Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → AutoRepairSchedulerPollTime)

auto.repair.schedule.interval

Takes its value from the "Replicas Repair Interval (Minutes)" (page 351) setting in the CMC's Configuration
Settings page; use that setting instead.

auto.repairec.schedule.interval

Takes its value from the "EC Repair Interval (Minutes)" (page 352) setting in the CMC's Configuration Set-
tings page; use that setting instead.

auto.repaircassandra.schedule.interval

Takes its value from the "Cassandra Full Repair Interval (Minutes)" (page 352) setting in the CMC's Con-
figuration Settings page; use that setting instead.

cloudian.storage.jmx.port

The port on which the HyperStore Service listens for JMX requests.

Default = 19082 (set elsewhere in the manifest structure; do not edit this property)

disk.fail.action

Takes its value from the "HyperStore Disk Failure Action" (page 342) setting in the CMC's Configuration Set-
tings page; use that setting instead.

disk.repair.rebuild

When HyperStore implements a replaceDisk operation it automatically executes hsstool repair and hsstool
repairec for the replacement disk. With disk.repair.rebuild=true (the default setting), the automatic executions of
hsstool repair and hsstool repairec will use the -rebuild option that those operations support. Using the -rebuild
option is the most efficient way to rebuild data on to a replacement disk. Typically the only occasion you would
have for setting disk.repair.rebuild=false -- so that the -rebuild option is not used -- is if you are instructed to do
so by Cloudian Support in the context of troubleshooting a failed attempt to replace a disk.

Default = true

disk.fail.error.count.threshold

This setting in combination with the disk.fail.error.time.threshold setting provides you the option to specify a
read/write error frequency threshold that must be met before the system takes the automated action that is spe-
cified by the "HyperStore Disk Failure Action" setting.

551

Chapter 9. System Configuration

The threshold, if configured, is in the form of "If disk.fail.error.count.threshold number of HSDISKERROR mes-
sages are logged in cloudian-hyperstore.log in regard to the same disk within an interval of disk.-
fail.error.time.threshold seconds, then take the automated action specified by the disk.fail.action setting."

For example, if disk.fail.error.count.threshold = 3, and disk.fail.error.time.threshold = 60, and disk.fail.action =
"disable", then the system will disable any HyperStore data disk for which 3 or more HSDISKERROR mes-
sages appear in cloudian-hyperstore.log within a 60 second time span.

If you set the two threshold settings to "0", then no threshold behavior is implemented, and instead the auto-
mated action specified by the disk.fail.action setting is triggered by any single occurrence of an
HSDISKERROR message in cloudian-hyperstore.log.

Default = 10

disk.fail.error.time.threshold

Disk error threshold time span in seconds. For more description see disk.fail.error.count.threshold above.

Default = 300

disk.check.interval

Takes its value from common.csv: "hyperstore_disk_check_interval" (page 523); use that setting instead.

disk.balance.delta

When the disk balance check is run (at the disk.check.interval), token migration is triggered if a disk’s utilization
percentage differs from the average disk utilization percentage on the node by more than the configured
disk.balance.delta. If disk.balance.delta = 10 (the default), then, for example:

l If the average disk space utilization on a node is 35%, and the disk space utilization for Disk4 is 55%,
then one or more tokens will be migrated away from Disk4 to other disks on the node (since the actual
delta of 20% exceeds the maximum allowed delta of 10%).

l If the average disk utilization on a node is 40%, and the disk utilization for Disk7 is 25%, then one or
more tokens will be migrated to Disk7 from the other disks on the node (since the actual delta of 15%
exceeds the maximum allowed delta of 10%).

For more information on this feature see "Automated Disk Management Feature Overview" (page 157).

Default = 10

disk.audit.interval

At this configurable interval (in number of minutes), the system tries to write one byte of data to each Hyper-
Store data disk. If any of these writes fail, /var/log/messages is scanned for messages indicating that the file sys-
tem associated with the disk drive in question is in a read-only condition (message containing the string
"Remounting filesystem read-only"). If any such message is found, the disk is automatically disabled in accord-
ance with your configured "HyperStore Disk Failure Action" (page 342).

The scan of /var/log/messages will be limited to the time period since the the last time the disk audit was run.

This recurring audit of disk drive health is designed to proactively detect disk problems even during periods
when there is no HyperStore Service read/write activity on a disk.

Default = 60

disk.error.check.fs

When scanning /var/log/messages as part of the disk audit, the messages will be first filtered by this file system

552

9.5. HyperStore Configuration Files

name string.

Default = "EXT4-fs"

max.diskusage.percentage

The hsstool repair operation will fail if any HyperStore data disk that stores token ranges impacted by the oper-
ation is more than this percent full.

Default = 95

auto.repair.computedigest.run.number

Takes its value from common.csv: "auto_repair_computedigest_run_number" (page 518); use that setting
instead.

hss.errorlogger.appender

Do not edit this setting.

hss.heallogger.appender

Do not edit this setting.

enable.cassandra.rangerepair

If this is set to true, HyperStore uses a "range repair" approach when executing Cassandra auto-repairs. Each
impacted token range is repaired one range at a time, sequentially. This approach improves the performance
for Cassandra auto-repairs.

For background information on the scheduled auto-repair feature see "Automated Data Repair Feature Over-
view" (page 150).

Default = true

retry.rebalance.ranges

If this is set to true, HyperStore will automatically retry any failed sub-tasks from an hsstool rebalance operation
that has completed on a newly added node. Like other types of proactive repair, this retry of any failed rebal-
ance sub-tasks occurs once per hour.

Default = true

Note The rocksdb.* properties at the bottom of the hyperstore-server.properties.erb file control the
behavior and performance of the RockDB database in which object digests are stored. Do not edit
these settings.

9.5.3. mts.properties.erb
The mts.properties file configures the S3 Service and the Admin Service. On each of your HyperStore nodes,
the file is located at the following path by default:

/opt/cloudian/conf/mts.properties

Do not directly edit the mts.properties file on individual HyperStore nodes. Instead, if you want to make
changes to the settings in this file, edit the configuration template file mts.properties.erb on the Puppet master
node:

/etc/cloudian-<version>-puppet/modules/cloudians3/templates/mts.properties.erb

553

Chapter 9. System Configuration

Certain mts.properties.erb properties take their values from settings in common.csv or from settings that you
can control through the CMC's Configuration Settings page. In the mts.properties.erb file these properties' val-
ues are formatted as bracket-enclosed variables, like <%= …%>. In the property documentation below, the
descriptions of such properties indicate "Takes its value from <location>: <setting>; use that setting instead."
The remaining properties in the mts.properties.erb file -- those that are "hard-coded" with specific values -- are
settings that in typical circumstances you should have no need to edit. Therefore in typical circumstances
you should not need to manually edit the mts.properties.erb file.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can edit this configuration file with this command:

$ hspkg config -e mts.properties.erb

Specify just the configuration file name, not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file.

IMPORTANT ! If you do make edits to mts.properties.erb, be sure to push your edits to the cluster and
restart the S3 Service to apply your changes. Note that restarting the S3 Service automatically restarts
the Admin Service as well. For instructions see "Pushing Configuration File Edits to the Cluster and
Restarting Services" (page 506).

The mts.properties.erb file is divided into these sections:

Cassandra Interfaces
The S3 Service, Admin Service, and HyperStore Service each separately maintain their own pool of con-
nections to the Cassandra data store. The configuration settings in this section are applied separately to each
of the three connection pools. For example, ifMaxActive=10, then the S3 Service to Cassandra, Admin Service
to Cassandra, and HyperStore Service to Cassandra connection pools are each allowed a maximum of 10 sim-
ultaneously active connections.

cassandra.cluster.name

Takes its value from region.csv: cassandra_cluster_name. Typically you should have no need to edit that file.

cassandra.cluster.Hosts

Takes its value from topology.csv. Typically you should have no need to edit that file.

cassandra.cluster.CassandraThriftSocketTimeout

After submitting a request to a Cassandra instance via its Thrift socket, the amount of time in milliseconds to
wait for a response from Cassandra before failing the operation.

Default = 15000

The diagram below shows the place of cassandra.cluster.CassandraThriftSocketTimeout and other timeouts
within the S3 Service’s request processing flow.

554

9.5. HyperStore Configuration Files

cassandra.cluster.MaxActive

Takes its value from common.csv: "cassandra_max_active" (page 533); use that setting instead.

cassandra.cluster.MaxIdle

The maximum allowed number of idle connections in a Cassandra connection pool. Any idle connections in
excess of this limit are subject to being closed. Set to a negative value to disable this limit. Note this control is
applicable only if TimeBetweenEvictionRunsMillis is set to a positive value.

Default = 20

cassandra.cluster.MaxWaitTimeWhenExhausted

If cassandra.cluster.MaxActive has been reached for a target Cassandra host and a thread requires a new

555

Chapter 9. System Configuration

connection to the host, the thread will wait this many milliseconds before returning an error to the client.

Default = 9000

For a diagram showing the place of this timeout within the S3 request processing flow, see cas-
sandra.cluster.CassandraThriftSocketTimeout (above).

cassandra.cluster.RetryDownedHosts

Whether or not to periodically retry Cassandra hosts that have been detected as being down, using a back-
ground thread. If set to "true", the retry is attempted at configurable interval cas-
sandra.cluster.RetryDownedHostsDelayInSeconds.

Default = true

cassandra.cluster.RetryDownedHostsQueueSize

Maximum number of downed Cassandra hosts to maintain in the downed host retry queue at the same time. If
multiple Cassandra nodes are down, and if cassandra.cluster.RetryDownedHosts=true, then a queue is main-
tained for retrying downed nodes. The cassandra.cluster.RetryDownedHostsQueueSize sets a limit on the num-
ber of nodes that can be in the retry queue simultaneously.

Default = -1 (unlimited)

cassandra.cluster.RetryDownedHostsDelayInSeconds

The number of seconds to wait between retry attempts for downed hosts. Applicable only if

cassandra.cluster.RetryDownedHosts=true.

Default = 10

cassandra.cluster.Lifo

If true, use a “last in, first out” policy for retrieving idle connections from a pool (use the most recently used idle
connection). If false, use "first in, first out" retrieval of idle connections (use the oldest idle connection).

Default = true

cassandra.cluster.MinEvictableIdleTimeMillis

The minimum time in milliseconds that a connection must be idle before it becomes eligible for closing due to
maximum idle connection limits.

Default = 100000

cassandra.cluster.TimeBetweenEvictionRunsMillis

The interval in milliseconds at which to check for idle connections in a pool, for enforcement of maximum idle
connection limits.

Default = 100000

cassandra.cluster.UseThriftFramedTransport

Whether to use framed transport for Thrift. Strongly recommended to leave as true. If set to false, then

thrift_framed_transport_size_in_mb in cassandra.yaml must be set to 0.

Default = true

cassandra.cluster.AutoDiscoverHosts

556

9.5. HyperStore Configuration Files

Whether or not to periodically check for the presence of new Cassandra hosts within the cluster and to use
these same settings to interface with those new hosts. If set to true, a check for new hosts is performed at con-
figurable interval cassandra.cluster.AutoDiscoveryDelayInSeconds.

Default = true

cassandra.cluster.AutoDiscoveryDelayInSeconds

Number of seconds to wait between checks for new hosts. Applicable only if cas-
sandra.cluster.AutoDiscoverHosts=true

Default = 60

cassandra.cluster.RunAutoDiscoveryAtStartup

Whether or not to perform auto-discovery at cluster start-up. See cassandra.cluster.AutoDiscoverHosts.

Default = false

cassandra.cluster.HostTimeoutCounter

If a Cassandra node returns more than this many host timeout exceptions within an interval of

cassandra.cluster.HostTimeoutWindow, mark the node as temporarily suspended. This setting and the other
HostTimeout* settings below are applicable only if cassandra.cluster.UseHostTimeoutTracker=true.

Default = 3

cassandra.cluster.HostTimeoutWindow

If within an interval of this many milliseconds a Cassandra node returns more than cas-
sandra.cluster.HostTimeoutCounter host timeout exceptions, mark the node as temporarily suspended.

Default = 1000

cassandra.cluster.HostTimeoutUnsuspendCheckDelay

How often to check suspended nodes list to see which nodes should be unsuspended, in seconds.

Default = 10

cassandra.cluster.HostTimeoutSuspensionDurationInSeconds

When the periodic check of the suspended nodes list is performed, if a node has been suspended for more
than this many seconds, unsuspend the node and place it back in the available pool.

Default = 30

cassandra.cluster.UseHostTimeoutTracker

Whether to keep track of how often each Cassandra node replies with a host timeout exception, and to tem-
porarily mark nodes as suspended if their timeout exceptions are too frequent. See the HostTimeout* setting
descriptions above for details.

Default = true

cassandra.cluster.UseSocketKeepalive

Whether to periodically send keep-alive probes to test pooled connections to Cassandra hosts.

Default = true

557

Chapter 9. System Configuration

cassandra.data.directories

Takes its value from common.csv: "cassandra_data_directory" (page 535); use that setting instead.

cassandra.fs.keyspace

Base name of the Cassandra keyspaces in which object metadata is stored. A storage policy ID is appended to
this base name to create a keyspace for a particular storage policy (for example, UserData_
b06c5f9213ae396de1a80ee264092b56). There will be one such keyspace for each storage policy that you
have configured in your system.

Default = UserData

cassandra.jmx.port

Cassandra’s JMX listening port.

Default = 7199

cassandra.tombstone_cleanup_threshold

Takes its value from common.csv: "cassandra_tombstone_cleanup_threshold" (page 536); use that setting
instead.

cassandra.tombstone_gcgrace

Takes its value from common.csv: "cassandra_tombstone_gcgrace" (page 536); use that setting instead.

cloudian.repair.eventqueue.create.interval

When proactive repair is run on a node, it reads from a queue of node-specific object write failure events that
is stored in Cassandra. The object write failure events are timestamped and are bundled together based on the
time interval in which they occurred. The cloudian.repair.eventqueue.create.interval setting controls the time
span (in minutes) that’s used for the bundling. For example with the default of 60 a new bundle starts each 60
minutes, if a node is unavailable for longer than this and write failure events for the node are accumulating.

When the node comes back online, the first automatic run of proactive repair will repair the objects from all the
interval-based bundles except for the most current one (the in-progress interval, such as the current hour if the
default of 60 is being used). That bundle will be processed at the next automatic run of proactive repair. By
default proactive repair runs (if needed) every 60 minutes — this frequency is configurable by "hyper-
store.proactiverepair.poll_time" (page 550).

Default = 60

Consistency Levels for System Metadata
In a distributed storage ring in which data is replicated on more than one node, there is the question of con-
sistency requirements for read and write operations. With the HyperStore system you can configure these
requirements:

l Consistency requirements for S3 object data and object metadata are managed through the creation
and application of storage policies. For information about creating storage policies, "Add a Storage
Policy" (page 353).

l Consistency requirements for system metadata stored in Cassandra -- such as usage data and mon-
itoring data -- are configurable in the "Consistency Levels" section ofmts.properties.erb. For information
about system metadata storage, see "System Metadata Replication" (page 81).

cloudian.cassandra.default.ConsistencyLevel.Read

558

9.5. HyperStore Configuration Files

For the Reports keyspace (service usage data), AccountInfo keyspace (user account information), and Mon-
itoring keyspace (system monitoring data), the consistency level to require for read operations. The reads are
requested by other HyperStore components such as the S3 Service and the Admin Service.

For consistency level definitions, see "Consistency Levels" (page 367).

You can optionally use a comma-separated list to implement Dynamic Consistency Levels.

Default = LOCAL_QUORUM,ONE

cloudian.cassandra.default.ConsistencyLevel.Write

For the Reports keyspace (service usage data), AccountInfo keyspace (user account information), and Mon-
itoring keyspace (system monitoring data), the consistency level to require for write operations. The writes are
requested by other HyperStore components such as the S3 Service and the Admin Service.

For consistency level definitions, see "Consistency Levels" (page 367).

You can optionally use a comma-separated list to implement Dynamic Consistency Levels.

Default = QUORUM,LOCAL_QUORUM

IMPORTANT ! Since this setting applies to writes, using "ONE" is not recommended.

cloudian.cassandra.UserData.ConsistencyLevel.HyperStore

The consistency level to require when hsstool is reading or writing to the UserData_<policyid> keyspaces in
order to implement a repair or cleanup operation. If the configured consistency requirement can’t be met, the
operation fails and subsequently retries. The operation will abort if two retry attempts fail to achieve the
required consistency level.

For consistency level definitions, see "Consistency Levels" (page 367).

You can optionally use a comma-separated list to implement Dynamic Consistency Levels.

Default = QUORUM

IMPORTANT ! Since this setting applies to writes as well as reads, using "ONE" is not recommended.

cloudian.cassandra.localdatacenter

Takes its value from topology.csv. Typically you should have no reason to edit that file.

Authorized Services and Namespaces
cloudian.s3.authorizationV4.singleregioncheck

In Cloudian deployments that consist of only one service region, this setting impacts the system’s handling of
incoming S3 requests that are using AWS Signature Version 4 Authentication:

l If this setting is set to "true", the system will validate that the region name that the client used when cre-
ating the request signature (as indicated in the scope information that the client specifies in the request)
is in fact the region name for your single region. If not the request will be rejected.

l If set to "false" the system will not validate the region name. Instead, the system calculates and validates
the signature using whatever region name is specified in the request.

Default = false

559

Chapter 9. System Configuration

Note Do not set this property to "true" if the S3 service endpoint (URI) for your one region does not
include a region name string. For example, you can set this property to "true" -- thereby enabling region
name validation --if your S3 endpoint is s3-tokyo.enterprise.com (where tokyo is the region name), but
not if your S3 endpoint is s3.enterprise.com (which lacks a region name string).

cloudian.s3.authorizationV4.multiregioncheck

In Cloudian deployments that consist of multiple service regions, this setting impacts the system’s handling of
incoming S3 requests that are using AWS Signature Version 4 Authentication:

l If this setting is set to "true", the system will validate that the region name that the client used when cre-
ating the request signature (as indicated in the scope information that the client specifies in the request)
is in fact the region name for the region to which the request has been submitted. If not the request will
be rejected.

l If set to "false" the system will not validate the region name. Instead, the system calculates and validates
the signature using whatever region name is specified in the request.

Default = false

IMPORTANT ! Do not set this property to "true" if the S3 service endpoints (URIs) for your regions do
not include region name strings. For example, you can set this property to "true" -- thereby enabling
region name validation --if your S3 endpoints are s3-tokyo.enterprise.com and s3-osaka.en-
terprise.com (where tokyo and osaka are region names), but not if your S3 endpoints lack region name
strings.

cloudian.s3.serverside.encryption.keylength

Takes its value from common.csv: "cloudian_s3_aes256encryption_enabled" (page 533); use that setting
instead.

QoS
The following settings pertain to the implementation of quality of service (QoS) limits for the S3 service. For
more detail on the HyperStore QoS feature, see "Quality of Service (QoS) Feature Overview" (page 135).

cloudian.s3.qos.enabled

Takes its value from "Enforce Configured QoS Limits for Storage Utilization" (page 345) in the CMC's Con-
figuration Settings page; use that setting instead.

cloudian.s3.qos.rate.enabled

Takes its value from "Enforce Configured QoS Limits for Request Rates and Data Transfer Rates" (page
346) in the CMC's Configuration Settings page; use that setting instead.

cloudian.s3.qos.cache.enabled

When QoS enforcement is enabled, for each S3 request the S3 Service checks current user and group QoS
usage against configured QoS limits. The usage counters and configured limits are stored in the Redis QoS
DB. This setting if set to "true" enables the S3 Service to cache QoS counter and limits data and to check that
cached data first when performing its QoS enforcement role. If there is no cache hit then Redis is checked.

Default = true

560

9.5. HyperStore Configuration Files

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → QosCacheEnabled)

cloudian.s3.qos.cache.expiryms

For the S3 Service’s QoS data cache (if enabled), the cache entry expiry time in milliseconds.

Default = 10000

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → QosCacheExpiryMs)

cloudian.s3.qos.storagewrite.batch.enabled

If set to "true" then the AccountHandler’s updates of storage object and storage bytes counters in Redis are
batched together.

Default = false

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → QosStorageWriteEnabled)

cloudian.s3.qos.storagewrite.intervalms

If batching of storage counter updates is enabled, the batch interval in milliseconds.

Default = 60000

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → QosStorageWriteIntervalMs)

cloudian.s3.qos.maxdelay

If a PUT Object or PUT Object Copy operation that is overwriting an existing object takes more than this many
milliseconds to complete, then before the system updates the user’s Storage Bytes (SB) count it re-checks the
existing object’s metadata to ensure that the calculated size differential between the existing object and the
new object is based on fresh metadata. This configurable behavior is intended to reduce the likelihood of erro-
neous SB counts resulting from race conditions wherein multiple client requests are overwriting the same
object at the same time.

The context is that in the case of an existing object being overwritten by a new instance of the object, the sys-
tem updates the user’s SB count by calculating the delta between the original object’s size (as indicated by its
metadata) and the new object’s size and then applying that difference to the user’s SB count. It’s important
therefore that the calculated delta be based on up-to-date metadata for the object that’s being overwritten,
even in the case where the writing of the new object takes a long time to complete.

Default = 60000

S3 Service Caching (Bucket Metadata, etc)
cloudian.s3.metadata.cache.enabled

If set to true, bucket metadata is cached by the S3 Service. When S3 request processing requires bucket
metadata, the cache is checked first. If there is no cache hit then the needed metadata is retrieved from Redis,
and is cached for subsequent use.

On an ongoing basis, the system detects if the corresponding source metadata in Redis changes and then
automatically invalidates the cached metadata.

Default = true

561

Chapter 9. System Configuration

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → MDCacheEnabled)

cloudian.s3.group.cache.enabled

If set to true, then user group metadata is cached by the S3 Service. When S3 request processing requires
group status, the cache is checked first. If there is no cache hit then the needed metadata is retrieved from
Redis, and is cached for subsequent use.

On an ongoing basis, the system detects if the corresponding source metadata in Redis changes and then
automatically invalidates the cached metadata.

Default = true

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → GroupCacheEnabled)

cloudian.s3.credentials.cache.enabled

If set to true, users active security credentials are cached by the S3 Service. When S3 request processing
requires a user’s credentials, the cache is checked first. If there is no cache hit then the needed credentials
retrieved from Redis, and are cached for subsequent use.

On an ongoing basis, the system detects if the corresponding source credentials in Redis change and then
automatically invalidates the cached credentials.

Default = true

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → GroupCacheEnabled)

cloudian.s3.user.cache.enabled

If set to true, user metadata is cached by the S3 Service. When S3 request processing requires a user’s status
and/or display name, the cache is checked first. If there is no cache hit then the needed metadata is retrieved
from Redis, and is cached for subsequent use.

On an ongoing basis, the system detects if the corresponding source metadata in Redis changes and then
automatically invalidates the cached metadata.

Default = true

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → UserCacheEnabled)

Domains and Regions
The "region" settings in this section are applicable to multi-region HyperStore deployments. If your HyperStore
system does not have multiple service regions, you can leave the settings in this section at their default values.

cloudian.s3.regions

Takes its value from common.csv: "regions" (page 513); use that setting instead.

cloudian.s3.home_region

Takes its value from region.csv: region_name; use that setting instead.

cloudian.s3.default_region

Takes its value from common.csv: "default_region" (page 513); use that setting instead.

562

9.5. HyperStore Configuration Files

cassandra.cluster.name.<region>

Takes its value from region.csv: cassandra_cluster_name. Typically you should have no reason to edit that set-
ting.

cassandra.cluster.hosts.<region>

Takes its value from region.csv: cassandra_cluster_hosts. Typically you should have no reason to edit that set-
ting.

cloudian.s3.domain.<region>

Takes its value from region.csv: s3_domain_and_port. Typically you should have no reason to edit that setting.

cloudian.s3.ssl_domain.<region>

Domain and SSL listening port from one of your regions, in format <FQDN>.<port>. This is used if your system
has multiple service regions and you have configured your S3 service to use SSL. For example, if a GET
Object request comes in to the S3 service in region1, and the object is stored in region2, and region2 is con-
figured to use SSL for its S3 service — then the S3 service in region1 needs to know the domain and SSL port
for the S3 service in region2, so that it can specify a correct Location header in the Redirect message it returns
to the requesting client.

If you have a multi-region HyperStore deployment, the installation script automatically configures the cloud-
ian.s3.ssl_domain.<region> setting for each of your regions, including the local region. For example:

cloudian.s3.ssl_domain.region1 = s3.region1.mycompany.com:443

cloudian.s3.ssl_domain.region2 = s3.region2.mycompany.com:443

cloudian.s3.ssl_domain.region3 = s3.region3.mycompany.com:443

If you have only one region in your HyperStore deployment, then this setting is not relevant to your system.

Default = commented out

cloudian.s3.website_endpoint

Takes its value from region.csv: cloudians3_website_endpoint.

To change this, use the HyperStore "Installer Advanced Configuration Options" (page 501).

cloudian.util.dns.resolver

Method used to resolve foreign buckets to the correct region, in support of the S3 LocationConstraint feature.
Currently only one option is supported:

l com.gemini.cloudian.util.dns.RedirectResolver — Never resolve foreign bucket domain names, always
reply with a 307 redirect. The Location value to supply in the redirect response is obtained from the
global Redis database.

Default = com.gemini.cloudian.util.dns.RedirectResolver

cloudian.publicurl.port

Takes its value from common.csv: ld_cloudian_s3_port, which is controlled by the installer. To change S3
listening ports use the installer's Advanced Configuration options.

cloudian.publicurl.sslport

Takes its value from common.csv: ld_cloudian_s3_ssl_port, which is controlled by the installer. To change S3
listening ports use the installer's Advanced Configuration options.

563

Chapter 9. System Configuration

S3 Service
cloudian.s3.server

HTTP Server header value to return in responses to S3 requests. If you want no Server header value returned
in responses to S3 requests, uncomment this setting and set it to empty.

Default = Commented out; uses internal default "CloudianS3"

cloudian.s3.tmpdir

The directory in which to temporarily store large files in order to reduce memory usage.

Default = Commented out; uses internal default java.io.tmpdir.

cloudian.fs.read_buffer_size

When interacting with the file storage system in Cassandra, the size of the S3 Service’s and Admin Service’s
read buffer, in bytes. A larger read buffer can enhance performance but will also consume more memory.

Default = 65536

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → ReadBufferSize)

cloudian.s3.putobject.max_size

Takes its value from the "Put Object Maximum Size (Bytes)" (page 350) setting on the CMC's Configuration
Settings page; use that setting instead.

cloudian.s3.getbucket.max_num_of_keys

When performing an S3 GET Bucket operation (which returns meta-data about the objects in the bucket spe-
cified in the request), the maximum number of objects to list in the response. If the client request sets a "max-
keys" parameter, then the lower of the client-specified value and the cloudian.s3.getbucket.max_num_of_keys
value is used.

Default = 1000

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → GetBucketMaxKeys)

cloudian.s3.max_user_buckets

Takes its value from the "Maximum Buckets Per User" (page 350) setting on the CMC's Configuration Set-
tings page; use that setting instead.

cloudian.s3.delimiter_regex

Regular expression indicating allowed delimiters in getBucketList objects.

Default = .+

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → DelimiterRegex)

cloudian.s3.multipart.maxparts

Takes its value from the "Multipart Upload Maximum Parts" (page 350) setting on the CMC's Configuration
Settings page; use that setting instead.

564

9.5. HyperStore Configuration Files

cloudian.s3.multipart.minpartsize

In an S3 Multipart Upload submitted to HyperStore, the required minimum size per part, excluding the last part.
Expressed in number of bytes. The operation will fail if a part other than the last part is smaller than this many
bytes. For example, if you set this to 5242880 (5MB, which is the Amazon S3 default for minimum part size)
then in a Multipart Upload each part uploaded must be at least 5MB in size, except for the last part which is
allowed to be as small as necessary to complete the object.

The HyperStore default of 1 byte essentially places no restriction on minimum part size.

Default = 1

cloudian.s3.unsupported

Comma-separated list of Amazon S3 URI parameters that the HyperStore system does not support. This list
applies across HTTP methods and across S3 resource types. In response to requests that include an unsup-
ported URI parameter, the HyperStore system will return 501, Not Implemented.

Default = accelerate,requestPayment,analytics,inventory,metrics,select,notification

cloudian.util.ntp.Path

Path to ntpstat. Setting this value is required only if ntpstat is not in the environment PATH.

Default = commented out; internal default = ' '

cloudian.util.ntp.MaximumSynchronizationDistance

Maximum system clock skew to allow when servicing S3 requests that require the S3 Service to generate an
object versionId, in milliseconds.

l If this setting is set to a positive value, a S3 Service node that is processing S3 requests that require
generating a versionid will perform an ntpstat check. If the node’s system clock is skewed by more than
cloudian.util.ntp.MaximumSynchronizationDistance milliseconds, the S3 Service rejects the S3 request
with a "503 Service Unavailable" error response. The frequency of the ntpstat check can be limited by
using the cloudian.util.ntp.CheckIntervalMillis setting.

l If this setting is set to 0, the npstat check is not performed when processing S3 requests that require gen-
erating a versionId.

Default = 0

cloudian.util.ntp.CheckIntervalMillis

Minimum time between ntpstat checks, in milliseconds.

l If this setting is set to a positive value, then when the S3 Service is processing S3 requests that require
generating a versionId, an ntpstat check will be performed only if cloudian.util.ntp.CheckIntervalMillis
milliseconds or more have passed since the last ntpstat check was performed.

l If this setting is set to 0, an ntpstat check is performed with every S3 request that requires generating a
versionId.

Default = 60000

cloudian.s3.batch.delete.delay

When executing the batch processing to purge deleted objects from disk (see cloud-
ian.delete.queue.poll.interval below for background information), the number of milliseconds to pause in
between purges of individual objects.

565

Chapter 9. System Configuration

If cloudian.s3.batch.delete.delay is set to 0 (as it is by default), then when the batch processing job is running
there is no delay between individual object purges.

If you wish you can use the cloudian.s3.batch.delete.delay property to "throttle" the execution of the deleted
object batch processing job (to slow it down so as to reduce its resource demands).

Default = 0

cloudian.delete.queue.poll.interval

When S3 requests for object deletion are received and successfully processed by HyperStore, the system
immediately marks the objects as having been deleted, and stores this object deletion flag in a queue in Cas-
sandra. But the actual purging of object data from disk does not occur until a batch processing job runs on
each node, to physically purge the objects the objects that have been marked as deleted. The batch pro-
cessing execution is distributed across the cluster, with each node being responsible for processing the object
deletions that result from S3 requests processed by that node.

The cloudian.delete.queue.poll.interval property sets the interval at which to run the batch processing of
queued object deletes, in number of minutes. With the default of 60, the object deletion batch processing job is
run once per hour on each node.

Default = 60

S3 Client
The settings in this section are used by an internal S3 Service client that sends requests to the HyperStore S3
Service in other regions of a multi-region HyperStore deployment. These settings are relevant only if you
have a multi-region system.

Note In the configuration file commenting in this section, the specified "defaults" are internal defaults
that would be used if these settings were commented out in the file. In the documentation below, the
specified "defaults" are the values that are assigned to the settings in the default version of the con-
figuration file after install.

cloudian.s3.client.ConnectionTimeout

When interfacing with the S3 Service in a different Cloudian HyperStore service region, the connection estab-
lishment timeout in milliseconds.

Default = 2000

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → S3ClientConnectionTimeout)

cloudian.s3.client.SocketTimeout

When interfacing with the S3 Service in a different Cloudian HyperStore service region, the request processing
timeout in milliseconds. When a request is sent over an open connection, if a complete response is not
received within this interval, the request times out and the connection is closed.

Default = 50000

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → S3ClientSocketTimeout)

cloudian.s3.client.MaxErrorRetry

566

9.5. HyperStore Configuration Files

When interfacing with the S3 Service in a different Cloudian HyperStore service region, the maximum number
of times to retry a retryable failed request (such as when a 5xx response is received). Set to 0 if you want no
retries.

Default = 0

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → S3ClientMaxErrorRetry)

cloudian.s3.client.UserAgent

When interfacing with the S3 Service in a different Cloudian HyperStore service region, the value of the first
part of the HTTP User-Agent header, where the whole header is "<ConfigValue>, <AWS SDK Version> <OS
Version> <JDK Version>". For example, if you set this setting to "Agent99", then the resulting User-Agent
header will be "Agent99, <AWS SDK Version> <OS Version> <JDK Version>", with the latter three values
being populated automatically by the system.

Default = Commented out; uses internal default "Cloudian/<version> <default-region>"

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → S3ClientUserAgent)

Reports
cloudian.auditlog.enabled

Do not edit this setting.

reports.raw.ttl

Time-to-live for "raw" S3 usage data in the Reports keyspace in Cassandra, in seconds. Raw service usage
data will be automatically deleted this many seconds after its creation. This is set by the system -- do not manu-
ally edit this setting.

This applies to per-bucket usage data (if you have enabled per-bucket usage tracking) as well as to per-user
and per-group usage data.

Default =

l 604800 (seven days), if the "Track/Report Usage for Request Rates and Data Transfer Rates"
(page 344) setting in the CMC's Configuration Settings page is set to "false" (as it is by default)

l 86400 (one day) if the "Track/Report Usage for Request Rates and Data Transfer Rates" (page
344) setting is set to "true"

For an overview of how the HyperStore system tracks service usage by groups, users, and buckets, see
"Usage Reporting and Billing Feature Overview" (page 138).

reports.rolluphour.ttl

Time-to-live for hourly roll-up S3 usage data in the Reports keyspace in Cassandra, in seconds. Hourly roll-up
data will be automatically deleted this many seconds after its creation.

This applies to per-bucket usage data (if you have enabled per-bucket usage tracking) as well as to per-user
and per-group usage data.

Default = 5616000 (65 days)

567

Chapter 9. System Configuration

IMPORTANT ! This hourly rollup data is the basis for generating billing reports. After hourly rollup data
is deleted it is no longer available for generating billing reports.

reports.rollupday.ttl

Time-to-live for daily roll-up S3 usage data in the Reports keyspace in Cassandra, in seconds. Daily roll-up
data will be automatically deleted this many seconds after its creation.

This applies to per-bucket usage data (if you have enabled per-bucket usage tracking) as well as to per-user
and per-group usage data.

Default = 5616000 (65 days)

reports.rollupmonth.ttl

Time-to-live for monthly roll-up S3 usage data in the Reports keyspace in Cassandra, in seconds. Monthly roll-
up data will be automatically deleted this many seconds after its creation.

This applies to per-bucket usage data (if you have enabled per-bucket usage tracking) as well as to per-user
and per-group usage data.

Default = 15552000 (180 days)

reports.auditdata.ttl

Time-to-live for audit data in the Reports keyspace in Cassandra, in seconds. Audit data will be automatically
deleted this many seconds after its creation.

Default = 5616000 (65 days)

events.acknowledged.ttl

Time-to-live for acknowledged system events in the Monitoring keyspace in Cassandra, in seconds. Acknow-
ledged events will be automatically deleted this many seconds after an administrator acknowledges them.

Unacknowledged events are not subject to this timer. The time-to-live countdown on an event record does not
begin until an administrator acknowledges the event through the CMC’s Alerts page or Node Status page.

If you want alerts to be deleted immediately after they have been acknowledged, set this property to 1.

Note As soon an alert occurs a record of it is written to the Smart Support log (which by default is
uploaded to Cloudian Support once a day). So the Smart Support record of alerts persists even after
the alerts have been deleted from your system. For more information on Smart Support see "Smart
Support and Diagnostics Feature Overview" (page 190).

Default = 86400 (one day)

monitoring.ophistory.ttl

Time-to-live for per-node data repair and cleanup operation status summaries in Cassandra's Monitoring key-
space, in seconds. Each repair and cleanup status summary will be automatically deleted after it has been
stored for monitoring.ophistory.ttl seconds.

For as long as repair and cleanup status summaries are stored in the Monitoring keyspace, they can be
retrieved on a per-node basis by using the hsstool opstatus command, with the "-q history" option. This
returns the operation history of a specified node. The monitoring.ophistory.ttl property controls the maximum

568

9.5. HyperStore Configuration Files

length of that retrievable operation history -- for example with monitoring.ophistory.ttl at its default value, for
each HyperStore node you can retrieve the history of its repair and cleanup operations from the past 90 days.
Repair and cleanup operation status information older than that will be deleted.

Default = 7776000 (90 days)

Usage
The "Usage" section has settings for tuning the performance of usage data repair operations.

usage.repair.row.size

When querying Cassandra for the object metadata associated with individual service users, the maximum num-
ber of users to retrieve per query.

Default = 1000

usage.repair.column.size

When querying Cassandra for the object metadata associated with individual service users, for each user the
maximum number of objects for which to retrieve metadata per query.

Default = 1000

usage.repair.maxdirtyusers

Maximum number of "dirty" users for whom to verify (and if necessary repair) usage data during a single run of
the POST /usage/repair/dirtyusers operation. This operation is triggered every 12 hours by cron job.

Default = 1000

usage.rollup.userchunk.size

When performing rollups of usage data, the maximum number of users to take into memory at a time.

Default = 1000

usage.rollup.usagechunk.size

When performing rollups of usage data, the maximum number of usage records to take into memory at a time.

Default = 1000

usage.rollup.hour.maxretry

Each time the system performs an hourly rollup of usage data for the hour that just ended, it will check whether
the hourly rollup data from the preceding hours exists (as it should, unless relevant system services have been
down or unreachable). If the hourly rollup data from preceding hours is missing, then the system retries pro-
cessing the hourly rollups for those hours that are missing the hourly rollup data. The usage.rol-
lup.hour.maxretry property sets a maximum on the number of preceding hours to check on and (if needed)
perform a retry for.

For example, suppose usage.rollup.hour.maxretry=6. With this setting, if the system is for example about to per-
form the hourly rollup from the 10th hour of the day, it will first check that hourly rollup data exists for the 9th,
8th, 7th, 6th, 5th, and 4th hours of the day -- and if any of those hourly rollups are missing, the system will try
again to execute those hourly rollups. After doing so the system will then perform the hourly rollup of the usage
data from the 10th hour of the day.

Default = 24

569

Chapter 9. System Configuration

cloudian.s3.usagerates.enabled

Takes its value from the "Track/Report Usage for Request Rates and Data Transfer Rates" (page 344) set-
ting on the CMC's Configuration Settings page; use that setting instead.

bucketstats.enabled

Takes its value from common.csv: "bucketstats_enabled" (page 543); use that setting instead.

cloudian.s3.redis.retry

The interval in seconds at which the S3 Service will retry a Redis node that has been unresponsive. If the S3
Service finds a Redis node to be unresponsive the S3 Service will temporarily remove that node from the list of
Redis nodes that are available to service requests. At an interval of cloudian.s3.redis.retry seconds the S3 Ser-
vice will retry the Redis node. If it's found to be responsive, the node is added back to the S3 Service's list of
available Redis nodes.

This setting is applicable to Redis Credentials nodes and Redis QoS nodes.

Default = 30

Redis Monitor
The HyperStore "Redis Monitor Service" (page 27) is installed automatically with the S3 Service and Admin
Service. You can run the Redis Monitor in order to monitor Redis cluster health and implement automatic fail-
over of the Redis master node role. For Redis Monitor redundancy, it runs on two of your S3 Service / Admin
Service nodes, with the Monitor configured as primary on one node and as backup on the other node.

redis.monitor.subscription.check

Takes its value from common.csv: "redis_monitor_subscription_check" (page 533); use that setting instead.

redis.monitor.primary.pollInterval

The interval at which the backup Redis Monitor instance should check on the health of the primary instance, in
seconds. If the primary Redis Monitor instance is unresponsive, the backup instance takes over the monitoring
duties.

Default = 5

redis.credentials.cluster.pollInterval

Interval at which the Redis Monitor application should check the health of the Redis Credentials servers, in
seconds. At this interval, the Redis Monitor also checks the S3 Service / Admin Service nodes via JMX to
ensure that they are configured to point to the current Redis Credentials master, and updates their con-
figuration if necessary.

Default = 5

redis.credentials.cluster.client.request.waittime

Maximum time for the Redis Monitor to wait for a JMX connection attempt to a S3 Service / Admin Service node
to complete, in seconds. If the connection attempt doesn’t complete (with a success or failure result) within this
interval, the Redis Monitor marks the S3 Service / Admin Service node as DOWN and writes an INFO level mes-
sage to cloudian-redismon.log. Meanwhile, the connection attempt will continue until completion, and sub-
sequently polling of the S3 Service / Admin Service node will resume at the regular polling interval.

570

9.5. HyperStore Configuration Files

The redis.credentials.cluster.client.request.waittime value must be smaller than the redis-
.credentials.cluster.pollInterval value.

Default = 3

redis.monitor.alert.limit

This setting limits how much the Redis Monitor's monitoring for conditions of DC partition or "split brain" writes
to cloudian-redismon.log.

Default = 100

redis.monitor.skip.dc.monitoring

For information about this setting please see "disable dc partition monitoring" (page 735) and "enable dc
partition monitoring" (page 736).

Default = true (monitoring is disabled ["skipped"])

redis.monitor.skip.brain.monitoring

For information about this setting please see "disable split brain monitoring" (page 737) and "enable split
brain monitoring" (page 738).

Default = false (monitoring is enabled [not "skipped"])

Credentials
credentials.user.max

Maximum allowed number of S3 credentials per HyperStore user. Each credential is a key pair consisting of a
public key (access key) and a private key (secret key). These credentials enable a HyperStore user to access
the HyperStore S3 storage system through either the CMC or a third party S3 client.

Inactive credentials count toward this maximum as well as active credentials. Credentials can be created,
made active or inactive, and deleted, through either the CMC or the Admin API.

Note If a HyperStore user creates IAM users under their HyperStore account and creates S3 cre-
dentials for those IAM users, the IAM users' credentials do not count toward the HyperStore user's max-
imum allowed number of S3 credentials. IAM user credentials are limited separately, by the
credentials.iamuser.max property.

Default = 5

credentials.iamuser.max

Maximum allowed number of S3 credentials per IAM user. Each credential is a key pair consisting of a public
key (access key) and a private key (secret key). These credentials enable an IAM user to access the Hyper-
Store S3 storage system through a third party S3 client. IAM users cannot access the HyperStore S3 storage
system through the CMC.

Inactive credentials count toward this maximum as well as active credentials. Credentials can be created,
made active or inactive, and deleted, through either the CMC's IAM User section (which is accessible only to
HyperStore group administrators or regular users -- not system administrators) or the HyperStore imple-
mentation of the Amazon IAM API.

Default = 2

571

Chapter 9. System Configuration

keystore.pass

Password for the Java keystore file /opt/cloudian/conf/.keystore. This keystore file stores the Admin Service’s
pre-generated, self-signed, RSA-based public and private keys for SSL.

Default = adminpass

secure.transact.alias

Alias identifying the Admin Service’s certificate entry within the keystore.

Default = secure

secure.transact.pass

Password to access the certificate entry that’s identified by secure.transact.alias.

Default = private

admin.auth.realm

Takes its value from common.csv: "admin_auth_realm" (page 526); use that setting instead.

admin.auth.enabled

Takes its value from common.csv: "admin_auth_enabled" (page 526); use that setting instead.

admin.secure

Takes its value from common.csv: "admin_secure" (page 526); use that setting instead.

admin.user.password.length

Maximum allowed character length for users' Cloudian Management Console login passwords.

Default = 64

user.password.min.length

Takes its value from common.csv: "user_password_min_length" (page 527); use that setting instead.

user.password.dup.char.ratio.limit

Takes its value from common.csv: "user_password_dup_char_ratio_limit" (page 527); use that setting
instead.

user.password.unique.generations

Takes its value from common.csv: "user_password_unique_generations" (page 527); use that setting
instead.

user.password.rotation.graceperiod

Takes its value from common.csv: "user_password_rotation_graceperiod" (page 527); use that setting
instead.

user.password.rotation.expiration

Takes its value from common.csv: "user_password_rotation_expiration" (page 527); use that setting instead.

awsmms.proxy.host

Takes its value from common.csv: "awsmmsproxy_host" (page 542); use that setting instead.

572

9.5. HyperStore Configuration Files

awsmms.proxy.port

If you are using the AWS Marketplace Metering Service version of Cloudian HyperStore, this is the port that
HyperStore connects to on your AWS Proxy Server. HyperStore transmits usage data to the AWS Proxy Server,
which in turn relays the data to the AWS Marketplace Metering Service for billing purposes.

Default = 17081

admin.whitelist.enabled

Takes its value from common.csv: "admin_whitelist_enabled" (page 537); use that setting instead.

HyperStore Service
The HyperStore Service section configures S3 Service behavior in its role as a client of the HyperStore Ser-
vice.

hyperstore.endport

HyperStore Service listening port to which the S3 Service will submit data operation requests.

Default = Takes its value from elsewhere within the Puppet manifest structure; default is 19090

hyperstore.maxthreads.read

Takes its value from common.csv: "hyperstore.maxthreads.read" (page 519); use that setting instead.

hyperstore.maxthreads.write

Takes its value from common.csv: "hyperstore.maxthreads.write" (page 519); use that setting instead.

hyperstore.maxthreads.repair

Takes its value from common.csv: "hyperstore.maxthreads.repair" (page 518); use that setting instead.

hyperstore.snd.buffer

Socket send buffer size from S3 nodes to HyperStore nodes.

Default = 0

hyperstore.rcv.buffer

Socket receive buffer size from S3 nodes to HyperStore nodes.

Default = 0

hyperstore.timeout

Takes its value from common.csv: "hyperstore_timeout" (page 517); use that setting instead.

hyperstore.connection.timeout

Takes its value from common.csv: "hyperstore_connection_timeout" (page 518); use that setting instead.

hyperstore.maxtotalconnections

Takes its value from common.csv: hyperstore_maxtotalconnections, which is controlled by a performance
optimization script that runs automatically when you install your cluster or resize your cluster.

hyperstore.maxperrouteconnections

Takes its value from common.csv: hyperstore_maxperrouteconnections, which is controlled by a performance

573

Chapter 9. System Configuration

optimization script that runs automatically when you install your cluster or resize your cluster

cassandra.range_repair.max.waiting.time.in_sec

During a Cassandra repair operation each of a node's token ranges are repaired one at a time, sequentially.
The system will wait for a maximum of this many seconds for repair of a range to complete. If repair of a range
times out by not being completed within this many seconds, the system moves on to repair the next range in
sequence. Subsequently, after other ranges are repaired, repair of the range that timed out will be retried a
maximum of 3 times. If it still cannot be repaired, the Cassandra repair as a whole will return a Failed status.

Default = 7200

Process Diagnostics (Phone Home / Smart Support)
phonehome.enabled

The HyperStore Data Collector collects and stores system-wide diagnostic data for your HyperStore system on
an ongoing basis. By default this diagnostics data is automatically uploaded to Cloudian Support via the S3
protocol once a day, as part of the Smart Support feature. For more information about this feature -- including
what data gets sent to Cloudian Support and how they use it for your benefit -- see "Smart Support and Dia-
gnostics Feature Overview" (page 190).

l If you want diagnostics data automatically uploaded to Cloudian Support via S3 each day, there's
nothing you need to do -- just leave phonehome.enabled set to "true" and leave the setting
common.csv: phonehome_uri set to the Cloudian Support S3 URI. This is the default behavior and is
the recommended behavior.

l If you want diagnostics data automatically uploaded each day to an S3 destination other than
Cloudian Support, leave phonehome.enabled set to "true" and set the common.csv: phonehome_uri
setting to the desired S3 URI (and also set common.csv: phonehome_{bucket, access_key, secret_
key}).

l If you do not want diagnostics data automatically uploaded to an S3 destination each day, set
phonehome.enabled to "false". This is not recommended.

Even if you choose not to automatically upload the daily diagnostic data to an S3 destination -- that is, even if
you set phonehome.enabled to "false" -- a diagnostics data file is still generated locally and stored under /var/-
log/cloudian on the node on which the HyperStore Monitoring Data Collector runs. (To see which of your
nodes is the Data Collector node, go to the CMC's Cluster Information page and check for the identity of the
"System Monitoring/Cronjob Primary Host".) The "live" diagnostics log -- which is recording the current day’s
performance statistics -- is named diagnostics.csv. The rolled up daily diagnostic packages from previous days
-- which include prior days' diagnostics.csv files and also various application and transaction logs -- are named
diagnostics_<date/time>_<version>_<region>.tgz.

Note The deletion of old diagnostics packages is managed by Puppet, as configured by "cleanup_dir-
ectories_byage_withmatch_timelimit" (page 515) in common.csv. By default Puppet deletes the dia-
gnostics packages after they are 15 days old. This presumes that you have left the Puppet daemons
running in your HyperStore cluster, which is the default behavior. If you do not leave the Puppet dae-
mons running the diagnostics logs will not be automatically deleted. In that case you should delete the
old packages manually, since otherwise they will eventually consume a good deal of storage space.

Default = true

phonehome.uri

Takes its value from common.csv: "phonehome_uri" (page 524); use that setting instead.

574

9.5. HyperStore Configuration Files

phonehome.{bucket, accessKey, secretKey}

Take their values from common.csv: "phonehome_bucket" (page 524) and the subsequent settings; use
those settings instead.

Default = empty

phonehome.proxy.host

Takes its value from common.csv: "phonehome_proxy_host" (page 523); use that setting instead.

phonehome.proxy.port

Takes its value from common.csv: "phonehome_proxy_port" (page 524); use that setting instead.

phonehome.proxy.username

Takes its value from common.csv: "phonehome_proxy_username" (page 524); use that setting instead.

phonehome.proxy.password

Takes its value from common.csv: "phonehome_proxy_password" (page 524); use that setting instead.

phonehome.gdpr

Takes its value from common.csv: "phonehome_gdpr" (page 525); use that setting instead.

System Info Log Upload
sysinfo.uri

S3 URI to which to upload on-demand Node Diagnostics packages, when you use the CMC's Collect Dia-
gnostics function. By default this is the S3 URI for Cloudian Support, but if you prefer you can set this to a dif-
ferent S3 URI. For an overview of this feature see "Smart Support and Diagnostics Feature Overview" (page
190).

Include the HTTP or HTTPS protocol part of the URI (http:// or https://).

Default = https://s3-support.cloudian.com:443

Note If you set sysinfo.uri to a URI for your own HyperStore S3 storage system (rather than Cloudian
Support), and if your S3 Service is using HTTPS, then your S3 Service’s SSL certificate must be a CA-
verified, trusted certificate — not a self-signed certificate. By default the Node Diagnostics upload func-
tion cannot upload to an HTTPS URI that’s using a self-signed certificate. If you require that the upload
go to an HTTPS URI that’s using a self-signed certificate, contact Cloudian Support.

sysinfo.{bucket, accessKey, secretKey}

l If you are using the Node Diagnostics upload feature to upload node diagnostic data to Cloudian Sup-
port via S3, you can leave the sysinfo.bucket, sysinfo.accessKey, and sysinfo.secretKey properties
empty. The Node Diagnostics feature will automatically extract the Cloudian Support S3 bucket name
and security credentials from your encrypted HyperStore license file. You would only modify these con-
figuration properties if instructed to do so by Cloudian Support.

l If you set sysinfo.uri to your own S3 URI (rather than the Cloudian Support URI), set the sysinfo.bucket,
sysinfo.accessKey, and sysinfo.secretKey properties to the destination bucket name and the applicable
S3 access key and secret key.

Default = empty

575

Chapter 9. System Configuration

sysinfo.proxy.host

Takes its value from common.csv: "phonehome_proxy_host" (page 523); use that setting instead.

Note This property, together with the other sysinfo.proxy.* properties below, is for using a local forward
proxy when sending Node Diagnostics packages to Cloudian Support (or another external S3 des-
tination). By default these properties will inherit the same common.csv values that you set for proxying
of the daily Smart Support upload (also known as "phone home"). If you want to use a different proxy for
sending Node Diagnostics packages -- not the same proxy settings that you use for the phone home
feature -- edit the sysinfo.proxy.* settings directly in mts.properties.erb. For example you could change
sysinfo.proxy.host=<%= @phonehome_proxy_host %> to sysinfo.proxy.host=proxy2.enterprise.com.

sysinfo.proxy.port

Takes its value from common.csv: "phonehome_proxy_port" (page 524); use that setting instead.

sysinfo.proxy.username

Takes its value from common.csv: "phonehome_proxy_username" (page 524); use that setting instead.

sysinfo.proxy.password

Takes its value from common.csv: "phonehome_proxy_password" (page 524); use that setting instead.

s3.client.timeout

When uploading a Node Diagnostics package to an S3 destination such as Cloudian Support, the socket
timeout in milliseconds.

Default = 1800000

s3.upload.part.minsize

When HyperStore uses Multipart Upload to transmit a Node Diagnostics package to an S3 destination such as
Cloudian Support, each of the parts will be this many bytes or larger — with the exception of the final part,
which may be smaller. For example, if Multipart Upload is used for an 18MB object, and the configured min-
imum part size is 5MB, the object will be transmitted in four parts of size 5MB, 5MB, 5MB, and 3MB.

Default = 5242880 (5MB)

s3.upload.part.threshold

When HyperStore transmits a Node Diagnostics package to an S3 destination such as Cloudian Support, it
uses Multipart Upload if the package is larger than this many bytes.

Default = 16777216 (16MB)

Protection Policies (Storage Policies)
cloudian.protection.policy.max

Maximum number of bucket protection policies (storage policies) that the system will support. Policies with
status "Active", "Pending", or "Disabled" count toward this system limit.

If the policy maximum has been reached, you will not be able to create new policies until you either delete exist-
ing policies or increase the value of cloudian.protection.policy.max.

Default = 25

576

9.5. HyperStore Configuration Files

Reloadable via JMX (S3 Service’s JMX port 19080; MBean attribute = com.gemini.cloudian.s3 → Configuring
→ Attributes → MaxProtectionPolicies)

For more information about storage policies, see "Storage Policies Feature Overview" (page 76).

User Agent for Tiering
cloudian.tiering.useragent

Takes its value from common.csv: "cloudian_tiering_useragent" (page 530); use that setting instead.

SSL for SSEC
cloudian.s3.ssec.usessl

This setting controls whether the S3 servers will require that incoming S3 requests use HTTPS (rather than reg-
ular HTTP) connections when the request is using Server Side Encryption with Customer-provided encryption
keys (SSE-C). Leaving this setting at its default of "true" -- so that the S3 servers require HTTPS connections for
such requests -- is the recommended configuration. The only circumstance in which you might set this to "false"
is if:

l You are using a load balancer in front of your S3 servers -- and the load balancer, when receiving an
incoming HTTPS request from clients, terminates the SSL and uses regular HTTP to connect to an S3
server over your internal network.

l You trust your internal network to safely transport users' encryption keys from the load balancer to the
S3 servers over regular HTTP.

For background information about HyperStore support for server-side encryption (SSE and SSE-C), see
"Server-Side Encryption" (page 105).

Default = true

AWS Region for AWS-KMS
util.awskmsutil.region

Amazon Web Services (AWS) service region to use if you are configuring your HyperStore system to support
AWS-KMS as a method of server-side encryption. For complete instructions see "Using AWS KMS" (page
110).

Default = us-east-1

Tracker for Torrent
cloudian.s3.torrent.tracker

If you want your service users to be able to use BitTorrent for object retrieval, use this property to specify the
URL of a BitTorrent "tracker" (a server that keeps track of the clients that have retrieved a particular object and
makes this information available to other clients retrieving the object). This can be a tracker that you implement
yourself or one of the many public BitTorrent trackers. HyperStore itself does not provide a tracker.

This must be a single URL, not a list of URLs.

The tracker URL that you specify here will be included in the torrent file that the HyperStore S3 Server returns
to clients when they submit a "GetObjectTorrent" (page 956) request.

Default = commented out

577

Chapter 9. System Configuration

Elasticsearch Integration
cloudian.elasticsearch.*

For information about the cloudian.elasticsearch.process.type and cloudian.elasticsearch.http.url settings, see
"Option to Send Metadata to an HTTP Server Rather than to Elasticsearch" (page 175).

For information about all the other cloudian.elasticsearch.* settings, see "Elasticsearch Integration for Object
Metadata" (page 171).

Node Status Configuration
In your storage cluster the S3 Service runs on each node and so too does the HyperStore Service. S3
requests incoming to your cluster are distributed among the S3 Service instances, and in processing an S3
request an S3 Service instance sends write or read requests to the HyperStore Service instances on multiple
nodes (such as when storing a new object in accordance with a 3X replication storage policy, for example).

The settings in the "Node Status Configuration" section ofmts.properties.erb configure a feature whereby the
S3 Service on any node will mark the HyperStore Service on any node as being "Down" if recent requests to
that HyperStore Service node have failed at a rate in excess of defined thresholds. When an S3 Service node
marks a HyperStore Service node as Down, that S3 Service node will temporarily stop sending requests to that
HyperStore Service node. This prevents a proliferation of log error messages that would likely have resulted if
requests continued to be sent to that HyperStore Service node, and also allows for the implementation of fall-
back consistency levels in the case of storage policies configured with "Dynamic Consistency Levels" (page
39).

The configurable thresholds in this section are applied by each individual S3 Service node -- so that each indi-
vidual S3 Service node makes its own determination of when a problematic HyperStore Service node should
be marked as Down.

An S3 Service node will mark a HyperStore Service node as Down in either of these conditions:

l The number of timeout error responses from a HyperStore Service node has exceeded hss.-
timeout.count.threshold (default = 10) over a period of hss.timeout.time.threshold number of
seconds (default = 300) and also the percentage of error responses of any type from that HyperStore
Service node has exceeded hss.fail.percentage.threshold (default = 50) over the past hss.-
fail.percentage.period number of seconds (default = 300).

l The number of other types of error responses from a HyperStore Service node has exceeded hss.-
fail.count.threshold (default = 10) over a period of hss.fail.time.threshold number of seconds (default
= 300) and also the percentage of error responses of any type from that HyperStore Service node has
exceeded hss.fail.percentage.threshold (default = 50) over the past hss.fail.percentage.period num-
ber of seconds (default = 300).

So by default an S3 Service node will mark a HyperStore Service node as Down if during a five minute period
the HyperStore Service node has returned either more than 10 timeout responses or more than 10 error
responses of other types, while during that same five minute period more than half the requests that the S3 Ser-
vice node has sent to that HyperStore Service node have failed.

Note that these triggering conditions are based on a combination of number of error responses and per-
centage of error responses from the problematic HyperStore Service node. This approach avoids marking a
HyperStore Service node as down in circumstances when a high percentage of a very small number of
requests fail, or when the number of failed requests is sizable but constitutes only a small percentage of the
total requests.

578

9.5. HyperStore Configuration Files

Once an S3 Service node has marked a HyperStore Service node as Down, that Down status will persist for
hss.bring.back.wait number of seconds (default = 300) before the Down status is cleared and that S3 Service
node resumes sending requests to that HyperStore Service node.

Note If the S3 Service node is restarted during this interval, then the Down status for that HyperStore
Service node will be lost and the S3 Service node upon restarting will resume sending requests to that
HyperStore Service node.

Note There is special handling in the event that a HyperStore Service node returns a "Connection
Refused" error to an S3 Service node (such as would happen if the HyperStore Service was stopped
on the target node). In this case the S3 Service node immediately marks that HyperStore Service node
as being down, and will then resume sending requests to that HyperStore Service node after a wait
period of 15 seconds. This behavior is not configurable.

Proactive repair queue restriction
hyperstore.proactiverepair.queue.max.time

When eventual consistency for writes is used in the system -- that is, if you have storage policies for which you
have configured the write consistency level to be something less strict than ALL -- S3 writes may succeed in
the system even in circumstances when one or more write endpoints is unavailable. When this happens the
system's proactive repair feature queues information about the failed endpoint writes, and automatically
executes those writes later -- on an hourly interval (by default), without operation intervention. For more inform-
ation about proactive repair see "Proactive Repair" (page 151).

The proactive repair feature's queueing mechanism entails writing metadata to Cassandra, which is sub-
sequently removed when the endpoint writes are executed by proactive repair. To avoid over-burdening Cas-
sandra with proactive queueing data it's best if a cap be placed on how long the queueing can go on for in a
given instance of a write endpoint being unavailable. The hyperstore.proactiverepair.queue.max.time property
sets this cap, in minutes.

If a node has been unavailable for more than hyperstore.proactiverepair.queue.max.time minutes, the system
stops writing to the proactive repair queue for that node, an error is logged in the S3 application log, and an
alert is generated in the CMC. As indicated by the alert, in this circumstance after the node comes back online
you need to wait for proactive to complete on the node (you can monitor this in the CMC's Repair Status page)
and then you must manually initiate a full repair on the node (see hsstool repair and hsstool repairec).

Note that once the node is back up, the timer is reset to 0 in terms of counting against the hyper-
store.proactiverepair.queue.max.time limit. So if that subsequently node goes down again, proactive repair
queueing would again occur for that node for up to hyperstore.proactiverepair.queue.max.time minutes.

Default = 240

Note To disable this limit -- so that there is no limit on the time for which proactive repair queueing
metadata can build up for a node that's unavailable -- set hyperstore.proactiverepair.queue.max.time to
0.

Bucket Share API
cloudian.s3.enablesharedbucket

To enable the HyperStore S3 API extension that allows an S3 user to list all the buckets that have been shared

579

Chapter 9. System Configuration

with him or her, set this property to true.

Default = false

Note For information about the relevant S3 API call and how to use the extension, see "ListBuckets"
(page 958).

Max User ID Length
cloudian.userid.length

Takes its value from common.csv: "cloudian_userid_length" (page 514); use that setting instead.

9.5.4. mts-ui.properties.erb
The mts-ui.properties file configures the Cloudian Management Console server (CMC). On each of your Hyper-
Store nodes, the file is located at the following path by default:

/opt/tomcat/webapps/Cloudian/WEB-INF/classes/mts-ui.properties

Do not directly edit the mts-ui.properties file on individual HyperStore nodes. Instead, if you want to make
changes to the settings in this file, edit the configuration template file mts-ui.properties.erb on the Puppet mas-
ter node:

/etc/cloudian-<version>-puppet/modules/cmc/templates/mts-ui.properties.erb

Certain mts-ui.properties.erb properties take their values from settings in common.csv or from settings that you
can control through the CMC's Configuration Settings page. In the mts-ui.properties.erb file these properties'
values are formatted as bracket-enclosed variables, like <%= …%>. In the property documentation below, the
descriptions of such properties indicate "Takes its value from <location>: <setting>; use that setting instead."
The remaining properties in the mts-ui.properties.erb file -- those that are "hard-coded" with specific values --
are settings that in typical circumstances you should have no need to edit. Therefore in typical circumstances
you should not need to manually edit the mts-ui.properties.erb file.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can edit this configuration file with this command:

$ hspkg config -e mts-ui.properties.erb

Specify just the configuration file name, not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file.

IMPORTANT ! If you do make edits to mts-ui.properties.erb, be sure to push your edits to the cluster
and restart the CMC to apply your changes. For instructions see "Pushing Configuration File Edits to
the Cluster and Restarting Services" (page 506).

The mts-ui.properties.erb file has the settings below.

admin.host

Takes its value from common.csv: "cmc_admin_host_ip" (page 537); use that setting instead.

580

9.5. HyperStore Configuration Files

admin.port

Takes its value from common.csv:ld_cloudian_s3_admin_port, which is controlled by the installer.

admin.secure

Takes its value from common.csv:"admin_secure" (page 526); use that setting instead.

admin.secure.port

Takes its value from common.csv: "cmc_admin_secure_port" (page 527); use that setting instead.

admin.secure.ssl

Takes its value from common.csv: "cmc_admin_secure_ssl" (page 538); use that setting instead.

admin.conn.timeout

The connection timeout for the CMC to use as a client to the Admin Service, in milliseconds. If the CMC cannot
connect to the Admin Service within this many milliseconds, the connection attempt times out and the
CMC interface displays an error message.

Note To provide any of its functions for any type of user, the CMC must successfully connect to the
Admin Service.

Default = 10000 (10 seconds)

iam.enabled

Takes its value from common.csv: "iam_service_enabled" (page 528); use that setting instead.

iam.host

Takes its value from common.csv: "iam_service_endpoint" (page 528); use that setting instead.

iam.port

Takes its value from common.csv: "iam_port" (page 528); use that setting instead.

iam.secure.port

Takes its value from common.csv: "iam_secure_port" (page 528); use that setting instead.

iam.secure

Takes its value from common.csv: "iam_secure" (page 528); use that setting instead.

iam.socket.timeout

If during an HTTP/S connection with the IAM Service this many milliseconds pass without any data being
passed back by the IAM Service, the CMC will drop the connection.

Default = 30000

iam.max.retry

If when trying to initiate an IAM request the CMC fails in an attempt to connect to the IAM Service, the CMC will
retry this many times before giving up.

Default = 3

581

Chapter 9. System Configuration

web.secure

Takes its value from common.csv: "cmc_web_secure" (page 538); use that setting instead.

web.secure.port

Takes its value from common.csv: "cmc_https_port" (page 538); use that setting instead.

web.nonsecure.port

Takes its value from common.csv: "cmc_http_port" (page 538); use that setting instead.

storageuri.ssl.enabled

Takes its value from common.csv: "cmc_storageuri_ssl_enabled" (page 539); use that setting instead.

path.style.access

Takes its value from common.csv: "path_style_access" (page 516); use that setting instead.

application.name

Takes its value from common.csv: "cmc_application_name" (page 539); use that setting instead.

s3.client.timeout

Socket timeout on requests from the CMC to the S3 Service, in milliseconds.

Default = 1800000

s3.upload.part.minsize

When the CMC uses Multipart Upload to transmit an object to the S3 Service, each of the parts will be this
many bytes or larger — with the exception of the final part, which may be smaller. For example, if Multipart
Upload is used for an 18MB object, and the configured minimum part size is 5MB, the object will be transmitted
in four parts of size 5MB, 5MB, 5MB, and 3MB.

Default = 5242880 (5MB)

s3.upload.part.threshold

When a CMC user uploads an object larger than this many bytes, the CMC uses Multipart Upload to transmit
the object to the S3 Service, rather than PUT Object.

Default = 16777216 (16MB)

query.maxrows

For the CMC's Usage By Users & Groups page, the maximum number of data rows to retrieve when pro-
cessing a usage report request.

Default = 100000

page.size.default

For the CMC's Usage By Users & Groups page, for usage report pagination, the default number of table rows
to display on each page of a tabular report.

Default = 10

page.size.max

For the CMC's Usage By Users & Groups page, for usage report pagination, the maximum number of table

582

9.5. HyperStore Configuration Files

rows that users can select to display on each page of a tabular report.

Default = 100

list.multipart.upload.max

In the CMC's Objects page, when a user is uploading multiple objects each of which is large enough to trigger
the use of the S3 multipart upload method, the maximum number of multipart upload objects for which to sim-
ultaneously display upload progress.

For example, with the default value of 1000, if a user is concurrently uploading 1005 objects that require the
use of the multipart upload method, the CMC's Objects page will display uploading progress for 1000 of those
objects.

Default = 1000

graph.datapoints.max

For the CMC's Usage By Users & Groups page, the maximum number of datapoints to include within a graph-
ical report.

Default = 1000

csv.rows.max

For the CMC's Usage By Users & Groups page, the maximum number of rows to include within a comma-sep-
arated value report.

Default = 1000

fileupload.abort.max.hours

When a very large file is being uploaded through the CMC, the maximum number of hours for the CMC to wait
for the S3 file upload operation to complete. If this maximum is reached, the upload operation is aborted.

Default = 3

license.request.email

Email address to which to send Cloudian license requests. This address is used in a request license inform-
ation link in the CMC interface.

Default = cloudian-license@cloudian.com

admin.auth.user

Takes its value from common.csv: "admin_auth_user" (page 525); use that setting instead.

admin.auth.pass

Takes its value from common.csv: "admin_auth_pass" (page 525); use that setting instead.

admin.auth.realm

Takes its value from common.csv: "admin_auth_realm" (page 526); use that setting instead.

user.password.min.length

Takes its value from common.csv: "user_password_min_length" (page 527); use that setting instead.

user.password.dup.char.ratio.limit

Takes its value from common.csv: "user_password_dup_char_ratio_limit" (page 527); use that setting

583

Chapter 9. System Configuration

instead.

user.password.unique.generations

Takes its value from common.csv: "user_password_unique_generations" (page 527); use that setting
instead.

user.password.rotation.graceperiod

Takes its value from common.csv: "user_password_rotation_graceperiod" (page 527); use that setting
instead.

user.password.rotation.expiration

Takes its value from common.csv: "user_password_rotation_expiration" (page 527); use that setting instead.

acl.grantee.public

In the CMC UI dialogs that let CMC users specify permissions on S3 buckets, folders, or files, the label to use
for the ACL grantee "public". If the acl.grantee.public property is not set in mts-ui.properties, then the system
instead uses the acl.grantee.public value from your resources_xx_XX.properties files (for example, for the U.S.
English version of the UI, the value is in resources_en_US.properties).

Default = commented out (value is taken from resource file[s])

acl.grantee.cloudianUser

In the CMC UI dialogs that let CMC users specify permissions on S3 buckets, folders, or files, the label to use
for the ACL grantee "all Cloudian HyperStore service users". If the acl.grantee.cloudianUser property is not set
in mts-ui.properties, then the system instead uses the acl.grantee.cloudianUser value from your resources_xx_
XX.properties files (for example, for the U.S. English version of the UI, the value is in resources_en_US.-
properties).

Default = commented out (value is taken from resource file[s])

session.timedout.url

URL of page to display if a CMC user’s login session times out.

If this value is not set in mts-ui.properties, the behavior defaults to displaying the CMC Login screen if the
user’s session times out.

Default = commented out (CMC Login screen displays)

admin.manage_users.enabled

This setting controls whether the Manage Users function will be enabled in the CMC GUI. For a screen shot
and description of this function, see "Manage Users" (page 262).

Options are:

l true — This function will display for users logged in as a system administrator or group administrator.
For group admins this function is restricted to their own group.

l false — This function will not display for any users. If you set this to "false" then the Manage Users func-
tionality as a whole is disabled and the more granular admin.manage_users.*.enabled properties
below are ignored.

l SystemAdmin — This function will display only for users logged in as a system administrator.

l GroupAdmin — This function will display only for users logged in as a group administrator.

584

9.5. HyperStore Configuration Files

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note If you want to enable some aspects of the Manage Users function and not others, you can have
admin.manage_users.enabled set so that the function is enabled for your desired user types, and then
use the granular admin.manage_users.*.enabled properties below to enable/disable specific cap-
abilities.

admin.manage_users.create.enabled

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability to create new
users.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

admin.manage_users.edit.enabled

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability to edit exist-
ing users' profiles and service attributes.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note Regardless of how you configure the admin.manage_users.edit.enabled setting:
* Nobody but a system administrator can ever change a user’s rating plan assignment.
* Regular users can edit their own profile information, in the Profile page of the CMC.

admin.manage_users.delete.enabled

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability to delete
users.

Options are:

585

Chapter 9. System Configuration

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

admin.manage_users.viewuserdata.enabled

Takes its value from common.csv: "cmc_view_user_data" (page 541); use that setting instead.

admin.manage_users.edit.user_credentials.enabled

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability to change
users' CMC login passwords and to view and manage user's S3 access credentials.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note Regardless of how you configure the admin.manage_users.edit.user_credentials.enabled set-
ting, regular users can manage their own CMC login password and S3 access credentials, in the
Security Credentials page of the CMC.

admin.manage_users.edit.user_qos.enabled

Within the Manage Users function in the CMC GUI, this setting enables or disables the capability to set Quality
of Service (QoS) controls for specific users.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note This setting is relevant only if the admin.manage_users.enabled and admin.manage_user-
s.edit.enabled settings are enabled.

586

9.5. HyperStore Configuration Files

admin.manage_groups.enabled

This setting controls whether the Manage Groups function will be enabled in the CMC GUI. For a screen shot
and description of this function, see "Manage Groups" (page 270).

Options are:

l true — This function will display for users logged in as a system administrator or group administrator.
For group admins this function is restricted to their own group.

l false — This function will not display for any users. If you set this to "false" then the Manage Groups
functionality as a whole is disabled and the more granular admin.manage_groups.*.enabled properties
below are ignored.

l SystemAdmin — This function will display only for users logged in as a system administrator.

l GroupAdmin — This function will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note If you want to enable some aspects of the Manage Groups function and not others, you can have
admin.manage_groups.enabled set so that the function is enabled for your desired user types, and
then use the granular admin.manage_groups.*.enabled properties below to enable/disable specific
capabilities.

admin.manage_groups.create.enabled

Within the Manage Groups function in the CMC GUI, this setting enables or disables the capability to create
new groups.

Options are:

l true — This capability will display for users logged in as a system administrator.

l false — This capability will not display for any users.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

admin.manage_groups.edit.enabled

Within the Manage Groups function in the CMC GUI, this setting enables or disables the capability to edit an
existing group’s profile and service attributes.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

Note Even when this capability is enabled for group admins, they will not be able to perform cer-
tain group-related actions that are reserved for system admins, such as setting QoS controls for
the group as a whole or assigning a default rating plan for the group. Group admins' privileges
will be limited to changing their group description and changing the default user QoS settings
for the group. The latter capability is controlled by a more granular configuration property admin.-
manage_groups.user_qos_groups_default.enabled (below), which defaults to "true".

587

Chapter 9. System Configuration

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

admin.manage_groups.delete.enabled

Within the Manage Groups function in the CMC GUI, this setting enables or disables the capability to delete a
group.

Options are:

l true — This capability will display for users logged in as a system administrator.

l false — This capability will not display for any users.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

admin.manage_groups.user_qos_groups_default.enabled

Within the Manage Groups function in the CMC GUI, this setting enables or disables the capability to set
default Quality of Service (QoS) controls for users within a specific group.

Options are:

l true — This capability will display for users logged in as a system administrator or group administrator.
For group admins this capability is restricted to their own group.

l false — This capability will not display for any users.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note This setting is relevant only if the admin.manage_groups.enabled and admin.manage_
groups.edit.enabled settings are enabled.

account.profile.writeable.enabled

This setting controls whether a user can edit his or her own account profile information in the Account section
of the CMC GUI. For user types for which this editing capability is not enabled, account profile information will
be read-only. For a screen shot and description of this function, see "Profile" (page 399).

Options are:

l true — This capability will be enabled for all user types (system administrator, group administrator, and
regular user).

l false — This capability will be disabled for all user types.

l SystemAdmin — This capability will be enabled only for users logged in as a system administrator.

l GroupAdmin — This capability will be enabled only for users logged in as a group administrator.

l User — This capability will be enabled only for users logged in as a regular user.

588

9.5. HyperStore Configuration Files

l You can also specify a comma-separated list of multiple user types — for example, "Sys-
temAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

account.credentials.enabled

This setting controls whether the Security Credentials function will be enabled in the CMC GUI. For a screen
shot and description of this function, see Security Credentials in the CMC Help document.

Options are:

l true — This function will display for all user types (system administrator, group administrator, and reg-
ular user).

l false — This function will not display for any user types. If you set this to "false" then the Security Cre-
dentials functionality as a whole is disabled and the more granular account.credentials.*.enabled prop-
erties below are ignored.

l SystemAdmin — This function will display only for users logged in as a system administrator.

l GroupAdmin — This function will display only for users logged in as a group administrator.

l User — This function will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to enable this function —
for example, "SystemAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note If you want to enable some aspects of the Security Credentials function and not others, you can
have account.credentials.enabled set so that the function is enabled for your desired user types, and
then use the granular account.credentials.*.enabled properties below to enable/disable specific cap-
abilities.

account.credentials.access.enabled

Within the Security Credentials function in the CMC GUI, this setting enables or disables the capability of
CMC users to view and change their own S3 storage access keys.

Options are:

l true — This capability will display for all user types (system administrator, group administrator, and reg-
ular user).

l false — This capability will not display for any user types.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

l User — This capability will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to enable this capability —
for example, "SystemAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

account.credentials.signin.enabled

589

Chapter 9. System Configuration

Within the Security Credentials function in the CMC GUI, this setting enables or disables the capability CMC
users to change their own CMC login password.

Options are:

l true — This capability will display for all user types (system administrator, group administrator, and reg-
ular user).

l false — This capability will not display for any user types.

l SystemAdmin — This capability will display only for users logged in as a system administrator.

l GroupAdmin — This capability will display only for users logged in as a group administrator.

l User — This capability will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to enable this capability —
for example, "SystemAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

account.activity.enabled

This setting controls whether the Account Activity function will be enabled in the CMC GUI. For a screen shot
and description of this function, see "Account Activity" (page 282).

Options are:

l true — This capability will display for users logged in as a system administrator.

l false — This capability will not display for any users.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

usage.enabled

This setting controls whether the Usage By Users and Groups function will be enabled in the CMC GUI. For a
screen shot and description of this function, see "Usage By Users & Groups" (page 211).

Options are:

l true — This function will display for all user types (system administrator, group administrator, and reg-
ular user).

l false — This function will not display for any user types.

l SystemAdmin — This function will display only for users logged in as a system administrator.

l GroupAdmin — This function will display only for users logged in as a group administrator.

l User — This function will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to enable this function —
for example, "SystemAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

security.serviceinfo.enabled

This setting controls whether HyperStore's S3 service endpoints will display for group admins and regular
users in the CMC's Security Credentials page. For a screen shot and description of this function, see "Secur-
ity Credentials" (page 400).

590

9.5. HyperStore Configuration Files

Options are:

l true — S3 service endpoints will display for group admins and regular users in the CMC's Security Cre-
dentials page.

l false — S3 service endpoints will not display for group admins or regular users in the CMC's Security
Credentials page.

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

Note For HyperStore system admins, the S3 service endpoint information displays in the Cluster
Information page. The security.serviceinfo.enabled property has no effect on this display.

login.languageselection.enabled

Takes its value from common.csv: "cmc_login_languageselection_enabled" (page 539); use that setting
instead.

login.grouplist.enabled

Takes its value from common.csv: "cmc_login_grouplist_enabled" (page 540); use that setting instead.

login.banner.*

These settings take their values from the cmc_login_banner_* settings in common.csv; use those settings
instead. For information about using those settings see "Configuring a Login Page Acknowledgment Gate"
(page 408).

grouplist.enabled

Takes its value from common.csv: "cmc_grouplist_enabled" (page 539); use that setting instead.

grouplist.size.max

Takes its value from common.csv: "cmc_grouplist_size_max" (page 540); use that setting instead.

error.stacktrace.enabled

Throughout the CMC UI, when an exception occurs and an error page is displayed to the user, include on the
error page a link to a stack trace.

Options are:

l true — Stack trace links will display for all user types (system administrator, group administrator, and
regular user).

l false — Stack trace links will not display for any user types.

l SystemAdmin — Stack trace links will display only for users logged in as a system administrator.

l GroupAdmin — Stack trace links will display only for users logged in as a group administrator.

l User — Stack trace links will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to enable this feature —
for example, "SystemAdmin,GroupAdmin".

Default = false

admin.whitelist.enabled

Takes its value from common.csv: "admin_whitelist_enabled" (page 537); use that setting instead.

591

Chapter 9. System Configuration

sso.enabled

Whether to enable CMC support for single sign-on functionality, true or false. When this is set to false, if a user
attempts to access the CMC via SSO, the access will be denied and an error will be written to cloudian-ui.log.

Default = false

Note For more information on CMC SSO, see "Implementing Single Sign-On for the CMC" (page
410).

sso.shared.key

Shared security key used for hash creation, when using the "auto-login with one way hash" method of single
sign-on access to the CMC.

Default = ss0sh5r3dk3y

IMPORTANT ! If you enable CMC SSO functionality (using the sso.enabled setting), then for security
reasons you should set a custom value for sso.shared.key. Do not leave it at its default value.

sso.tolerance.millis

Maximum allowed variance between the CMC server time and the timestamp submitted in a client request
invoking the "auto-login with one way hash" method of single sign-on access to the CMC, in milliseconds. If the
variance is greater than this, the request is rejected. This effectively serves as a request expiry mechanism.

Default = 3600000

sso.cookie.cipher.key

Triple DES key used for cookie encryption.

Default = 123456789012345678901234

IMPORTANT ! If you enable CMC SSO functionality (using the sso.enabled setting), then for security
reasons you should set a custom value for sso.cookie.cipher.key. Do not leave it at its default value.

Note If you change this value after CMC SSO has already been in service, end users who had used
SSO previously will have on their browser a Cloudian SSO cookie that is no longer valid. If such users
access the CMC after your sso.cookie.cipher.key change, the CMC detects the invalid cookie, deletes
it, and drops a new, valid one.

bucket.storagepolicy.showdetail.enabled

Within the Bucket Properties function in the CMC GUI, this setting enables or disables the display of a "Stor-
age Policy" tab that provides information about the storage policy being used by the bucket. This information
includes the storage policies replication factor or erasure coding k+m configuration..

Options are:

592

9.5. HyperStore Configuration Files

l true — This tab will display for all user types (system administrator, group administrator, and regular
user).

l false — This tab will not display for any user types.

l SystemAdmin — This tab will display only for users logged in as a system administrator.

l GroupAdmin — This tab will display only for users logged in as a group administrator.

l User — This tab will display only for users logged in as a regular user.

l You can also specify a comma-separated list of multiple user types for which to display this tab — for
example, "SystemAdmin,GroupAdmin".

Default = Commented out and uses internal default of "true". To assign a different value, uncomment the setting
and edit its value.

bucket.tiering.enabled

Takes its value from "Enable Auto-Tiering" (page 347) in the CMC's Configuration Settings page; use that set-
ting instead.

tiering.perbucketcredentials.enabled

Takes its value from "Enable Per Bucket Credentials" (page 347) in the CMC's Configuration Settings page;
use that setting instead.

tiering.customendpoint.enabled

Takes its value from "Enable Custom Endpoint" (page 348) in the CMC's Configuration Settings page; use
that setting instead.

bucket.tiering.default.destination.list

Takes its value from common.csv: "cmc_bucket_tiering_default_destination_list" (page 541); use that set-
ting instead.

bucket.tiering.custom.url

Takes its value from Default Tiering URL in the CMC's Configuration Settings page; use that setting instead.

puppet.master.licensefile

This setting supports the feature whereby an updated HyperStore license file can be uploaded via the CMC.
Do not edit.

puppet.master.fileupdate.location

This setting supports the feature whereby an updated HyperStore license file can be uploaded via the CMC.
Do not edit.

local.ssh.privateKey

Private key to use when the CMC connects via SSH to the Puppet master node or to other HyperStore nodes
when implementing node management functions. The Cloudian installation script automatically populates this
setting.

local.ssh.passphrase

Pass phrase to use when the CMC connects via SSH to the Puppet master node or to other HyperStore nodes
when implementing node management functions. The Cloudian installation script automatically populates this
setting.

593

Chapter 9. System Configuration

local.ssh.applianceKey

Private key to use when the CMC connects via SSH to a new HyperStore Appliance node when the appliance
node is being added to an existing system. The Cloudian installation script automatically populates this setting.

local.temp.dir

This setting supports the feature whereby an updated HyperStore license file can be uploaded via the CMC.
Do not edit.

remote.ssh.user

The user as which to connect via SSH to the Puppet master node or HyperStore nodes.

Default = root

remote.ssh.port

The port to which to connect via SSH to the Puppet master node or HyperStore nodes.

Default = 22

offload.services.node.options

Used internally by the CMC when invoking the installer script for certain operations. Do not edit.

Default = -m

uninstall.node.options

Used internally by the CMC when invoking the installer script for certain operations. Do not edit.

Default = -u -r

elasticsearch.enabled

For information about this setting, see "Elasticsearch Integration for Object Metadata" (page 171).

proactive.repair.queue.warning.enabled

The CMC Dashboard has a feature whereby it displays a "Long proactive repair queue" warning if the pro-
active repair queue for a particular node has more than 10,000 objects in it. This feature requires the Dash-
board to retrieve proactive repair queue length data from Cassandra, each time the Dashboard page is loaded
in your browser.

The proactive.repair.queue.warning.enabled property enables and disables this Dashboard feature. If this prop-
erty is set to "false", then the Dashboard does not retrieve proactive repair queue length data from Cassandra
and does not display any warnings in regard to proactive repair queue length.

Default = true

cloudian.userid.length

Takes its value from common.csv: "cloudian_userid_length" (page 514); use that setting instead.

9.5.5. Other Configuration Files
The tables below briefly describe additional HyperStore configuration files that reside in the configuration dir-
ectories on your Puppet master node. Under typical circumstances you should not need to manually edit these
files.

594

9.5. HyperStore Configuration Files

All of these files are in sub-directories under the /etc/cloudian-<version>-puppet directory. For brevity, in the
section headings that follow /etc/cloudian-<version>-puppet is replaced with "..." and only the sub-directory is
specified.

l "Files under .../manifests/extdata/" (page 595)

l "Files under .../modules/cloudians3/templates/" (page 596)

l "Files under .../modules/cmc/templates/" (page 596)

l "Files under .../modules/salt" (page 597)

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet master node
you can edit any of these configuration files with this command:

$ hspkg config -e <filename>

Specify just the configuration file name, not the full path to the file.

In the background this invokes the Linux text editor vi to display and modify the configuration file. Therefore you
can use the standard keystrokes supported by vi to make and save changes to the file.

9.5.5.1. Files under .../manifests/extdata/

File Purpose

adminsslconfigs.csv
Configures TLS/SSL implementation for the Admin Service’s
HTTPS listener.

dynsettings.csv
Used by the CMC’s Configuration Settings page. Do not edit
this file.

fileupdates.csv
There may be rare circumstances in which Cloudian Support
asks you to use this file, in which case you will be provided
instructions for using it.

iamsslconfigs.csv

Configures TLS/SSL implementation for the IAM Service. This file
is updated automatically if you use the installer's "Advanced Con-
figuration Options" to manage HTTPS for the IAM Service. For
more information see "HTTPS Support (TLS/SSL)" (page 114)

<node>.csv

These files are for settings that are tailored to individual nodes,
as identified by the <node> segment of the file names (for
example, host1.csv, host2.csv, and so on). There will be one
such file for each node in your system. These files are created
and pre-configured by the HyperStore install script, based on
information that you provided during installation. Settings in a
<node>.csv file override default settings from common.csv, for
the specified node.

<regionName>_region.csv

Configures settings that are particular to a service region. Set-
tings that would have different values in different regions are in
this file. If you have multiple HyperStore service regions, you will
have multiple instances of this file. These files are created and
pre-configured by the HyperStore install script, based on inform-
ation that you provided during installation.

595

Chapter 9. System Configuration

File Purpose

s3sslconfigs.csv

Configures TLS/SSL implementation for the S3 Service. This file
is updated automatically if you use the installer's "Advanced Con-
figuration Options" to manage HTTPS for the S3 Service. For
more information see "HTTPS Support (TLS/SSL)" (page 114)

<regionName>_topology.csv

Specifies a topology of nodes, racks, and data centers in a ser-
vice region. If you have multiple HyperStore service regions, you
will have multiple instances of this file. These files are created
and pre-configured by the HyperStore install script, based on
information that you provided during installation.

9.5.5.2. Files under .../modules/cloudians3/templates/

File Purpose

admin.xml.erb
This file configures the Admin Service’s underlying Jetty server
functionality, for processing incoming HTTP requests.

admin_realm.properties.erb
This file configures HTTP Basic Authentication for the Admin
Service.

cloudian-cron.tab.erb This file configures HyperStore system maintenance cron jobs.

log4j-*.xml.erb

These files configure logging behavior for various services such
as the S3 Service, Admin Service, HyperStore Service, and so
on. For information about settings in these files, see "Log Con-
figuration Settings" (page 626).

s3.xml.erb
This file configures the S3 Service’s underlying Jetty server func-
tionality, for processing incoming HTTP requests.

storage.xml.erb
This file configures the HyperStore Service’s underlying Jetty
server functionality, for processing incoming HTTP requests.

tiering-map.txt.erb This file is not used currently.

tiering-regions.xml.erb

In support of the HyperStore auto-tiering feature, this file lists S3
endpoints that objects can be auto-tiered to. By default this file
is pre-configured with all the Amazon S3 regional service end-
points. If you have a multi-region system, the file is also pre-con-
figured with the S3 endpoints for each of your service regions,
and the file is used in support of the cross-region replication
feature.

9.5.5.3. Files under .../modules/cmc/templates/

File Purpose

server.xml.erb
This file configures the HyperStore Service’s underlying Tomcat
server functionality, for processing incoming HTTP requests.

596

9.5. HyperStore Configuration Files

9.5.5.4. Files under .../modules/salt

Starting with HyperStore version 7.2, HyperStore uses the open source version of Salt for certain configuration
management functions (such as configuration management of the HyperStore firewall -- which from a user per-
spective is controlled through the installer's Advanced Configuration Options menu). Do not edit any of the
configuration files under /etc/cloudian-<version>-puppet/modules/salt.

Note Salt configuration management activity is recorded in the log file /var/log/cloudian/salt.log.

9.5.6. Using JMX to Dynamically Change Configuration Settings
Certain HyperStore configuration settings (a minority of them) can be dynamically reloaded via JMX. You can
use a JMX client such as JConsole or Jmxterm to connect to the JMX listening port of the particular service
that you’re configuring (S3 Service JMX port = 19080; Admin Service JMX port = 19081; HyperStore Service
JMX port = 19082; Redis Monitor JMX port = 19083). JConsole is a graphical user interface that’s part of the
HyperStore system’s Java installation and can be found under JAVA_HOME/bin. Jmxterm is a command line
tool that comes bundled with the HyperStore system and can be found under opt/cloudian/tools.

When you use JMX to make a configuration setting change, the change is applied to the service dynamically —
you do not need to restart the service for the change to take effect. However, the setting change persists only
for the current running session of the affected service. If you restart the service it will use whatever setting is
in the configuration file. Consequently, if you want to change a setting dynamically and also have your change
persist through a service restart, you should change the setting in the configuration file as well as changing it
via JMX.

In the documentation of HyperStore configuration files, if a setting supports being dynamically changed via
JMX, the setting description indicates "Reloadable via JMX". It also indicates the name of the dynamically
changeable MBean attribute that corresponds to the configuration file setting. For example, the documentation
of the HyperStore Service configuration property repair.session.threadpool.corepoolsize includes a note that
says:

"Reloadable via JMX (HyperStore Service’s JMX port 19082; MBean attribute = com.gem-
ini.cloudian.hybrid.server → FileRepairService → Attributes → RepairSessionThreadPoolCorePoolSize)"

Note Some settings in HyperStore configuration files can be set through the CMC's Configuration Set-
tings page. The CMC uses JMX to apply setting changes dynamically, and the CMC also automatically
makes the corresponding configuration file change and triggers a Puppet push so that your changes
will persist across service restarts. For these settings it’s therefore best to use the CMC to make any
desired edits rather than directly using JMX. For such configuration file settings, the descriptions in the
HyperStore configuration file documentation indicate that you should use the CMC to edit the setting.
Consequently these settings are not flagged in the documentation as JMX reloadable.

597

https://docs.saltstack.com/en/latest/topics/
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://wiki.cyclopsgroup.org/jmxterm/

Chapter 9. System Configuration

9.6. Configuration Special Topics

9.6.1. Anti-Virus Software
If you are considering using anti-virus software on your HyperStore nodes, be aware that the HyperStore sys-
tem is provisioned and uses server resources according to the server specifications and use case. Any use of
third party software must ensure that it does not interfere with HyperStore’s use of these resources (such as
disk space, disk I/O, RAM, CPU, network, and ports). Unavailability or sharing of these resources can cause the
HyperStore system to not function and/or have reduced performance.

If you want to use anti-virus software to monitor OS files other than HyperStore-related files, configure the anti-
virus software to exclude these directories from monitoring:

l All HyperStore data directories (as specified by the configuration setting hyperstore_data_directory in
common.csv)

l /var/lib/{cassandra,cassandra_commit,redis}

l /var/log/{cloudian,cassandra,redis}

l /opt/{cassandra,cloudian,cloudian-packages,cloudianagent,dnsmasq,redis,tomcat}

l /etc/cloudian-<version>-puppet*

9.6.2. NTPAutomatic Set-Up

Note This topic describes the NTP configuration that HyperStore automatically implements. If instead
you are using your own custom NTP set-up, Cloudian recommends using at least 3 root clock
sources.

Accurate, synchronized time across the cluster is vital to HyperStore service. For example, object versioning
relies on it, and so does S3 authorization. It’s important to have a robust NTP set-up.

When you install your HyperStore cluster, the installation script automatically configures a robust NTP set-up
using ntpd, as follows:

l In each of your HyperStore data centers, four HyperStore nodes are configured as internal NTP servers.
These internal NTP server will synchronize with external NTP servers -- from the pool.ntp.org project by
default -- and are also configured as peers of each other. (If a HyperStore data center has only four or
fewer nodes, then all the nodes in the data center are configured as internal NTP servers.)

l All other nodes in the data center are configured as clients of the four internal NTP servers.

598

9.6. Configuration Special Topics

l In the event that all four internal NTP servers in a DC are unable to reach any of the external NTP serv-
ers, the four internal NTP servers will use "orphan mode" -- which entails the nodes choosing one of
themselves to be the "leader" to which the others will sync -- until such time as one or more of the
external NTP servers are reachable again.

Each HyperStore data center is independently configured, using this same approach.

To see which of your HyperStore hosts are configured as internal NTP servers, go to the CMC's Cluster Inform-
ation page. On that page you can also view the list of external NTP servers to which the internal NTP servers
will synchronize.

IMPORTANT ! In order to connect to the external NTP servers the internal NTP servers must be
allowed outbound internet access.

Note ntpd is configured to automatically start on host boot-up. However, it’s recommended that after
booting a HyperStore host, you verify that ntpd is running (which you can do with the ntpq -p command
— if ntpd is running this command will return a list of connected time servers).

9.6.2.1. Changing the List of External NTP Servers or Internal NTP Servers

You can use the HyperStore installer's "Advanced Configuration Options" to change either the list of external
NTP servers or the list of internal NTP servers. For more information see "Change Internal NTP Servers or
External NTP Servers" (page 471).

9.6.3. Changing S3, Admin, or CMCListening Ports
You can use the HyperStore installer's "Advanced Configuration Options" to change listening ports for the S3,
Admin, and CMC services.

1. On the Puppet master node, change to the installation staging directory. Then launch the installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet

599

Chapter 9. System Configuration

master node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. At the installer's main menu enter 4 for "Advanced Configuration Options". Then at the Advanced Con-
figuration Options menu enter b for "Change S3, Admin or CMC ports".

3. Follow the prompts to specify your desired port numbers. The prompts indicate your current settings. At
each prompt press Enter to keep the current setting value, or type in a new value. The final prompt will
ask whether you want to save your changes -- type yes to do so.

4. Go back to the installer's main menu again and enter 2 for "Cluster Management". Then enter a for
"Review Cluster Configuration", and when prompted as to whether your want to update the Puppet mas-
ter with your changes type yes.

5. After returning to the Cluster Management menu, enter b for "Push Configuration Settings to Cluster",
and follow the prompts.

6. After returning to the Cluster Management menu again, enter c for "Manage Services", and restart the
affected services:

l For changed S3 or Admin ports, restart the S3 Service and the CMC. Note that the Admin service
is restarted automatically when you restart the S3 Service.

l For changed CMC port, restart the CMC

Do not exit the installer until you complete Step 7 below, if applicable.

7. If you have the HyperStore firewall enabled (as described in "HyperStore Firewall" (page 100)), the
firewall's configuration is automatically adjusted to accommodate the port number change that you
made. But you must push the updated firewall configuration out to the cluster by taking these steps with
the installer:

a. At the installer's main menu, enter 4 for "Advanced Configuration Options". Then at the
Advanced Configuration Options menu enter s for "Configure Firewall".

b. At the Firewall Configuration menu, enter x for "Apply configuration changes and return to pre-
vious menu". When prompted, enter yes to confirm that you want to apply your configuration
changes.

After your changes are successfully applied to the cluster you can exit the installer.

9.6.4. Changing S3, Admin, CMC, or IAM Service Endpoints
You can use the HyperStore installer's "Advanced Configuration Options" to change the S3 service endpoint,
S3 static website endpoint, Admin service endpoint, CMC endpoint, or IAM endpoint. (For more information on
these HyperStore service endpoints, their default values, and how the endpoints are used, see DNS Set-Up.)

Note In the current HyperStore release:
* The CMC uses the IAM service endpoint to make STS calls as well as IAM calls. Therefore the
installer's function for changing service endpoints will show one shared service endpoint -- the IAM end-
point -- for IAM and STS.

600

9.6. Configuration Special Topics

* The installer does not support changing the SQS service endpoint. You can change that endpoint by
editing sqs_endpoint in common.csv and then restarting the SQS service.

1. On the Puppet master node, change to the installation staging directory. Then launch the installer.

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer's menu select "Advanced Configuration Options" and then select "Change S3, Admin,
CMC, or IAM/STS endpoints".

3. Follow the prompts to specify your desired endpoints. The prompts indicate your current settings. At
each prompt press Enter to keep the current setting value, or type in a new value.

For S3 service endpoint, the typical configuration is one endpoint per service region but you also have
the option of specifying multiple endpoints per region (if for example you want to have different S3 ser-
vice endpoints for different data centers within the same region). To do so simply enter a comma-sep-
arated list of endpoints at the prompt for the region's S3 service domain URL. Do not enclose the
comma-separated list in quotes. If you want to have different S3 endpoints for different data centers
within the same service region, the recommended S3 endpoint syntax is s3-<region-
name>.<dcname>.<domain>. For example if you have data centers named chicago and cleveland both
within the midwest service region, and your domain is enterprise.com, the S3 endpoints would be s3-
midwest.chicago.enterprise.com and s3-midwest.cleveland.enterprise.com. (Make sure that your DNS
set-up resolves the service endpoints in the way that you want -- for example, with one S3 service end-
point resolving to the virtual IP address of a load balancer in your Chicago data center and one S3 ser-
vice endpoint resolving to the virtual IP address of a load balancer in your Cleveland data center).

Note The only instance of the string "s3" should be the leading prefix (as in the examples
above). Do not also include "s3" in the <regionname> value, the <dcname> value, or the
<domain> value because having two instances of "s3" in the service endpoint will cause S3 ser-
vice requests to fail. For example, do not have a service endpoint such as "s3-toky-
o.s3.enterprise.com".

For S3 static website endpoint you can only have one endpoint per service region. For the Admin ser-
vice you can only have one endpoint for your whole HyperStore system, and same for the CMC service
and the IAM service.

The final prompt will ask whether you want to save your changes -- type yes to do so.

4. Go to the main menu again and choose "Cluster Management" → "Push Configuration Settings to
Cluster" and follow the prompts.

5. Go to the "Cluster Management" menu again, choose "Manage Services", and restart the S3 Service
and the CMC. If you are using DNSMASQ for HyperStore service endpoint resolution, then also restart
DNSMASQ.

601

Chapter 9. System Configuration

Note If you are using your DNS environment for HyperStore service endpoint resolution, update
your DNS entries to match your custom endpoints if you have not already done so. For guid-
ance see "DNS Set-Up" in the HyperStore Installation Guide.

Note If you are using per-group filtering of S3 endpoint displays in the CMC and you change an
S3 endpoint (using the procedure above), then you must log into the CMC and edit the group
configuration for any groups that are using S3 endpoint display filtering. If you do not update
the S3 endpoint display filtering for such groups, then neither the original S3 endpoint nor the
replacement S3 endpoint will display for those groups. Note that per-group filtering of S3 end-
point displays is not the default behavior (by default all users can see all of your system's current
S3 endpoints, listed in the CMC's Security Credentials page). If you did not explicitly configure
any groups to use S3 endpoint display filtering, then after changing S3 endpoints in the system
you do not need to take any action in regard to the CMC's display of S3 endpoints -- all CMC
users will automatically be able to see the new S3 endpoints.

9.6.5. Tuning HyperStore Performance Parameters
The HyperStore system includes a performance configuration optimization script that is automatically run on
each node when you install HyperStore; and that also automatically runs on any new nodes that you sub-
sequently add to your cluster. The script adjusts OS configuration settings on each node, and certain Hyper-
Store system configuration settings, for optimal performance based on your particular environment (taking into
account factors such as RAM and CPU specs).

Since the script runs automatically during installation and during cluster expansion, under normal cir-
cumstances you should not need to run the script yourself. However, you can run the performance con-
figuration optimization script indirectly through the installer's Advanced Configuration Options menu, if for
example you have made configuration changes on your own and your system is now under-performing as a
result. Running the script in this way will return the configuration settings to the optimized values as determined
by the script.

To run the script from the Advanced Configuration Options menu:

1. On the Puppet master node, change to the installation staging directory and then launch the installer:

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

2. From the installer's menu select "Advanced Configuration Options" and then select "Configure Per-
formance Parameters on Nodes".

3. At the prompt, specify a node for which to run the performance configuration optimization; or specify a
comma-separated list of nodes; or leave the prompt blank and press enter if you want to run the optim-

602

9.6. Configuration Special Topics

ization for all nodes in your cluster. When the script run is done the installer interface will prompt you to
continue to the next steps.

4. Go to the installer's main menu again and choose "Cluster Management" → "Push Configuration Set-
tings to Cluster" and follow the prompts.

5. Go to the "Cluster Management" menu again, choose "Manage Services", and restart the S3 Service,
the HyperStore Service, and the Cassandra Service.

9.6.6. Vanity Domains for S3 Buckets
The HyperStore system supports the use of "vanity domains", whereby an S3 bucket can be accessed using
just the bucket name as the URL, without the service provider’s domain name. To use this feature:

l The bucket name must exactly equal the desired vanity domain name. The bucket name must be DNS-
compatible, and must use only lower case letters. For example:

Desired Vanity Domain Name Required Bucket Name

baseball-stats.com baseball-stats.com

japan.travel.org japan.travel.org

never-ending-profits.biz never-ending-profits.biz

IMPORTANT ! The desired vanity domain must not already exist in the global DNS system or
this feature will not work. It’s up to end users to ensure that their proposed vanity domains do not
yet exist on the web.

l In your DNS set-up, use CNAME to map the vanity domain to the bucket’s fully qualified name. For
example, if your HyperStore S3 service domain is s3.enterprise.com then you would map vanity domain
baseball-stats.com to CNAME baseball-stats.com.s3.enterprise.com.

l In your DNS set-up, use CNAME to map a wildcard of sub-domains of your S3 service domain to the S3
service domain itself. For example, if your HyperStore S3 service domain is s3.enterprise.com then you
would map wildcard *.s3.enterprise.com to CNAME s3.enterprise.com.

603

This page left intentionally blank

Chapter 10. Logging

10.1. HyperStore Logs
Subjects covered in this section:

l Introduction (below)

l "Admin Service Logs" (page 605)

l "Cassandra Logs" (page 606)

l "CMC Log" (page 608)

l "HyperStore Firewall Log" (page 609)

l "HyperStore Service Logs" (page 609)

l "HyperStore Shell Log" (page 613)

l "IAM Service Logs" (page 613)

l "Monitoring Agent and Collector Logs" (page 615)

l "Phone Home (Smart Support) Log" (page 616)

l "Redis and Redis Monitor Logs" (page 617)

l "S3 Service Logs (including Auto-Tiering, CRR, andWORM)" (page 619)

l "SQS Service Logs" (page 625)

The major HyperStore services each generate their own application log. The S3 Service, Admin Service, and
HyperStore Service, in addition to generating application logs, also generate transaction (request) logs.

The log descriptions below indicate each log's default location, logging level, rotation and retention policy, log
entry format, and where to modify the log's configuration.

Note With the exception of Cassandra and Redis logs, all HyperStore logs are located in /var/-
log/cloudian.

Note For information on viewing logs from within the HyperStore Shell, see "Using the HSH to View
Logs" (page 640).

10.1.1. Admin Service Logs
Admin Service application log (cloudian-admin.log)

Location On every node, /var/log/cloudian/cloudian-admin.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

The MessageCode uniquely identifies the log message, for messages of level WARN or
higher. For documentation of specific message codes including recommended operator
action, see the HyperStore online Help.

Log Entry
Example

2017-05-04 15:48:03,158 ERROR[main]HS081003

CassandraProtectionPolicy:Caught: me.prettyprint.hector.api.exceptions.

605

Chapter 10. Logging

HectorException: [10.50.10.21(10.50.10.21):9160] All host

pools marked down. Retry burden pushed out to client.

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-admin.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-admin.xml.erb, this log is configurable in the block
that starts with <RollingRandomAccessFile name="ADMINAPP". For setting descriptions see
"Log Configuration Settings" (page 626).

Admin Service request log (cloudian-admin-request-info.log)

Location On every node, /var/log/cloudian/cloudian-admin-request-info.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|ClientIpAddress|HttpMethod|Uri|QueryParams|

DurationMicrosecs|HttpStatus

Note Query parameters are not logged for requests that involve user credentials.

Log Entry
Example

2016-10-27 14:54:01,170|10.20.2.57|GET|/group/list|limit:100|188212|200

Logging
Level

Not applicable

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 100MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-admin-request-info.log.YYYY-MM-DD.i.gz, where i is a
rotation counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 2GB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-admin.xml.erb, this log is configurable in the block
that starts with <RollingRandomAccessFile name="ADMINREQ". For setting descriptions see
"Log Configuration Settings" (page 626).

10.1.2. Cassandra Logs
Cassandra application log (system.log)

606

10.1. HyperStore Logs

Location On every node, var/log/cassandra/system.log

Log Entry Format PriorityLevel [ThreadId] Date(ISO8601) CallerFile:Line# - MESSAGE

Log Entry Example
INFO [FlushWriter:3] 2016-11-10 21:09:59,487 Memtable.java:237 - Writing

Memtable-Migrations @445036697(12771/15963 serialized/live bytes, 1 ops)

Default Logging
Level

INFO

Default Rotation
and Retention
Policy

Rotation occurs if live file size reaches 20MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as system.log.YYYY-MM-DD.i.gz, where i is a rotation counter
that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after com-
pression) reaches 200MB or if oldest rotated file age reaches 30 days.

Configuration

Configuration: /etc/cloudian-<version>-pup-
pet/modules/cassandra/templates/logback.xml.erb. For setting descriptions see the
online documentation for Logback:

l FixedWindowRollingPolicy

l SizeBasedTriggeringPolicy

Cassandra request log (cassandra-s3-tx.log)

Location
On every node, /var/log/cloudian/cassandra-s3-tx.log. Note that these request logs are writ-
ten on the client side as the S3 Service sends requests to Cassandra.

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS LogEntryType S3RequestId MESSAGE

The LogEntryType is one of NORMAL, ERROR, or SLOW.

Log Entry
Example

2016-11-22 13:06:27,192 c.d.d.c.Q.SLOW [cluster1] [/10.20.2.146:9042]

Query too slow, took 7674 ms: alter table

"UserData_20d784f480b0374559bdd71054bbb8c1"."CLOUDIAN_METADATA"

with gc_grace_seconds=864000 and bloom_filter_fp_chance=0.1 and compaction =

{'class':'LeveledCompactionStrategy'};

Default Log-
ging Level

DEBUG

Note In log4j-s3.xml.erb on your Puppet master node there are three different Asyn-
cLogger instances for Cassandra request logging. The ERROR logger logs entries
when a Cassandra request results in an error; the SLOW logger logs entries when a
Cassandra request takes more than 5 seconds to process; and the NORMAL logger
logs all Cassandra requests. The three loggers all write to /var/-
log/cloudian/cassandra-s3-tx.log, and the implementation prevents duplicate entries
across the three loggers. All three loggers are set to DEBUG level by default; and
each logger works only if set to DEBUG or TRACE. To disable a logger, set its level
to INFO or higher. For example to disable the NORMAL logger so that only error and
slow requests are recorded, set the NORMAL logger's level to INFO. Then do a Pup-
pet push and restart the S3 Service.

607

http://logback.qos.ch/manual/appenders.html#FixedWindowRollingPolicy
http://logback.qos.ch/manual/appenders.html#SizeBasedTriggeringPolicy

Chapter 10. Logging

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cassandra-s3-tx.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="CASSANDRATX". For setting descriptions
see "Log Configuration Settings" (page 626).

Note Currently only a small fraction of request types from the S3 Service to Cassandra support
this request logging feature. These are request types that use a new DataStax Java driver (which sup-
ports the request logging) rather than the older Hector driver (which does not). Currently the only types
of requests that use the DataStax driver are requests to clean up tombstones. As new Cassandra
request types are implemented in HyperStore they will use the DataStax driver, and thus over time a
growing portion of Cassandra requests will support request logging.

10.1.3. CMCLog
CMC application log (cloudian-ui.log)

Location On every node, /var/log/cloudian/cloudian-ui.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel [ThreadId] ClassName:MESSAGE

In the case of log entries for user logins to the CMC, the MESSAGE value will be formatted
as follows:

Normal login

Login <groupId>|<userId> from: <ipAddress> Success

Login <groupId>|<userId> from: <ipAddress> Failed [<reason>]

SSO login

SSOLogin <groupId>|<userId> from: <ipAddress> Success

SSOLogin <groupId>|<userId> from: <ipAddress> Failed [<reason>]

Log Entry
Example

2017-05-04 11:56:48,475 INFO [localhost-startStop-1]

ServiceMapUtil:Loading service map info from: cloudianservicemap.json

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-ui.log.YYYY-MM-DD.i.gz, where i is a rotation counter
that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

608

10.1. HyperStore Logs

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cmc/templates/log4j.xml.erb, this log is configurable in the block that starts with
<RollingRandomAccessFile name="APP". For setting descriptions see "Log Configuration
Settings" (page 626).

10.1.4. HyperStore Firewall Log
HyperStore firewall log (firewall.log)

If the HyperStore firewall is enabled in your system then DROP'd connections are logged in the HyperStore fire-
wall log. For information about the firewall see "HyperStore Firewall" (page 100).

Location On every node, /var/log/cloudian/firewall.log

Log Entry
Format

The log records information about dropped packets, including the timestamp, host, firewall
zone (cloudian-backend [for the designated internal interface] or cloudian-frontend [for all
other interfaces]), interface name and MAC address, source and destination address, pro-
tocol, TCP flags, and so on.

Log Entry
Example

Apr 18 11:03:19 demo4-node1 kernel: IN_cloudian-frontend_DROP:

IN=eth0 OUT= MAC=52:54:00:e3:82:d7:52:54:00:11:dd:79:08:00

SRC=10.254.254.103 DST=10.254.254.118 LEN=44 TOS=0x00 PREC=0x00

TTL=57 ID=43247 PROTO=TCP SPT=52377 DPT=74 WINDOW=1024 RES=0x00 SYN URGP=0

Default Rota-
tion and
Retention
Policy

Rotation occurs hourly if the live file size has reached 10MB; or else daily regardless of file
size (except that there is no rotation of an empty live log file).

Rotated files are named as firewall.log-YYYYMMDDHH.gz. Rotated files are compressed
with gzip.

Rotated files are retained for 180 days and then automatically deleted.

Configuration
Rotation of this log is managed by the Linux logrotate utility. In the current version of Hyper-
Store, the rotation settings for the HyperStore firewall log are not configurable.

10.1.5. HyperStore Service Logs
HyperStore Service application log (cloudian-hyperstore.log)

Location On every node, /var/log/cloudian/cloudian-hyperstore.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[S3RequestId][ThreadId]MessageCode

ClassName:MESSAGE

l The MessageCode uniquely identifies the log message, for messages of level WARN
or higher. For documentation of specific message codes including recommended
operator action, see the HyperStore online Help.

l The S3RequestId value is present only in messages associated with implementing S3
requests.

Log Entry
Example

2017-05-04 23:58:34,634 ERROR[][main]HS220008

CloudianAbstractServer:Unable to load configuration file: storage.xml

609

Chapter 10. Logging

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day, regard-
less of live file size.

Rotated files are named as cloudian-hyperstore.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Con-
figuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-hyperstore.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="APP". For setting descriptions see
"Log Configuration Settings" (page 626).

HyperStore Service request log (cloudian-hyperstore-request-info.log)

Location On every node, /var/log/cloudian/cloudian-hyperstore-request-info.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|IpAddressOfClientS3Server|S3RequestId|

HttpStatus|HttpOperation|OriginalUri|HyperStoreFilePath|ContentLength|

DurationMicrosecs|Etag

l The IpAddressOfClientS3Server is the IP address of the S3 Server node that submits
the request to the HyperStore Service.

l The HttpOperation is the HyperStore Service HTTP API operation that the S3 Service
invokes and will be a simple operation like "PUT" or "GET". In the case of a "secure
delete", the operation will be "SECURE-DELETE" and this request won't be logged
until the third and final data overwriting pass for the object is completed. By contrast a
regular delete will be logged as operation "DELETE". The secure delete feature is dis-
abled by default. For more information on the secure delete feature see the descrip-
tion of the configuration property "secure.delete" (page 544).

l The OriginalUri field shows the group ID, bucket name, and object name from the ori-
ginating S3 API request, in URI-encoded form ("CloudianTest1", "buser1", and
"514kbtes", respectively, in the example above).

l The Etag field will be "0" for operations other than PUT.

Log Entry
Example

2016-10-27 15:18:18,031|10.20.2.52|6e4c6884-a4a2-1238-a908-525400c5e557|

200|PUT|/file/CloudianTest1%2Fbuser1%2Ftest100b|

/cloudian2/hsfs/1IjBeBudSCVmsYbKdPV8Ns/4a3ceb36ee344e1ebd43ed413b310bc8/046/

075/56017837606746367338485930470043970723.1477552697400|

100|854411|7b2a7abdfdaa1a01c33432b5c41e0939

Logging
Level

Not applicable

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 300MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-hyperstore-request-info.log.YYYY-MM-DD.i.gz, where i
is a rotation counter that resets back to 1 after each day. Rotated files are compressed with
gzip.

610

10.1. HyperStore Logs

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 3GB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-hyperstore.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="REQ". For setting descriptions see
"Log Configuration Settings" (page 626).

HyperStore Service cleanup log (cloudian-hyperstore-cleanup.log)

Location On every node, /var/log/cloudian/cloudian-hyperstore-cleanup.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|Command#|ObjectKey|ObjectFilePath

This log has entries when an hsstool cleanup or hsstool cleanupec operation results in
files being deleted from the node. A cleanup operation that determines that no files need to
be deleted from the node will not cause any entries to this log.

Log Entry
Example

2018-02-28 05:57:25,743|1|buser1/obj1|/var/lib/cloudian/hsfs/

SalA11OVu6oCThSSRafvH/7cf10597b0360421d7564e7c248b2445/165/206/

16398559635448146388914806157301167971.1476861996241

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-hyperstore-cleanup.log.YYYY-MM-DD.i.gz, where i is a
rotation counter that resets back to 1 after each day. Rotated files are compressed with gzip

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-hyperstore.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="CLEANUP". For setting descrip-
tions see "Log Configuration Settings" (page 626).

HyperStore Service repair log (cloudian-hyperstore-repair.log)

Location On every node, /var/log/cloudian/cloudian-hyperstore-repair.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|Type|Command#|Coordinator|RepairEndpoint|

StreamFromEndpoint|ObjectKey|ObjectFilePath|ObjectSize|Md5Hash|

RepairLatencyMillisecs|Status

This log has entries when a repair operation results in an attempt to repair files on the node. A
repair operation that determines that no repairs are needed on the node will not cause any
entries to this log.

The Type field value is one of:

l RR -- regular repair for replica

l PRR -- proactive repair for replicas

611

Chapter 10. Logging

l REC -- regular repair for erasure coded data

l PREC -- proactive repair for erasure coded data

l UECD -- update of EC digest fields

The Coordinator is the node to which the hsstool repair or hsstool repairec command was sub-
mitted. The StreamFromEndpoint is the node from which a replica or erasure coded fragment
was streamed in order to repair missing or bad data at the RepairEndpoint node. For erasure
coded data repair, the fragment is streamed from the node that performed the decoding and
re-encoding of the repaired object.

The Status field indicates the status of the repair attempt for the object and is one of:

l OK -- Successfully repaired

l PRQUEUE -- Failed to repair, but successfully added to the proactive repair queue

l ERROR / STREAMERROR / STREAMTIMEOUT -- Failed to repair and did not add to
the proactive repair queue

Note ERROR / STREAMERROR / STREAMTIMEOUT status will be recorded in
this log only for erasure coded objects. For information about failed replicated
object repairs see the hss-error.log file.

Log Entry
Example

2018-02-13

00:58:55,816|RR|2|10.20.2.34|10.20.2.35|10.20.2.34|newb1/efile586|/home/disk2/hsfs/

eFq94PDeBSa5RVlsZMbh2/2479a0125408240ff77bd1b0a8ea28b0/082/083/

137628540267427877754176464820359359646.1484021921915|10000|

fe912baa5d49737c70624b5b82328838|22|OK

Default Log-
ging Level

INFO

Default
Rotation
and Reten-
tion Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day, regard-
less of live file size.

Rotated files are named as cloudian-hyperstore-repair.log.YYYY-MM-DD.i.gz, where i is a
rotation counter that resets back to 1 after each day. Rotated files are compressed with gzip

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Con-
figuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-hyperstore.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="REPAIR". For setting descriptions
see "Log Configuration Settings" (page 626).

HyperStore Service repair error and heal logs (hss-error.log and hss-heal.log)

The hss-error.log and hss-heal.log are for use by Cloudian Support if they are helping you to troubleshoot
repair failures.

HyperStore Service whereis log (whereis.log)

This log is generated if and only if you execute the hsstool whereis -a command, to output location detail for

612

10.1. HyperStore Logs

every S3 object in the system. For information about this log see hsstool whereis.

10.1.6. HyperStore Shell Log
HyperStore shell log (hsh.log)

If the HyperStore shell (HSH) is enabled in your system then HSH user logins and commands are logged in the
HyperStore shell log. An instance of the HyperStore shell log resides on each HyperStore node and records
any HSH logins and commands on that node. For information about the HSH see "Security Features" (page
89).

Location On every node, /var/log/hsh/hsh.log

Log Entry
Examples

HSH user login:

time="2019-09-04T20:26:21-07:00" level=info msg="New Session"

session=15C16CFDA4A46863 user=sa_admin

HSH user running a command:

time="2019-09-04T21:22:30-07:00" level=info msg="Running command."

args="<s:setup>" command=hspkg session=15C16CFDA4A46863 type=interactive

time="2019-09-04T21:22:30-07:00" level=info msg="Executing command."

cwd=/home/sa_admin mode=User path=/opt/cloudian-staging/7.2/system_setup.sh

runuser=root session=15C16CFDA4A46863 tty=true

time="2019-09-04T21:24:38-07:00" level=info msg="Command complete."

args="<s:setup>" command=hspkg session=15C16CFDA4A46863 status=0 type=interactive

Default Rota-
tion and
Retention
Policy

Rotation occurs monthly or if the live file size reaches 500MB.

Rotated files are named as hsh.log.<n>, with hsh.log.1 being the most recently rotated file.
The most recently rotated file is not compressed; all other rotated files are compressed with
gzip and the file names will have a .gz suffix.

12 rotated files are retained. Older files are automatically deleted.

Configuration
Rotation of this log is managed by the Linux logrotate utility. In the current version of Hyper-
Store, the rotation settings for the HyperStore shell log are not configurable.

10.1.7. IAM Service Logs
IAM application log (cloudian-iam.log)

Location

On every node, /var/log/cloudian/cloudian-iam.log

Note For an IAM overview see "HyperStore Support for the AWS IAM API" (page
991).

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

l The MessageCode uniquely identifies the log message, for messages of level WARN

613

Chapter 10. Logging

or higher. For documentation of specific message codes including recommended oper-
ator action, see the HyperStore online Help.

Log Entry
Example

2018-02-16 10:16:36,246 INFO[qtp214187874-41] CloudianHFactory:Creating DynamicKS

for: AccountInfo

Default
Logging
Level

INFO

Default
Rotation
and Reten-
tion Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day, regard-
less of live file size.

Rotated files are named as cloudian-iam.log.YYYY-MM-DD.i.gz, where i is a rotation counter
that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Con-
figuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-iam.xml.erb , this log is configurable in the block that
starts with <RollingRandomAccessFile name="IAMAPP". For setting descriptions see "Log
Configuration Settings" (page 626).

IAM request log (cloudian-iam-request-info.log)

Location

On every node, /var/log/cloudian/cloudian-iam-request-info.log

Note This log records Security Token Service (STS) requests as well as
IAM requests.

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|ClientIpAddress|AccountRootUserCanonicalId|

RequestorUserId|GroupId|Protocol:Action|IamUserId|RoleSessionArn|

RoleSessionId|TempCredentialsAccessKey|HttpStatus|ErrorCode|

ResponseData|DurationMicrosecs

l For the IamUserId field:

o If request is by IAM user, this is the UserId of the IAM user

o If request is by a non-SAML role session, this is the UserId of the IAM user
who assumed the role

o If request is by a SAML role session, this is the Subject field value from the
SAML Assertion (the user identifier)

o If request is by an account root user, this field is empty

l If request is by a role session, the RoleSessionArn, RoleSessionId, and Tem-
pCredentialsAccessKey fields provide information about the role session making the
request. Otherwise these fields are empty.

l If the action is AssumeRole or AssumeRoleWithSAML, the ResponseData field
provides information about the role being assumed (RoleSes-
sionArn&RoleSessionId&TempCredentialsAccessKey). Otherwise this field is empty.

Log Entry 2020-08-10 18:58:59,607|10.20.2.34|679d95846fb0f0047f5926ba16546552|testu159986|

614

10.1. HyperStore Logs

Examples

myGroup8732|iam:PutRolePolicy|||||200|||6

2020-08-10 18:58:59,619|10.20.2.34|679d95846fb0f0047f5926ba16546552|testu159986|

myGroup8732|sts:AssumeRole|aidcc54d3e60de2a74e89ad639561df0||||200||

arn:aws:iam::679d95846fb0f0047f5926ba16546552:role/iammypath/rolen134094&

rolesn54301&asicbd8ef4bdd6e7e03c|118

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 100MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-iam-request-info.log.YYYY-MM-DD.i.gz, where i is a
rotation counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 2GB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-iam.xml.erb , this log is configurable in the block
that starts with <RollingRandomAccessFile name="IAMREQ". For setting descriptions see
"Log Configuration Settings" (page 626).

10.1.8. Monitoring Agent and Collector Logs
Monitoring Agent application log (cloudian-agent.log)

Location On every node, /var/log/cloudian/cloudian-agent.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel [ThreadId] ClassName:MESSAGE

Log Entry
Example

2017-05-04 11:57:03,698 WARN [pool-2-thread-7]

LogFileTailerListener:Log file not found for service:cron

Default Log-
ging Level

WARN

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-agent.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudianagent/templates/log4j-agent.xml.erb, this log is configurable in the
block that starts with RollingRandomAccessFile name="APP". For setting descriptions see
"Log Configuration Settings" (page 626).

615

Chapter 10. Logging

Monitoring Data Collector application log (cloudian-datacollector.log)

Location On Monitoring Data Collector node, /var/log/cloudian/cloudian-datacollector.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

The MessageCode uniquely identifies the log message, for messages of level WARN or
higher. For documentation of specific message codes including recommended operator
action, see the HyperStore online Help.

Log Entry
Example

2017-05-04 00:00:05,898 WARN[main]DC040073 SmtpNotification:

Failed to send due to messaging error: Couldn't connect to host, port:

smtp.notification.configure.me, 465; timeout 5000

Default Log-
ging Level

WARN

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-datacollector.log.YYYY-MM-DD.i.gz, where i is a rota-
tion counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-datacollector.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="APP". For setting descriptions see
"Log Configuration Settings" (page 626).

10.1.9. Phone Home (Smart Support) Log
Phone Home application log (cloudian-phonehome.log)

Location On Monitoring Data Collector node, /var/log/cloudian/cloudian-phonehome.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

The MessageCode uniquely identifies the log message, for messages of level WARN or
higher. For documentation of specific message codes including recommended operator
action, see the HyperStore online Help..

Log Entry
Example

2017-05-04 19:13:03,384 ERROR[main]HS200043 S3:All Redis read connection

pools are unavailable. Redis HGETALL of key BPP_MAP fails.

Default Log-
ging Level

WARN

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-phonehome.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

616

10.1. HyperStore Logs

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-phonehome.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="APP". For setting descriptions see
"Log Configuration Settings" (page 626).

10.1.10. Redis and Redis Monitor Logs
Redis Credentials application log (redis-credentials.log)

Location On Redis Credentials nodes, /var/log/redis/redis-credentials.log

Log Entry
Format

PID.role dd MMM hh:mm:ss.ms loglevel MESSAGE

The role will usually be "M" for master or "S" for slave.

The loglevel will be "*" for NOTICE or "#" for ERROR.

Log Entry
Example

18290:S 28 Jul 01:23:42.416 # Connection with master lost.

Default Log-
ging Level

NOTICE

Default Rota-
tion Policy

Not rotated by default. You can set up rotation by using logrotate.

Configuration

Redis Credentials application logging is configured in the main Redis configuration file. The
file name depends on the Redis node type -- master or slave. These templates are on the
Puppet master node, under /etc/cloudian-<version>-puppet/modules/redis/templates/:

l Redis Credentials master node: redis-credentials.conf.erb

l Redis Credentials slave node: redis-credentials-slave.conf.erb

The only configurable logging settings are the log file name and the logging level. See the
commenting in the configuration file for more detail.

Redis QoS application log (redis-qos.log)

Location On Redis QoS nodes, /var/log/redis/redis-qos.log

Log Entry
Format

PID.role dd MMM hh:mm:ss.ms loglevel MESSAGE

The role will usually be "M" for master or "S" for slave.

The loglevel will be "*" for NOTICE or "#" for ERROR.

Log Entry
Example

24401:M 28 Jul 01:41:46.963 * Calling fsync() on the AOF file.

Default Log-
ging Level

NOTICE

Default Rota-
tion Policy

Not rotated by default. You can set up rotation by using logrotate.

Configuration Redis QoS application logging is configured in the main Redis configuration file. The file

617

http://linux.die.net/man/8/logrotate
http://linux.die.net/man/8/logrotate

Chapter 10. Logging

name depends on the Redis node type -- master or slave. These templates are on the Pup-
pet master node, under /etc/cloudian-<version>-puppet/modules/redis/templates/:

l Redis QoS master node: redis-qos.conf.erb

l Redis QoS slave node: redis-qos-slave.conf.erb

The only configurable logging settings are the log file name and the logging level. See the
commenting in the configuration file for more detail.

Redis request logs (redis-{s3,admin,hss}-tx.log)

Location
If enabled, these logs are written to /var/log/cloudian/redis-{s3,admin,hss}-tx.log on the S3
Service, Admin Service, and/or HyperStore nodes (that is, these request logs are written on
the client side as S3, Admin, and HyperStore service instances send requests to Redis).

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS S3RequestId MESSAGE

Log Entry
Example

2016-11-17 23:54:01,695 CLIENT setname ACCOUNT_GROUPS_M

Default Log-
ging Level

INFO

Note The default logging level of INFO disables these logs. If you want these logs to
be written, you must edit the Puppet template files log4j-s3.xml.erb (for logging S3
Service access to Redis), log4j-admin.xml.erb (for logging Admin Service access to
Redis), and/or log4j-hyperstore.xml.erb (for logging HyperStore Service access to
Redis). Find the AsyncLogger name="redis.clients.jedis" block and change the level
from "INFO" to "TRACE". Then do a Puppet push, and then restart the relevant ser-
vices (S3-Admin and/or HyperStore).

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as redis-{s3,admin,hss}-tx.log.YYYY-MM-DD.i.gz, where i is a rota-
tion counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template files /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-{s3,admin,hss}.xml.erb, this log is configurable in
the block that starts with <RollingRandomAccessFile name="REDISTX". For setting descrip-
tions see "Log Configuration Settings" (page 626).

Redis Monitor application log (cloudian-redismon.log)

Location On Redis Monitor nodes, /var/log/cloudian/cloudian-redismon.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

The MessageCode uniquely identifies the log message, for messages of level WARN or

618

10.1. HyperStore Logs

higher. For documentation of specific message codes including recommended operator
action, see the HyperStore online Help.

Log Entry
Example

2017-05-04 00:01:13,590 INFO[pool-23532-thread-3] RedisCluster:

Failed to connect to cloudian jmx service [mothra:19082]

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-redismon.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size reaches 100MB or if
oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-redismon.xml.erb, this log is configurable in the
block that starts with <RollingRandomAccessFile name="APP". For setting descriptions see
"Log Configuration Settings" (page 626).

10.1.11. S3 Service Logs (including Auto-Tiering, CRR, andWORM)
S3 Service application log (cloudian-s3.log)

Location On every node, /var/log/cloudian/cloudian-s3.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[S3RequestId][ThreadId]MessageCode

ClassName:MESSAGE

The MessageCode uniquely identifies the log message, for messages of level WARN or
higher. For documentation of specific message codes including recommended operator
action, see the HyperStore online Help.

Log Entry
Example

2017-05-04 00:33:39,435 ERROR[bc6f3fca-9037-135f-a964-0026b95cedde]

[qtp1718906711-94]HS204017 XmlSaxParser:Rule doesn't have

AllowedMethods/AllowedOrigins.

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day, regard-
less of live file size.

Rotated files are named as cloudian-s3.log.YYYY-MM-DD.i.gz, where i is a rotation counter
that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Con-
figuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="S3APP". For setting descriptions see "Log
Configuration Settings" (page 626).

619

Chapter 10. Logging

S3 Service request log (cloudian-request-info.log)

Location On every node, /var/log/cloudian/cloudian-request-info.log

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|ClientIpAddress|BucketOwnerUserID|Operation|

BucketName|RequestorUserId|RequestHeaderSize|RequestBodySize|

ResponseHeaderSize|ResponseBodySize|TotalRequestResponseSize|

DurationMicrosecs|UrlEncodedObjectName|HttpStatus|

S3RequestId|Etag|ErrorCode|SourceBucketName/UrlEncodedSourceObjectName|

Group|CanonicalUserId|IamUserId|RoleSessionArn|RoleSessionId|

TempCredentialsAccessKey

l The Operation field indicates the S3 API operation. Note that "getBucket" indicates
GET Bucket (List Objects) Version 1 whereas "getBucketV2" indicates GET Bucket
(List Objects) Version 2. (In the case of a health check request, the Operation field
indicates "healthCheck". In the case of requests submitted to the S3 Service by a sys-
tem cron job, the Operation field indicates the name of the cron job action, such as
"sytemBatchDelete").

l The Etag field is the Etag value from the response, if applicable to the request type.
For information about Etag see for example Common Response Headers from the
Amazon S3 REST API spec. This field’s value will be 0 for request/response types
that do not use an Etag value.

l The ErrorCode field is the Error Code in the response body, applicable only for poten-
tially long-running requests like PUT Object. If there is no Error Code in the response
body this field’s value will be 0. For possible Error Code values see Error
Responses from the Amazon S3 REST API spec.

Note In the case where the Operation field value is deleteObjects, the
ErrorCode field will be formatted as objectname1-errorcode1,objectname2-
errorcode2,objectname3-errorcode3..., and the object names will be URL-
encoded. If there are no errors the field is formatted as objectname1-0,ob-
jectname2-0,objectname3-0....

l The SourceBucketName/UrlEncodedSourceObjectName field is populated only for
copyObject and uploadPartCopy operations and is empty for other operation types.

l If you want the ClientIpAddress, BucketOwnerUserID, and RequestorUserId to be
removed from the copies of the S3 request log that get uploaded to Cloudian Support
as part of the Smart Support feature and on-demand Node Diagnostics feature, set
"phonehome_gdpr" (page 525) to true in common.csv. Doing so will not remove
these fields from the original S3 request logs on your HyperStore nodes -- just from
the log file copies that get sent to Cloudian. For more information on these support
feature see "Smart Support and Diagnostics Feature Overview" (page 190).

l For the IamUserId field:

o If request is by IAM user, this is the UserId of the IAM user

o If request is by a non-SAML role session , this is the UserId of the IAM user
who assumed the role

o If request is by a SAML role session, this is the Subject field value from the
SAML Assertion (the user identifier)

620

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html
http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

10.1. HyperStore Logs

o If request is by an account root user, this field is empty

l If request is by a role session, the RoleSessionArn, RoleSessionId, and Tem-
pCredentialsAccessKey fields provide information about the role session making the
request. Otherwise these fields are empty.

Log Entry
Example

2020-10-13 06:01:25,655|10.50.10.15|PubsUser1|putObject|pubs.bucket1|

PubsUser1|972|1638336|135|0|1639443|145360|IAM+Roles+and+SAML+Design.docx|

200|a12d2f8e-fdd2-1bcd-92ba-0026b95d08b9|83043a9f55a8a9880fb7c63d6130d473|

0||Pubs|edfaf89260798e4c9d49064e7ef4d0c3||||

Logging
Level

Not applicable

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 100MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-request-info.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 2GB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="S3REQ". For setting descriptions see "Log
Configuration Settings" (page 626).

Note For information on setting up an Elastic Stack node and streaming cloudian-request-info.log data
to that node to support integrated analysis of your S3 request traffic, see "Setting Up Elastic Stack for
S3 Request Traffic Analysis" (page 631).

10.1.11.0.1. Logging the True Originating Client IP Address

If you use a load balancer in front of your S3 Service (as would typically be the case in a production envir-
onment), then the ClientIpAddress in your S3 request logs will by default be the IP address of a load balancer
rather than that of the end client. If you want the S3 request logs to instead show the end client IP address, your
options depend on what load balancer you're using.

If your load balancer is HAProxy or a different load balancer that supports the PROXY Protocol, enable S3 sup-
port for the PROXY Protocol (see "s3_proxy_protocol_enabled" (page 530) in common.csv) and configure
your load balancer to use the PROXY Protocol for relaying S3 requests to the S3 Service. Consult with your
Cloudian Sales Engineering or Support representative for guidance on load balancer configuration.

If your load balancer does not support the PROXY Protocol:

1. Configure your load balancers so that they pass the HTTP X-Forwarded-For header to the S3 Service.
This is an option only if you run your load balancers run in "HTTP mode" rather than "TCP mode". Con-
sult with your Cloudian Sales Engineering or Support representative for guidance on load balancer con-
figuration.

2. Configure your S3 Service to support the X-Forwarded-For header. You can enable S3 Service support
for this header by editing the configuration file s3.xml.erb on your Puppet master node. The needed con-
figuration lines are already in that file; you only need to uncomment them.

Before uncommenting:

621

Chapter 10. Logging

<!-- Uncomment the block below to enable handling of X-Forwarded- style headers -->

<!--

<Call name="addCustomizer">

<Arg><New class="org.eclipse.jetty.server.ForwardedRequestCustomizer"/></Arg>

</Call>

-->

After uncommenting:

<!-- Uncomment the block below to enable handling of X-Forwarded- style headers -->

<Call name="addCustomizer">

<Arg><New class="org.eclipse.jetty.server.ForwardedRequestCustomizer"/></Arg>

</Call>

After making this configuration edit, do a Puppet push and restart the S3 Service to apply your
change.

Auto-Tiering request log (cloudian-tiering-request-info.log)

Location

On every node, /var/log/cloudian/cloudian-tiering-request-info.log

Note For regular auto-tiering that occurs on a defined schedule this request logging
occurs on the same node that is running the HyperStore system cron jobs. In the spe-
cial case of "bridge mode" auto-tiering, the request logging is distributed across all
your S3 nodes -- whichever S3 node processes the upload of a given object into the
source bucket also initiates the immediate auto-tiering of the object to the destination
system, and the tiering request log entry for that is written locally on that node.

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|Command|Protocol|SourceBucket/Object|

SourceObjectVersion|TargetBucket|TargetObjectVersion|ObjectSize|

TotalRequestSize|Status|DurationMicrosecs

Log Entry
Example

2017-10-31 20:39:37,282|MOVEOBJECT|AZURE|cbucket/a.c|null|

testbucket|null|112|115|COMPLETED|83000

Logging
Level

Not applicable

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-tiering-request-info.log.YYYY-MM-DD.i.gz, where i is a
rotation counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="TIER". For setting descriptions see "Log Con-
figuration Settings" (page 626).

Cross-Region Replication request log (cloudian-crr-request-info.log)

622

10.1. HyperStore Logs

Location

On every node, /var/log/cloudian/cloudian-crr-request-info.log

Note Whichever S3 Service node processes a PUT of an object into a source bucket
configured for CRR will be the node that initiates the replication of the object to the
destination bucket. This node will have an entry for that object in its CRR request log.
In the case of retries of replication attempts that failed with a temporary error the first
time, the retries will be logged in the CRR request log on the cron job node. For gen-
eral information on the cross-region replication feature, see "Cross-Region Rep-
lication Feature Overview" (page 186).

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS|SourceBucket/Object|ObjectVersionId|DestinationBucket|

CrrOperation|Status|DurationMillisecs|Size

The Status will be one of:

l COMPLETED -- The object was successfully replicated to the destination bucket.

l FAILED -- The object replication attempt resulted in an HTTP 403 or 404 response
from the destination system. This is treated as a permanent error and no retry attempt
will occur for replicating this object. This type of error could occur if for example the
destination bucket has been deleted or if versioning has been disabled for the des-
tination bucket. A FAILED status triggers an S3 service error Alert in the CMC's Alerts
page.

l PENDING -- The object replication attempt encountered an error other than an HTTP
403 or 404 response. All other errors -- such as a connection error or an HTTP 5xx
response from the destination system -- are treated as temporary errors. The object
replication will be retried again once every four hours until either the object is suc-
cessfully replicated to the destination bucket or a permanent error is encountered.
Each retry attempt results in a new log entry in cloudian-crr-request-info.log.

Log Entry
Example

2020-03-04 15:04:58,423|prod-2020-01-16/0299-0166180000362773.pdf|

fe15a1de-de25-f8af-9a28-b4a9fc08ca7e|prod-backup-2020-01-16|REPLICATEOBJECT|

COMPLETED|61|328471

Logging
Level

Not applicable

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-crr-request-info.log.YYYY-MM-DD.i.gz, where i is a rota-
tion counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="CRR". For setting descriptions see "Log Con-
figuration Settings" (page 626).

WORM audit log (s3-worm.log)

623

Chapter 10. Logging

Location

On every node, /var/log/cloudian/s3-worm.log

Note For information about the WORM feature see "WORM (Object Lock)" (page
121).

Log Entry
Format

DateTime|Hostname|S3RequestId|S3Operation|Headers|Bucket|Object|

ObjectVersionId|CanonicalUserId|CanonicalIamUserId|StatusCode|

StatusMessage

The S3Operation will be any of:

l An object lock operation (GET/PUT Bucket object lock configurationor GET/PUT
Object legal hold or GET/PUT Object retention)

l A regular S3 operation that includes object lock related headers (such as a PUT
Bucket request that includes an x-amz-object-lock-enabled: true header or a PUT
Object request that includes an x-amz-object-lock-mode or x-amz-object-lock-retain-
until-date or x-amz-object-lock-legal-hold header). For such operations the relevant
header(s) will be shown in the Headers field of the log entry. Multipart uploads are
logged only if completed, and the operation is indicated as PUT Object.

l A DELETE Object Version request in regard to a locked object version.

For a regular S3 operation such as PUT Bucket or PUT Object, the Headers field will show
the object lock related headers. For GET/PUT Bucket object lock configuration operations the
Headers field will convey information about the bucket's default object lock configuration,
coded as follows:

l First character: "T" for object lock is enabled on bucket

l Second character: "G" for Governance mode or "C" for Compliance mode

l Third character: "D" or "Y" for retention period unit of measurement (days or years)

l Remaining characters: Integer for number of days or years

Example 1: TGD30 for a Governance mode configuration with 30 day retention period

Example 2: T for a bucket with object lock enabled, but no default object lock con-
figuration

If the submitter of the request is an IAM user, the log entry shows the canonical user ID of the
IAM user as well as the canonical user ID of the parent user account.

Log Entry
Example

2019-10-06 09:59:30,767|arcturus|a9d7e5b1-e85a-11e9-8519-52540014b047|

s3:GetBucketObjectLockConfiguration|TGD90|newbucket|||

b584fb57480af5108e32d17f10c5cb7b||200|OK

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as s3-worm.log.YYYY-MM-DD.i.gz, where i is a rotation counter that
resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

624

10.1. HyperStore Logs

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-s3.xml.erb, this log is configurable in the block that
starts with <RollingRandomAccessFile name="S3WORM". For setting descriptions see "Log
Configuration Settings" (page 626).

10.1.12. SQSService Logs
SQS application log (cloudian-sqs.log)

Location

On every node, /var/log/cloudian/cloudian-sqs.log

Note For an SQS overview (including information about how to enable the SQS Ser-
vice, which is disabled by default) see "HyperStore Support for the AWS SQS API"
(page 1041).

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

Log Entry
Example

2019-11-05 02:32:44,453 INFO[SQSRetentionCheckerThread -

pool-5-thread-1] SQSMessageRetentionChecker:Another thread processing. Do

nothing...

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-sqs-req.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-sqs.xml.erb , this log is configurable in the block that
starts with <RollingRandomAccessFile name="SQSAPP". For setting descriptions see "Log
Configuration Settings" (page 626).

SQS request log (cloudian-sqs-request.log)

Location

On every node, /var/log/cloudian/cloudian-sqs-request.log

Note For an SQS overview (including information about how to enable the SQS Ser-
vice, which is disabled by default) see "HyperStore Support for the AWS SQS API"
(page 1041).

Log Entry
Format

yyyy-mm-dd HH:mm:ss,SSS PriorityLevel[ThreadId]MessageCode ClassName:MESSAGE

The MESSAGE includes the client IP address, the user ID, and the request type (the SQS

625

Chapter 10. Logging

"action").

Log Entry
Example

2019-07-11 13:50:21,736 INFO[qtp1548962651-122]

RequestLogger:2019-07-11 13:50:21,732|10.20.2.61|user1|CreateQueue|

testQueue|200|4

Default Log-
ging Level

INFO

Default Rota-
tion and
Retention
Policy

Rotation occurs if live file size reaches 10MB. Rotation also occurs at end of each day,
regardless of live file size.

Rotated files are named as cloudian-sqs-req.log.YYYY-MM-DD.i.gz, where i is a rotation
counter that resets back to 1 after each day. Rotated files are compressed with gzip.

Deletion of oldest rotated log file occurs if aggregate rotated files size (after compression)
reaches 100MB or if oldest rotated file age reaches 180 days.

Configuration

In the Puppet template file /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-sqs.xml.erb , this log is configurable in the block that
starts with <RollingRandomAccessFile name="SQSREQ". For setting descriptions see "Log
Configuration Settings" (page 626).

10.2. Log Configuration Settings
The S3 Service, HyperStore Service, Redis Monitor, Admin Service, Monitoring Data Collector, Monitoring
Agent, and CMC each have their own XML-formatted log4j-*.xml.erb configuration template in which you can
adjust logging settings. Within a log4j-*.xml.erb file, specific logs -- such as the S3 application log and the S3
request log -- are configured by named instances of RollingRandomAccessFile. The "HyperStore Logs"
(page 605) overview topic indicates the specific log4j-*.xml.erbfile and the specific RollingRandomAccessFile
name by which each log is configured (for example the S3 application log is configured by the RollingRan-
domAccessFile instance named "S3APP" in the log4j-s3.xml.erb file).

Note After making any configuration file edits, be sure to trigger a Puppet sync-up and then restart
the affected service (for example, the S3 Service if you've edited the log4j-s3.xml.erb file).

Within a particular log’s RollingRandomAccessFile instance there are these editable settings:

l PatternLayout pattern="<pattern>"— The log entry format. This flexible formatting configuration is
similar to the printf function in C. For detail see PatternLayout from the online Apache Log4j2 doc-
umentation.

l TimeBasedTriggeringPolicy interval="<integer>"—Roll the log after this many days pass. (More pre-
cisely, the log rolls after interval number of time units pass, where the time unit is the most granular unit
of the date pattern specified within the filePattern element — which in the case of all HyperStore logs'
configuration is a day). Defaults to rolling once a day if interval is not specified. All HyperStore logs use
the default of one day.

l SizeBasedTriggeringPolicy size="<size>"—Roll the log when it reaches this size (for example "10
MB"). Note that this trigger and the TimeBasedTriggeringPolicy operate together: the log will be rolled if
either the time based trigger or the size based trigger occur.

626

https://logging.apache.org/log4j/2.x/manual/layouts.html#PatternLayout

10.3. Aggregating Logs to a Central Server

l IfLastModified age="<interval>"—When a rolled log file reaches this age the system automatically
deletes it (for example "180d").

l IfAccumulatedFileSize exceeds="<size>"—When the aggregate size (after compression) of rolled
log files for this log reaches this size, the system automatically deletes the oldest rolled log file (for
example "100 MB"). Note that this setting works together with the IfLastModified setting -- old rolled log
files will be deleted if either the age based trigger or the aggregate size based trigger occur.

Note Each RollingRandomAccessFile instance also includes a DefaultRolloverStrategy max-
x="<integer>" parameter which specifies the maximum number of rolled files to retain from a
single day's logging. However, by default this parameter is not relevant for HyperStore because
HyperStore logs are configured such that the IfAccumulatedFileSize trigger will be reached
before the DefaultRolloverStrategy trigger.

For each log's default value for the settings above, see the "HyperStore Logs" (page 605) overview topic.

In the log4j-*.xml.erb files, in addition to RollingRandomAccessFile instances there are also Logger instances.
Each Logger instance contains an AppenderRef element that indicates which log that Logger instance applies
to, by referencing the log’s RollingRandomAccessFile name (for example AppenderRef ref="S3APP"means
that the Logger instance is associated with the S3 application log). Note that multiple Logger instances may be
associated with the same log — this just means that multiple core components of a service (for example, mul-
tiple components within the S3 Service) have separately configurable loggers. If you’re uncertain about which
Logger instance to edit to achieve your objectives, consult with Cloudian Support.

The Logger instances are where you can configure a logging level, using the level attribute:

l level="<level>"— Logging level. The following levels are supported (only events at the configured
level and above will be logged):

o OFF = Turn logging off.

o ERROR = Typically a fail-safe for programming errors or a server running outside the normal
operating conditions. Any error which is fatal to the service or application. These errors will
cause administrator alerts and typically force administrator intervention.

o WARN = Anything that can potentially cause application oddities, but where the server can con-
tinue to operate or recover automatically. Exceptions caught in “catch” blocks are commonly at
this level.

o INFO = Generally useful information to log (service start/stop, configuration assumptions, etc).
Info to always have available. Normal error handling, like a user not existing, is an example.

o DEBUG = Information that is diagnostically helpful.

o TRACE = Very detailed information to "trace" the execution of a request or process through the
code.

o ALL = Log all levels.

For each log's default log level, see the "HyperStore Logs" (page 605) overview topic.

10.3. Aggregating Logs to a Central Server
If you wish you can have application logs and request logs from the S3 Service, Admin Service, and Hyper-
Store Service — as well as system logs from the host machines in your cluster — aggregated to a central log-
ging server using rsyslog. This is not enabled by default, but you can enable it by editing configuration files.

627

Chapter 10. Logging

This procedure sets up your HyperStore logging so that logs are written to a central logging server in addition
to being written on each HyperStore node locally.

The procedure presumes that:

l You have a central logging server running rsyslog.

l Each of your HyperStore nodes has rsyslog installed.

IMPORTANT ! The central logging server must not be one of your HyperStore nodes.

Note rsyslog is included in the HyperStore Appliance and also in standard RHEL/CentOS dis-
tributions. This procedure has been tested using rsyslog v5.8.10.

Note For information on setting up an Elastic Stack node and streaming S3 request log data to that
node to support analysis and visualization of your S3 request traffic, see "Setting Up Elastic Stack for
S3 Request Traffic Analysis" (page 631).

To aggregate HyperStore application logs, request logs, and system logs to a central logging server follow the
instructions below.

1. On the central logging server, do the following:

a) In the configuration file /etc/rsyslog.conf, enable UDP by uncommenting these lines:

BEFORE EDITING

#$ModLoad imudp

#$UDPServerRun 514

AFTER EDITING

$ModLoad imudp

$UDPServerRun 514

b) Still on the central logging server, create a file /etc/rsyslog.d/cloudian.conf and enter these con-
figuration lines in the file:

$template CloudianTmpl,"%HOSTNAME% %TIMESTAMP:::date-rfc3339% %syslogseverity-text:::uppercase%

%msg%\n"

$template CloudianReqTmpl,"%HOSTNAME% %msg%\n"

:programname, isequal, "ADMINAPP" /var/log/cloudian-admin.log;CloudianTmpl

:programname, isequal, "ADMINREQ" /var/log/cloudian-admin-request-info.log;CloudianReqTmpl

:programname, isequal, "HSAPP" /var/log/cloudian-hyperstore.log;CloudianTmpl

:programname, isequal, "HSREQ" /var/log/cloudian-hyperstore-request-info.log;CloudianReqTmpl

:programname, isequal, "S3APP" /var/log/cloudian-s3.log;CloudianTmpl

:programname, isequal, "S3REQ" /var/log/cloudian-request-info.log;CloudianReqTmpl

:programname, isequal, "s3-worm" /var/log/s3-worm.log;CloudianReqTmpl

c) Still on the central logging server, restart rsyslog by "service rsyslog restart".

d) Still on the central logging server, enable rotation on the centralized HyperStore logs. For example, to
use logrotate for rotating the HyperStore logs, create a file /etc/logrotate.d/cloudian and enter the

628

https://www.elastic.co/products

10.3. Aggregating Logs to a Central Server

following configuration lines in the file. (Optionally adjust the rotated file retention scheme — 14 rota-
tions before deletion in the example below — to match your retention policy.)

/var/log/cloudian-*.log

{

daily

rotate 14

create

missingok

compress

delaycompress

sharedscripts

postrotate

/bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2> /dev/null || true

endscript

}

2. On your HyperStore Puppet Master node, do the following:

a) Go to the /etc/cloudian-7.2.3-puppet/modules/cloudians3/templates/ directory. Here you will edit three
configuration files:

o log4j-admin.xml.erb

o log4j-hyperstore.xml.erb

o log4j-s3.xml.erb

In each of these three files search for and uncomment all sections marked with a "#syslog" tag.
When you are done uncommenting, there should be no remaining "#syslog" tags.

Also, in the first #syslog section at the top of each file — nested within the "Properties" block — in addi-
tion to uncommenting the #syslog section set the sysloghost property to the hostname or IP address or
your central syslog server and set the syslogport property to the central syslog server’s UDP port (which
by default is port number is 514).

Here is a before and after example for uncommenting and editing the #syslog section within a "Prop-
erties" block. In the BEFORE EDITING text, the commenting boundaries (which need to be removed) are
highlighted in red. In the AFTER EDITING text, the commenting boundaries have been removed and the
central logging server hostname has been set to "regulus".

BEFORE EDITING

<Properties>

<!-- #syslog

<Property name="sysloghost">localhost</Property>

<Property name="syslogport">514</Property>

-->

</Properties>

AFTER EDITING

<Properties>

<Property name="sysloghost">regulus</Property>

<Property name="syslogport">514</Property>

</Properties>

Be sure to uncomment all of the "#syslog" tagged sections in each of the three files. Remember that

629

Chapter 10. Logging

only the #syslog section within the "Properties" block at the top of each file requires editing an attribute
value. The rest of the #syslog sections only require uncommenting.

In this example of a #syslog section in log4j-s3.xml.erb you would remove the commenting boundaries
that here are highlighted in red.

<!-- #syslog

<Syslog name="SYSLOG-S3APP" format="RFC5424" host="${sysloghost}" port="${syslogport}"

protocol="UDP" appName="S3APP" mdcId="mdc" includeMDC="true" facility="USER" newLine="true">

</Syslog>

<Syslog name="SYSLOG-S3REQ" format="RFC5424" host="${sysloghost}" port="${syslogport}"

protocol="UDP" appName="S3REQ" mdcId="mdc" includeMDC="true" facility="USER" newLine="true">

</Syslog>

<Syslog name="SYSLOG-S3WORM" format="RFC5424" host="${sysloghost}" port="${syslogport}"

protocol="UDP" appName="s3-worm" mdcId="mdc" includeMDC="true" facility="USER" newLine="true">

</Syslog>

-->

Here is a second example of a section that needs uncommenting, from that same file:

<!-- Request Logger -->

<Logger name="com.gemini.cloudian.RequestLogger" additivity="false" level="INFO">

<AppenderRef ref="S3REQ" />

<!-- #syslog

<AppenderRef ref="SYSLOG-S3REQ" />

-->

</Logger>

b) Still on your HyperStore Puppet Master node, go to the /etc/cloudian-<version>-pup-
pet/modules/rsyslog/templates/ directory. Then edit loghost.conf.erb to uncomment the following line
and replace "<loghost>" with the hostname (or IP address) of your central syslog server host:

BEFORE EDITING

#*.* @<loghost>:514

AFTER EDITING

. @regulus:514

IMPORTANT ! The central log host must not be one of your HyperStore hosts. (The reason is that if
you have one of your HyperStore hosts acting as the central log host, then that host is sending logs to
itself which results in a loop and rapid proliferation of log messages.)

c) Still on your HyperStore Puppet Master node, use the installer to push your changes to the cluster
and to restart the HyperStore Service and the S3 Service. For instructions see "Pushing Configuration
File Edits to the Cluster and Restarting Services" (page 506).

3. Back on the central logging server:

a) Confirm that logs are being written in /var/log/cloudian-* files.

b) Confirm that system messages from HyperStore nodes appear on the log host (for example in /var/-
log/messages). If you want you can proactively test this by running the command "logger test 1" on any
HyperStore node.

630

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis
Subjects covered in this section:

l Introduction (immediately below)

l "Installing Elasticsearch, Kibana, and Logstash" (page 631)

l "Installing Filebeat" (page 634)

l "Configuring Kibana for Custom Metrics Visualizations" (page 635)

These instructions describe how to install an Elasticsearch-Logstash-Kibana (ELK) stack on a single node that
will process S3 request logs (cloudian-request-info.log files) from HyperStore nodes.

Note These instructions involve acquiring and using technologies from the open source Elastic Stack.

Note You may also want to integrate with Elasticsearch for searching HyperStore object metadata (as
described in "Elasticsearch Integration for Object Metadata" (page 171)). Note that for object
metadata search, a minimum of three Elasticsearch nodes are recommended and so the single-node
set-up instructions below are not sufficient to that use case.

ELK Cluster Components:

l Elasticsearch: Stores the S3 request log files from HyperStore nodes in the filtered form specified in Log-
stash

l Logstash: Filters S3 request logs into a format that is searchable by Elasticsearch

l Kibana: Provides a web interface to access Elasticsearch data

HyperStore Cluster Components:

l Filebeat: Forwards S3 request logs from HyperStore nodes to ELK cluster

Prerequisites:

l An existing HyperStore cluster

l A CentOS 7 machine that has Java 8 already installed and Internet access

Note To work with HyperStore your Elasticsearch version must be a 6.x version, 6.6 or newer. In
the installation instructions that follow the version is 6.6.0.

10.4.1. Installing Elasticsearch, Kibana, and Logstash
On the host that you want to set up as an ELK node, take the following steps.

10.4.1.1. Installing Elasticsearch

1. Run the following command to import the ES public GPG key into RPM:

sudo rpm --import http://packages.elastic.co/GPG-KEY-elasticsearch

2. Run the following command to download the ES RPM file:

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.6.0.rpm

631

https://www.elastic.co/products

Chapter 10. Logging

3. Install the RPM by running the following command:

sudo rpm --install elasticsearch-6.6.0.rpm

4. Open /etc/elasticsearch/elasticsearch.yml in a text editor and uncomment the "network.host" entry and
set it to:

network.host: “localhost”

5. Also uncomment "cluster.name" and set it to the desired name for the ES cluster so that a cluster can be
formed.

6. Save the configuration changes that you made in elasticsearch.yml.

To start Elasticsearch, run the following command:

sudo systemctl start elasticsearch

To have Elasticsearch start automatically on boot:

sudo systemctl enable elasticsearch

10.4.1.2. Installing Kibana

1. Run the following command to download the Kibana RPM:

wget https://artifacts.elastic.co/downloads/kibana/kibana-6.6.0-x86_64.rpm

2. Install the RPM by running the following command:

sudo rpm --install kibana-6.6.0-x86_64.rpm

3. If you want to be able to access Kibana from other machines besides the ELK node itself, open
/etc/kibana/kibana.yml, find and uncomment the “server.host: “ line, and set it to the IP address of the
ELK node:

server.host: <ELK_NODE_IP_ADDR>

To start Kibana, run the following command:

sudo systemctl start kibana

To have Kibana start automatically on boot:

sudo systemctl enable kibana

10.4.1.3. Installing Logstash

1. Run the following command to download the Logstash RPM:

wget https://artifacts.elastic.co/downloads/logstash/logstash-6.6.0.rpm

2. Install the RPM by running the following command:

sudo rpm --install logstash-6.6.0.rpm

10.4.1.4. Configuring Logstash

Under the /etc/logstash/conf.d directory create a file logstash.conf and paste the following lines into it:

input {

beats {

port => 5044

}

632

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis

}

filter {

if ([document_type] == "cloudian-request-info") {

urldecode {

field => "message"

}

csv {

id => "cloudian-request-info"

autogenerate_column_names => false

separator => "|"

columns => [

"timestamp",

"ipAddress",

"bucketOwnerUserId",

"operation",

"bucketName",

"contentAccessorUserID",

"requestHeaderSize",

"requestBodySize",

"responseHeaderSize",

"responseBodySize",

"totalRequestResponseSize",

"durationMsec",

"objectName",

"httpStatus",

"s3RequestID",

"eTag",

"errorCode",

"copySource"

]

convert => {"requestHeaderSize" => "integer"}

convert => {"requestBodySize" => "integer"}

convert => {"responseHeaderSize" => "integer"}

convert => {"responseBodySize" => "integer"}

convert => {"totalRequestResponseSize" => "integer"}

convert => {"durationMsec" => "integer"}

remove_field => "message"

}

date {

match => ["timestamp", "ISO8601"]

remove_field => ["timestamp"]

}

geoip {

source => "ipAddress"

}

}

}

output {

if "_csvparsefailure" not in [tags] and "_dateparsefailure" not in [tags] {

elasticsearch {

hosts => ["localhost:9200"]

633

Chapter 10. Logging

document_type => "%{[document_type]}"

index => "logstash-%{+YYYY.MM.DD}"

}

}

}

Save the file and exit the text editor.

To start Logstash, run the following command:

sudo systemctl start logstash

To have Logstash start automatically on boot:

sudo systemctl enable logstash

10.4.2. Installing Filebeat
Take the following steps on each of your HyperStore nodes.

1. Get the Elastic GPG key:

sudo rpm --import http://packages.elastic.co/GPG-KEY-elasticsearch

2. Run the following command to download the Filebeat RPM:

wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.6.0-x86_64.rpm

3. Install the RPM by running the following command:

sudo rpm --install filebeat-6.6.0-x86_64.rpm

4. Open /etc/filebeat/filebeat.yml and find the “paths:” section. Replace the “- /var/log/*.log” line with “- /var/-
log/cloudian/cloudian-request-info.log”, while maintaining the level of indentation.

5. Find the “fields: “ section, uncomment it, and under it add the indented line “document_type: cloudian-
request-info”, so that the section looks like this

fields:

document_type: cloudian-request-info

6. Just above the “fields: “ section that you uncommented add the line "fields_under_root: true", so that the
result looks like this:

fields_under_root: true

fields:

document_type: cloudian-request-info

7. Find the “output.elasticsearch: ” section and comment it out along with any entries in that section. You
don’t need this section since you will have the log files sent to Logstash instead.

8. Find the “output.logstash: “ section and uncomment it. Also uncomment the line “#hosts: ["loc-
alhost:5044"]” under the “output.logstash: ” section and replace localhost with the IP address of the ELK
node:

hosts: ["<ELK_NODE_IP_ADDR>:5044"]

9. Save the configuration changes that you made in filebeat.yml.

To start Filebeat, run the following command:

sudo systemctl start filebeat

To have Filebeat start automatically on boot:

sudo systemctl enable filebeat

634

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis

10.4.3. Configuring Kibana for Custom Metrics Visualizations

Note The following instructions are intended only as an example, and the screen images that you see
here may not exactly match what you see in your version of Kibana.

1. Open up a browser that can access the ELK node’s IP address and enter the following:

http://<ELK_NODE_IP_ADDR>:5601/

You should see a page similar to this:

If you don’t see a page like this, then Logstash has not yet pushed an index to Elasticsearch, either
because of an installation error or because no requests have been made to your cluster yet.

2. Under the “Time Filter field name” drop-down select “@timestamp” and click Create.

10.4.3.1. Top 5 users in # of requests the last hour

1. To create custom metrics, go to “Visualize” in the sidebar, click Create a visualization, select “Data
Table”, and then select the “logstash-*” index. You should then be at a screen like this:

635

Chapter 10. Logging

2. At the top right of the screen, make sure the time setting is set to “Last 1 hour”. If not, click on it, then
select “Quick”, and then select “Last 1 hour” from the list of options.

3. Click Add a filter under the search bar, select the “@timestamp” field, select the “is between” operator,
enter “now-1h” in the “from” field, enter “now” in the “to” field, and then click Save:

4. Next, in the “buckets” section, click Split Rows, select “Terms” from the “Aggregation” drop-down, select
“contentAccessoruserID.keyword” from the “Field” drop-down, select “metric: Count” from the “Order By”
drop-down, select “Descending” from the “Order” drop-down, and finally set “Size” to “5”. Click the play
button at the top of the options and you should see a screen like this:

636

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis

5. Click Save in the top right of the page to save the visualization.

10.4.3.2. Top 5 client IPs in # of requests the last hour

1. Similarly to the last metric, go to “Visualize” in the sidebar, click Create a visualization, select “Data
Table”, and then select the “logstash-*” index. Again confirm the time setting is “Last 1 hour”, and again
create the “@timestamp” filter as explained in the previous section.

2. Next, in the “buckets” section, click “Split Rows”, select “Terms” from the “Aggregation” drop-down,
select “ipAddress.keyword” from the “Field” drop-down, select “metric: Count” from the “Order By” drop-
down, select “Descending” from the “Order” drop-down, and finally set “Size” to 5. Click the play button
at the top of the options and you should see a screen like this:

637

Chapter 10. Logging

3. Click Save in the top right of the page to save the visualization.

10.4.3.3. Top 5 PUT object sizes in the last hour

1. Similarly to the last metric, go to “Visualize” in the sidebar, click Create a visualization, select “Data
Table”, and then select the “logstash-*” index. Again confirm the time setting is “Last 1 hour”, and again
create the “@timestamp” filter as explained in the previous section.

2. We also have to add another filter for this visualization. Click Add a filter under the search bar, select
the “operation.keyword” field, select the “is one of” operator, enter “putObject” and “uploadPart” in “Val-
ues” and then click Save:

638

10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis

3. Next, in the “buckets” section, click “Split Rows”, select “Terms” from the “Aggregation” drop-down,
select “requestBodySize” from the “Field” drop-down, select “Custom Metric” from the “Order By” drop-
down, select “Max” from the new “Aggregation” drop-down, select “requestBodySize” from the new
“Field” drop-down, select “Descending” from the “Order” drop-down, and finally set “Size” to 5. Click the
play button at the top of the options and you should see a screen like this:

4. Click Save in the top right of the page to save the visualization.

639

Chapter 10. Logging

10.4.3.4. Dashboard

To view all of your saved visualizations in one place go to “Dashboard” and click Create a Dashboard. Click
the Add button at the top of the page, then click on each visualization you just created to add it to the dash-
board. Click Save at the top of the page. You should now see a screen like this:

10.5. Using the HSH to View Logs
If you are using the HyperStore Shell (HSH) to manage your HyperStore nodes, the HSH supports a command
for viewing HyperStore logs -- specifically, log files under the directory /var/log/cloudian.

To use the HSH to view HyperStore log files, first log into the Puppet master node (via SSH) as an HSH user.
Upon successful login the HSH prompt will appear as follows:

<username>@<hostname>$

For example:

sa_admin@hyperstore1$

To view a HyperStore log:

$ hslog /var/log/cloudian/<logfilename>

Note You must include the file path /var/log/cloudian/ -- not just the log file name.

640

10.5. Using the HSH to View Logs

For example:

$ hslog /var/log/cloudian/cloudian-admin.log

In the background this invokes the Linux command less to display the log file. Therefore you can use the stand-
ard keystrokes supported by less to navigate the display; for example:

l f key or Space bar -- Page down

l b key -- Page up

l Down arrow key or Enter -- Go down one line

l Up arrow key -- Go up one line

l <n>f key or <n>Space bar -- Go down <n> number of lines

l <n>b key -- Go up <n> number of lines

l /string Enter-- Search down for the specified string

l ?string Enter -- Search up for the specified string

l q key -- Quit the file display and return to the HSH prompt

For details about the logs you can view, see "HyperStore Logs" (page 605).

641

This page left intentionally blank

Chapter 11. Commands

11.1. hsstool
The HyperStore system includes its own cluster management utility called hsstool. This tool has functionality
that in many respects parallels the Cassandra utility nodetool, with the important distinction that hsstool applies
its operations to the HyperStore File System (HSFS) as well as to the Cassandra storage layer.

The hsstool utility is in the /opt/cloudian/bin directory of each HyperStore node. Because the HyperStore install-
ation adds /opt/cloudian/bin to each host's $PATH environment variable, you can run the hsstool utility directly
from any directory location on any HyperStore host.

The tool has the following basic syntax:

hsstool -h <host> [-p <port>] <command> [<command-options>]

l The <host> is the hostname or IP address of the HyperStore node on which to perform the operation.
Specify the actual hostname or IP address -- do not use "localhost". For most commands that only
retrieve information, the -h <host> argument is optional and (if not supplied) defaults to the hostname of
the host on which you are executing hsstool. For commands that impact system data or processes --
such as a repair or cleanup operation -- the -h <host> argument is mandatory. For detail see the descrip-
tions of the individual commands.

l The <port> is the HyperStore Service’s JMX listening port. If you do not supply the port number when
using hsstool, it defaults to 19082. There is no need to supply the port when using hsstool unless
you've configured your system to use a non-default port for the HyperStore Service's JMX listener. The
syntax summaries and examples in the documentation of individual commands omit the -p <port>
option.

l The hsstool options -h <host> and (if you use it) -p <port> must precede the <command> and the <com-
mand-options> on the command line. For example, do not have -h <host> come after the <command>.

l For best results when running hsstool on the command line, run the commands as root. While some
commands may work when run as a non-root user, others will return error responses.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) you can run hsstool from the HSH command line, with the
same capabilities and same syntax as if you were running it as root:

$ hsstool -h <host> [-p <port>] <command> [<command-options>]

All hsstool operations activity is logged in the cloudian-hyperstore.log file on the node to which you sent the
hsstool command.

For usage information type hsstool help or hsstool help <command>. The usage information that this returns
is not nearly as detailed as what's provided in this documentation, but it does provide basic information about
syntax and command options.

The table below lists the commands that hsstool supports. For command options and usage information,
click on a command name.

643

Chapter 11. Commands

Note All hsstool commands can be executed either on the command line or through the CMC’s Node
Advanced page. The documentation in this section shows the CMC interface for each command as
well as the command line syntax.

Command Type Command Purpose

Information Com-
mands

ring View vNode info for whole cluster

info View vNode and data load info for a physical node

status View summary status for whole cluster

opstatus View status of operations such as cleanup, repair, and rebalance

proactiverepairq View status of proactive repair queues

repairqueue View auto-repair schedule or enable/disable auto-repair

ls View vNode and data load info per mount point

whereis View storage location information for an S3 object

metadata View metadata for an S3 object

trmap View token range snapshot IDs or snapshot content

madd This is for internal use by the install script, or for use as directed
by Cloudian Support.

Maintenance Com-
mands

cleanup Clean a node of replicated data that doesn’t belong to it

cleanupec Clean a node of erasure coded data that doesn’t belong to it

autorepair In the CMC interface this invokes the repairqueue command

repair Repair the replicated data on a node

repairec Repair the erasure coded data in a data center

repaircassandra Repair only the Cassandra metadata on a node, not the object
data

rebalance Shift data load from your existing nodes to a newly added node

opctl List or stop all repair and cleanup operations currently running in
the region

11.1.1. hsstool cleanup
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 645)

l "Command/Response Example" (page 646)

l "When to Use hsstool cleanup" (page 647)

Use this hsstool command on a node when you want to identify and delete replica data that does not belong
on the node. Broadly, hsstool cleanup removes two classes of "garbage" data from a target node:

644

11.1. hsstool

l Data that belongs to a token range that the target node is no longer responsible for, as a result of a mod-
ified token range allocation within the cluster (as occurs when you add a new node).

l Data that should not be on the node even though the data falls within the token ranges that the node is
responsible for. This can occur, for example, if data from objects that have been deleted through the S3
interface (or the Admin API's POST bucketops/purge operation) has not yet been removed from disk by
the hourly batch delete job; or if an object delete request through the S3 interface succeeds for some
but not all of the object’s replicas.

By default hsstool cleanup performs both types of cleanups, but the command supports an -x option to perform
only the first type and a -no option to perform only the second type.

Note By default you can only run hsstool cleanup on one node at a time per data center. This limit is
configurable by the "max.cleanup.operations.perdc" (page 550) setting in hyperstore-serv-
er.properties.erb. If you want to raise this limit, consult with Cloudian Support first.

Note The system will not allow you to run hsstool cleanup on a node on which hsstool repair is cur-
rently running.

Note The hsstool cleanup operation will only clean objects whose Last Modified timestamp is older
than the interval set by the system configuration property hyperstore-server.properties: cleanup.ses-
sion.delete.graceperiod. By default this interval is one day. So by default no objects with Last Modified
timestamps within the past 24 hours will be deleted by hsstool cleanup.

11.1.1.1. Command Syntax

The hsstool cleanup command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool cleanup Parameters" (page 647).

hsstool -h <host> cleanup [allkeyspaces|nokeyspaces] [-n] [-l <true|false>]
[-b] [-x] [-no] [-a] [-c <true|false>] [-d <mountpoint>] [-vnode <token>] [-policy]
[-stop]

You can also run the hsstool cleanup command through the CMC UI:

645

Chapter 11. Commands

Note If you launch the operation through the CMC UI, you can track the operation progress through the
CMC's Operation Status page. This way of tracking operation progress is not supported if you launch
the operation on the command line. However, regardless of how you launch the operation you can peri-
odically check on its progress by using the hsstool opstatus command.

11.1.1.2. Command/Response Example

The example below shows a default run of cleanup, using no options. For description of a particular response
item, click on the response item; or for the full list of response item descriptions see "hsstool cleanup and
hsstool opstatus cleanup Response Items " (page 650).

hsstool -h cloudian-node1 cleanup

Executing cleanup. keyspaces=UserData deletedata=true logging=true deleteobject-without-

bucketinfo=false

check-protection=true deleteobject-without-bucketinfo=false

optype: CLEANUP cmdno#: 1 status: COMPLETED

arguments: deleteobject-without-bucketinfo=false check-protection=true deletedata=true

deleteobject-without-policy=false keyspaces=UserData logging=true delete-only-outofrange-

objects=false

no-delete-out-of-range=false

start: Thu May 18 05:13:50 PDT 2017

end: Thu May 18 05:13:50 PDT 2017

duration: 0.145 sec

progress percentage: 100%

cassandra cleanup time: 0.015 sec

task count: 2

completed count: 2

Number of files deleted count: 0

failed count: 0

skipped count: 2

646

11.1. hsstool

Note In the example above there is very little data in the system and so the operation completes
almost instantly. In a real-world environment this is a long-running operation and the command
response will not return until the operation completes. In the meanwhile you can track operation pro-
gress as described in the Note in the Command Format section above.

Note If you use the -n option when you run the cleanup command, one of the response items will be
"Number of files to be deleted count" rather than "Number of files deleted count".

11.1.1.3. When to Use hsstool cleanup

The operational procedure during which you would use hsstool cleanup are:

l "Restoring a Node That Has Been Offline" (page 453)

l "Delete a Storage Policy" (page 379)

Please refer to those procedures for step-by-step instructions, including the proper use of hsstool cleanup
within the context of the procedure.

You might also use hsstool cleanup at the end of the procedure for "Adding Nodes" (page 420). However,
using hsstool cleanup at the end of the procedure for Adding Nodes is necessary only if you do not use one of
the options that integrates cleanup tasks into the rebalance operation (the rebalance -cleanupfile option or
the rebalance -cleanup option). For more information on these rebalance options, see "hsstool rebalance
Parameters" (page 682).

If you do run hsstool cleanup at the end of the Adding Nodes procedure, use the cleanup options allkeyspaces,
-l, -x, -a, and -c. Note that the -a option applies the cleanup operation to erasure coded data as well as rep-
licated data. The system by default only allows you to run cleanup on one node at a time per data center. After
cleanup completes on one node, initiate cleanup on a next node, and continue in this way until all of your pre-
viously nodes have been cleaned.

11.1.1.4. hsstool cleanup Parameters

-h <host>

(Mandatory) Hostname or IP address of the node to clean.

Note In the CMC UI for this command this parameter is called "Target Node".

allkeyspaces | nokeyspaces

(Optional) You have three alternatives for choosing which Cassandra metadata keyspaces to clean up, while
also cleaning replicated S3 object data in the HyperStore File System (HSFS):

l Use allkeyspaces to clean up replicated S3 objects in the HSFS and also clean up all the Cassandra
keyspaces. Cassandra cleanup will be completed first, then HSFS replica cleanup. The Cassandra key-
spaces that will be cleaned are: UserData_<storage-policy-ID> keyspaces; AccountInfo; Reports; Mon-
itoring; and ECKeyspace. (For more information see the overview of Cassandra keyspaces for
HyperStore)

l Use nokeyspaces to clean up only replicated objects in the HSFS, and not any Cassandra keyspaces

647

Chapter 11. Commands

l If you specify neither allkeyspaces nor nokeyspaces then the default behavior is to clean up replicated
objects in the HSFS and also to clean the Cassandra UserData_<storage-policy-ID> keyspaces (which
store object metadata). Cassandra cleanup will be completed first, then HSFS replica cleanup.

-n

(Optional) Don’t actually delete anything. Instead, just do a dry run that identifies the replica data that doesn’t
belong to the node. If you use the -n option you must also:

l Use the nokeyspaces option. The ability to do a dry run without actually deleting data is supported only
for HSFS replica data. Therefore you must select the nokeyspaces option or else the cleanup run will
actually clean Cassandra keyspace data.

l Have cleanup operation logging turned on (as it is by default). See the description of the -l option
below.

Note If you use the -n option when you run the cleanup command, one of the response items will be
"Number of files to be deleted count". The specific objects identified for deletion will be listed in the
cleanup log file as in the -l option description below.

-l <true|false>

(Optional, defaults to true) Write to a log file a list of all the objects that were identified as not belonging to the
node. Defaults to true, so you only need to specify the -l option if you do not want cleanup object logging (in
which case you’d specify -l false).

If you use logging without using the -n option, then the list in the log file is a list of all objects that were deleted
by the cleanup operation.

If you use logging in combination with the -n option, then the list in the log file is a list of HSFS replica objects
that will be deleted if you run cleanup again without the -n option.

The log is named cloudian-hyperstore-cleanup.log and is written into the Cloudian HyperStore log directory of
the target host. Activity associated with a particular instance of a cleanup command run is marked with a
unique command number.

-b

(Optional) Delete any objects that are not associated with a valid S3 bucket. If you use this option the cleanup
operation will check each object to verify that it is part of a bucket, and delete any objects that are not part of a
bucket. In typical cleanup scenarios it’s not necessary to use this option.

-x

(Optional) Remove only data that belongs to token ranges that the target node is not responsible for. This is
the recommended option to use when you are cleaning the other nodes after adding a new node to a cluster.
In this circumstance, using the -x option makes the cleanup more efficient and faster.

-no

(Optional) Ignore (do not clean) data that belongs to token ranges that the target node is not responsible for.
This setting has the cleanup operation focus on deleting object data for which there is no corresponding object
metadata. This is an efficient way to clean up garbage data after you have deleted a very large number of
objects (in which case the standard hourly batch delete process may be taking too long to free up disk space).
Especially in the case where you have recently added nodes and the cluster is still rebalancing, ignoring out-
of-range data during cleanup enables the cleanup operation to more efficiently remove garbage blob data after

648

11.1. hsstool

you have deleted a large number of objects through the S3 interface or the Admin API (POST bucketops/purge
operation).

Note that the -no option is the opposite of the -x option, and therefore you cannot use those two options in com-
bination.

Note The CMC interface does not support the -no option. This option is supported only on the com-
mand line.

-a

(Optional) Clean up garbage replica data and then also clean up garbage erasure coded data. When you use
the -a option, as soon as the hsstool cleanup operation completes on a node an hsstool cleanupec operation
is automatically run on the node as well. This is a convenient option if you are cleaning a node that is storing
both replica data and erasure coded data.

Do not use this option if you are using either the -d <mount-point> option or the -vnode <token> option.

-c <true|false>

(Optional, defaults to true) If true, then before removing an object replica because it does not belong to the
token ranges that the target node is responsible for, the system will first check to make sure that at least one
replica of the object exists on the correct endpoint nodes within in the cluster. If no other replicas exist, then the
out-of-range replica will be left in place on the node that's being cleaned and an ERROR level message will be
written to the HyperStore Service application log (which will also result in the triggering of an Alert in the CMC,
if you are using the default alert rules).

This safety feature guards against the possibility of a cleanup operation deleting an incorrectly placed replica
when no other replicas of the object exist in any of the correct locations within the cluster. The trade-off is that
the cleanup operation will take longer if this approach is used.

This safety feature defaults to true, so there's no need to use the -c option unless you want to specify -c false in
order to skip this safety check.

-d <mount-point>

(Optional) Clean only the specified HyperStore data mount point (for example /cloudian1). This option may be
useful if you want to delete garbage data from a particular disk, in an effort to free up space on the disk.

-vnode <token>

(Optional) Clean only those objects mapped to the specified vNode (identified by its token such as
18315119863185730105557340630830311535). This option may be useful if during a full node cleanup (or a
disk-specific cleanup), the operation failed for a particular vNode. In that case you can then use the -vnode
<token> option to retry cleaning just that one vNode.

-policy

(Optional) By default cleanup will evaluate and clean only data associated with storage policies that currently
exist in your system. It will not evaluate or delete data associated with storage policies that you've deleted from
your system. If you want cleanup to also delete from the target node all data associated with storage policies
that you've deleted from the system, use the -policy option.

649

Chapter 11. Commands

Note Before deleting a storage policy you are required to delete any buckets and objects that are
stored under that policy. However, the way that object deletion works in HyperStore is that the system
deletes the object metadata immediately but does not delete the actual object data until the next hourly
run of the object deletion cron job. Meanwhile, for storage policy deletion, the full deletion of the
metadata associated with the policy is implemented by a daily cron job. Depending on when you
delete buckets and objects associated with a storage policy and when you delete the policy itself, the
timing may be such that the daily storage policy deletion cron job executes before some of the object
data associated with the policy gets deleted by the hourly object deletion cron job. It's this residual
"garbage data" that will be detected and removed if you use the -policy option when running cleanup
on a node.

Note The CMC interface does not support the -policy option. This option is supported only on the com-
mand line.

-stop

(Optional) Use hsstool -h <host> cleanup -stop to terminate an in-progress cleanup operation on the specified
node.

You can subsequently use the "hsstool opstatus" (page 666) command to confirm that the cleanup has been
stopped (status = TERMINATED) and to see how much cleanup progress had been made before the stop.

If you terminate an in-progress cleanup operation you will not subsequently be able to resume that operation
from the point at which it stopped. Instead, when you want to clean the node you can run a regular full cleanup
operation.

11.1.1.5. hsstool cleanup and hsstool opstatus cleanup Response Items

optype

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, FAILED, or TERMINATED

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation. For high-level information
about object cleanup successes and failures (if any), see the other fields in the cleanup response.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the cleanup response. For details on any FAILED operation you can also scan cloudian-hyper-
store.log for error messages from the period during which the operation was running.

A TERMINATED status means that the cleanup run was terminated by an operator, using cleanup -stop.

arguments

Value of the command arguments used for the run, if any. The status results use internal system names for the

650

11.1. hsstool

arguments which may not exactly match the command-line arguments that are defined in a command’s syntax,
but the relationships should be clear.

start

Start time of the operation.

end, duration

End time and duration of a completed operation.

estimated completion time, time remaining

Estimated completion time and estimated time remaining for an in-progress operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the percentage of work that has been
completed so far.

cassandra cleanup time

The time spent cleaning metadata in Cassandra.

task count

The number of object replicas on the node, which the cleanup operation must evaluate to determine whether
they correctly belong on the node.

completed count

The number of object replicas that the cleanup operation evaluated to determine whether they correctly belong
on the node.

Number of files deleted count

The number of object replicas that the cleanup operation successfully deleted from the node because they
don't belong on the node.

Note If you use the -n option when you run the cleanup command, this response item will be "Number
of files to be deleted count" rather than "Number of files deleted count".

failed count

The number of object replicas that the cleanup operation tried to delete (because they don't belong on the
node), but failed.

skipped count

The number of object replicas that the cleanup operation left on the node because they belong on the node.

11.1.2. hsstool cleanupec
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 652)

651

Chapter 11. Commands

l "Command/Response Example" (page 653)

l "When to Use hsstool cleanupec" (page 654)

Note If you want to clean replica data and also erasure coded data on a node, use hsstool cleanup
with the -a option. If you want to clean only erasure coded data on a node, use hsstool cleanupec as
described below.

Use this hsstool command on a node when you want to identify and delete erasure coded data that does not
belong on the node. Broadly, hsstool cleanupec removes two classes of "garbage" data from a target node:

l Data that belongs to a token range that the target node is no longer responsible for, as a result of a mod-
ified token range allocation within the cluster (as occurs when you add a new node).

l Data that should not be on the node even though the data falls within the token ranges that the node is
responsible for. This can occur, for example, if data from objects that have been deleted through the S3
interface (or the Admin API's POST bucketops/purge operation) has not yet been removed from disk by
the hourly batch delete job; or if an object delete request through the S3 interface succeeds for some
but not all of the object’s replicas.

By default hsstool cleanupec performs both types of cleanups, but the command supports an -x option to per-
form only the first type and a -no option to perform only the second type.

Note By default you can only run hsstool cleanupec on one node at a time per data center. This limit is
configurable by the "max.cleanup.operations.perdc" (page 550) setting in hyperstore-serv-
er.properties.erb. If you want to raise this limit, consult with Cloudian Support first.

Note The system will not allow you to run hsstool cleanupec on a node on which hsstool repairec is
currently running.

Note The hsstool cleanupec operation will only clean objects whose Last Modified timestamp is older
than the interval set by the system configuration property hyperstore-server.properties: cleanup.ses-
sion.delete.graceperiod. By default this interval is one day. So by default no objects with Last Modified
timestamps within the past 24 hours will be deleted by hsstool cleanupec.

11.1.2.1. Command Syntax

The hsstool cleanupec command line syntax is as follows. For description of a particular parameter, click on
the parameter; or for the full list of parameter descriptions see "hsstool cleanupec Parameters" (page 654).

hsstool -h <host> cleanupec [-n] [-l <true|false>] [-b] [-x] [-no]
[-c <true|false>] [-d <mountpoint>] [-vnode <token>] [-policy] [-stop]

You can also run the hsstool cleanupec command through the CMC UI:

652

11.1. hsstool

Note If you launch the operation through the CMC UI, you can track the operation progress through the
CMC's Operation Status page. This way of tracking operation progress is not supported if you launch
the operation on the command line. However, regardless of how you launch the operation you can peri-
odically check on its progress by using the hsstool opstatus command.

11.1.2.2. Command/Response Example

The example below shows a default run of cleanupec, using no options. For description of a particular
response item, click on the response item; or for the full list of response item descriptions see "hsstool cleanu-
pec and hsstool opstatus cleanupec Response Items" (page 656).

hsstool -h cloudian-node1 cleanupec

Executing cleanupec. deleteobject-without-bucketinfo=false check-protection=true deletedata=true

logging=true

delete-only-outofrange-objects=false

optype: CLEANUPEC cmdno#: 1 status: COMPLETED

arguments: deleteobject-without-bucketinfo=false check-protection=true deletedata=true logging=true

delete-only-outofrange-objects=false no-delete-out-of-range=false

start: Thu May 18 05:14:18 PDT 2017

end: Thu May 18 05:14:18 PDT 2017

duration: 0.011 sec

progress percentage: 100%

task count: 0

completed count: 0

Number of files deleted count: 0

failed count: 0

skipped count: 0

Note In the example above there is very little data in the system and so the operation completes
almost instantly. In a real-world environment this is a long-running operation and the command

653

Chapter 11. Commands

response will not return until the operation completes. In the meanwhile you can track operation pro-
gress as described in the Note in the Command Format section above.

Note If you use the -n option when you run the cleanupec command, one of the response items will be
"Number of files to be deleted count" rather than "Number of files deleted count".

11.1.2.3. When to Use hsstool cleanupec

If you have erasure coded data in your HyperStore system, the operational procedure during which you would
use hsstool cleanup are:

l "Restoring a Node That Has Been Offline" (page 453)

l "Delete a Storage Policy" (page 379)

Please refer to those procedures for step-by-step instructions, including the proper use of hsstool cleanupec
within the context of the procedure.

Note It’s OK for hsstool cleanupec to be running on multiple nodes in parallel. To do so, you need to
initiate the cleanups one node at a time, but you don’t need to wait for hsstool cleanupec to complete
on one node before starting it on another node.

Note The hsstool cleanupec operation will only clean objects whose Last Modified timestamp is older
than the interval set by the system configuration property hyperstore-server.properties: cleanup.ses-
sion.delete.graceperiod. By default this interval is one day. So by default no objects with Last Modified
timestamps within the past 24 hours will be deleted by hsstool cleanupec.

11.1.2.4. hsstool cleanupec Parameters

-h <host>

(Mandatory) Hostname or IP address of the node to clean.

Note In the CMC UI for this command this parameter is called "Target Node".

-n

(Optional) Don’t actually delete anything. Instead, just do a dry run that identifies the erasure coded data that
doesn’t belong to the node. If you use the -n option you must also have cleanup operation logging turned on
(as it is by default). See the description of the -l option below.

Note If you use the -n option when you run the cleanupec command, one of the response items will be
"Number of files to be deleted count". The specific objects identified for deletion will be listed in the
cleanup log file as in the -l option description below.

-l <true|false>

654

11.1. hsstool

(Optional, defaults to true) Write to a log file a list of all the objects that were identified as not belonging to the
node. Defaults to true, so you only need to specify the -l option if you do not want cleanup object logging (in
which case you’d specify -l false).

If you use logging without using the -n option, then the list in the log file is a list of all objects that were deleted
by the cleanupec operation.

If you use logging in combination with the -n option, then the list in the log file is a list of objects that will be
deleted if you run cleanupec again without the -n option.

The log is named cloudian-hyperstore-cleanup.log and is written into the Cloudian HyperStore log directory of
the target host. Activity associated with a particular instance of a cleanupec command run is marked with a
unique command number.

-b

(Optional) Delete any objects that are not associated with a valid S3 bucket. If you use this option the cleanup
operation will check each object to verify that it is part of a bucket, and delete any objects that are not part of a
bucket. In typical cleanup scenarios it’s not necessary to use this option.

-x

(Optional) Remove only data that belongs to token ranges that the target node is not responsible for. This is
the recommended option to use when you are cleaning the other nodes after adding a new node to a cluster.
In this circumstance, using the -x option makes the cleanup more efficient and faster.

-no

(Optional) Ignore (do not clean) data that belongs to token ranges that the target node is not responsible for.
This setting has the cleanup operation focus on deleting object data for which there is no corresponding object
metadata. This is an efficient way to clean up garbage data after you have deleted a very large number of
objects (in which case the standard hourly batch delete process may be taking too long to free up disk space).
Especially in the case where you have recently added nodes and the cluster is still rebalancing, ignoring out-
of-range data during cleanup enables the cleanup operation to more efficiently remove garbage blob data after
you have deleted a large number of objects through the S3 interface or the Admin API (POST bucketops/purge
operation).

Note that the -no option is the opposite of the -x option, and therefore you cannot use those two options in com-
bination.

Note The CMC interface does not support the -no option. This option is supported only on the com-
mand line.

-c <true|false>

(Optional, defaults to true) If true, then before removing an object fragment because it does not belong to the
token ranges that the target node is responsible for, the system will first check to make sure that all k+m frag-
ments of the object exist on the correct endpoint nodes within in the cluster. If fewer than k+m fragments exist,
then the out-of-range fragment will be left in place on the node that's being cleaned and an ERROR level mes-
sage will be written to the HyperStore Service application log (which will also result in the triggering of an Alert
in the CMC, if you are using the default alert rules).

This safety feature guards against the possibility of a cleanup operation deleting an incorrectly placed fragment
when fewer than k+m fragments of the object exist within the cluster. The trade-off is that the cleanup operation
will take longer if this approach is used.

655

Chapter 11. Commands

This safety feature defaults to true, so there's no need to use the -c option unless you want to specify -c false in
order to skip this safety check.

-d <mount-point>

(Optional) Clean only the specified HyperStore data mount point (for example /cloudian1). This option may be
useful if you want to delete garbage data from a particular disk, in an effort to free up space on the disk.

-vnode <token>

(Optional) Clean only those objects mapped to the specified vNode (identified by its token such as
18315119863185730105557340630830311535). This option may be useful if during a full node cleanup (or a
disk-specific cleanup), the operation failed for a particular vNode. In that case you can then use the -vnode
<token> option to retry cleaning just that one vNode.

-policy

(Optional) By default cleanupec will evaluate and clean only data associated with storage policies that cur-
rently exist in your system. It will not evaluate or delete data associated with storage policies that you've
deleted from your system. If you want cleanupec to also delete from the target node all data associated with
storage policies that you've deleted from the system, use the -policy option.

Note Before deleting a storage policy you are required to delete any buckets and objects that are
stored under that policy. However, the way that object deletion works in HyperStore is that the system
deletes the object metadata immediately but does not delete the actual object data until the next hourly
run of the object deletion cron job. Meanwhile, for storage policy deletion, the full deletion of the
metadata associated with the policy is implemented by a daily cron job. Depending on when you
delete buckets and objects associated with a storage policy and when you delete the policy itself, the
timing may be such that the daily storage policy deletion cron job executes before some of the object
data associated with the policy gets deleted by the hourly object deletion cron job. It's this residual
"garbage data" that will be detected and removed if you use the -policy option when running cleanup
on a node.

Note The CMC interface does not support the -policy option. This option is supported only on the com-
mand line.

-stop

(Optional) Use hsstool -h <host> cleanupec -stop to terminate an in-progress cleanupec operation on the spe-
cified node.

You can subsequently use the "hsstool opstatus" (page 666) command to confirm that the cleanupec oper-
ation has been stopped (status = TERMINATED) and to see how much progress had been made before the
stop.

If you terminate an in-progress cleanupec operation you will not subsequently be able to resume that operation
from the point at which it stopped. Instead, when you want to clean the node you can run a regular full cleanu-
pec operation.

11.1.2.5. hsstool cleanupec and hsstool opstatus cleanupec Response Items

optype

656

11.1. hsstool

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, FAILED, or TERMINATED

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation. For high-level information
about object cleanup successes and failures (if any), see the other fields in the cleanup response.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the cleanup response. For details on any FAILED operation you can also scan cloudian-hyper-
store.log for error messages from the period during which the operation was running.

A TERMINATED status means that the clean up run was terminated by an operator, using cleanupec -stop.

arguments

Value of the command arguments used for the run, if any. The status results use internal system names for the
arguments which may not exactly match the command-line arguments that are defined in a command’s syntax,
but the relationships should be clear.

start

Start time of the operation.

end, duration

End time and duration of a completed operation.

estimated completion time, time remaining

For an INPROGRESS operation: the estimated completion time of the operation, and estimated time remaining
to complete the operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the percentage of work that has been
completed so far.

cassandra cleanup time

The time spent cleaning metadata in Cassandra.

task count

The number of erasure coded fragments on the node, which the cleanup operation must evaluate to determine
whether they correctly belong on the node.

completed count

The number of erasure coded fragments that the cleanup operation evaluated to determine whether they cor-
rectly belong on the node.

Number of files deleted count

The number of erasure coded fragments that the cleanup operation successfully deleted from the node

657

Chapter 11. Commands

because they don't belong on the node.

Note If you use the -n option when you run the cleanupec command, this response item will be "Num-
ber of files to be deleted count" rather than "Number of files deleted count".

failed count

The number of erasure coded fragments that the cleanup operation tried to delete (because they don't belong
on the node), but failed.

skipped count

The number of erasure coded fragments that the cleanup operation left on the node because they belong on
the node.

11.1.3. hsstool info
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 658)

l "Command/Response Example" (page 659)

This hsstool command returns virtual node (token range) information and data load information for a specified
physical node within a storage cluster. The return includes a list of virtual nodes (tokens) assigned to the phys-
ical node.

11.1.3.1. Command Syntax

The hsstool info command line syntax is as follows.

hsstool [-h <host>] info

You can also run the hsstool info command through the CMC UI:

658

11.1. hsstool

11.1.3.2. Command/Response Example

The example below shows an excerpt from a response to the info command. The command returns information
about a specific node, "cloudian-node1". The node’s token (vNode) list is sorted in ascending order. For
description of a particular response item, click on the response item; or for the full list of response item descrip-
tions see "hsstool info Response Items" (page 659).

hsstool -h cloudian-node1 info

Cloudian : 6.1

Cloudian Load : 1.12 TB / 42.3 TB (2.6%)

Uptime (seconds) : 230681

Token : 18315119863185730105557340630830311535

Token : 21637484670727122681279388562251225465

Token : 23572420191725176386844252744138398599

Token : 25984083804572739863688602357781003456

Token : 32049925251885239737462386844023262134

Token : 34776961444994655981702644433932691872

Token : 39011904510130716900391258282509705889

...

...

Token : 141833557733030600282377220263378688424

Cassandra : 2.0.11

Cassandra Load : 1.9 MB

Data Center : DC1

Rack : RAC1

Note To see which tokens are on which disks on a node, use hsstool ls.

11.1.3.3. hsstool info Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

11.1.3.4. hsstool info Response Items

Cloudian

Cloudian HyperStore software version installed on the node.

Cloudian Load

The total volume of S3 object data (replicas and/or erasure coded fragments) stored in the HyperStore File Sys-
tem on the node, across all HyperStore data disks combined.

This field also shows the total volume of disk space allocated for S3 object storage on the node (the total capa-
city of HyperStore data disks combined); and the percentage of used volume over total capacity.

659

Chapter 11. Commands

Uptime

The number of seconds that the HyperStore Service has been running since its last start.

Token

A storage token assigned to the node. Tokens are randomly generated from an integer token space ranging 0
to 2127 -1, and distributed around the cluster. Each token is the top of a token range that constitutes a virtual
node (vNode). Each vNode's token range spans from the next-lower token (exclusive) in the cluster up to its
own token (inclusive). A physical node's set of tokens/vNodes determines which S3 object data will be stored
on the physical node.

For more background information see "How vNodes Work" (page 42).

Cassandra

Cassandra software version installed on the node.

Cassandra Load

Cassandra storage load (quantity of data stored in Cassandra) on the node. There will be some Cassandra
load even if all S3 object data is stored in the HyperStore File System. For example, Cassandra is used for stor-
age of object metadata and service usage data, among other things.

Data Center

Data center in which the node resides.

Rack

Rack in which the node resides.

11.1.4. hsstool ls
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 660)

l "Command/Response Example " (page 661)

This hsstool command returns a node’s list of HyperStore data mount points, the list of storage tokens currently
assigned to each mount point on the node, and the current disk usage per mount point.

11.1.4.1. Command Syntax

The hsstool ls command line syntax is as follows.

hsstool [-h <host>] ls

You can also run the hsstool ls command through the CMC UI:

660

11.1. hsstool

11.1.4.2. Command/Response Example

The example below shows a response to an hsstool ls command. The command response snippet below is
truncated; the actual response would list all the tokens assigned to each HyperStore data directory mount point
on the node. For description of a particular response item, click on the response item; or for the full list of
response item descriptions see "hsstool ls Response Items" (page 662).

hsstool -h cloudian-node1 ls

device mount-point total(KB) available(KB) status

/dev/sdf1 /cassandra 226955412 225396540 OK

/dev/sda1 /cloudian1 3784528904 2992343200 OK

/dev/sdb1 /cloudian2 3784528904 2864827364 OK

/dev/sdc1 /cloudian3 3784528904 2932836832 OK

/dev/sdd1 /cloudian4 3784528904 3244435388 OK

/cloudian1/hsfs:

119513460404589000549564154532759249912 2jf0OjEMI1ffVOT7No4LU0

166983878496718254895534451073709499214 3p37rkVSXWvrnGkGrwNh5a

14669198764159070178516665850483502746 Kp70oWCXwTDVyCuWhyl8U

...

11.1.4.3. hsstool ls Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

661

Chapter 11. Commands

11.1.4.4. hsstool ls Response Items

device

Device name of the disk drive

mount-point

Mount point of the device

total (KB)

Total capacity of the disk, in KBs

available (KB)

Remaining available capacity of the disk, in KBs

status

Disk status: either OK or ERROR or DISABLED. For more information on the disk's status see the CMC's Node
Status page, Disk Detail Info section.

token list

For each HyperStore data mount point, the lower section of the ls command response lists all the storage
tokens currently assigned to that mount point. Displayed alongside the decimal version of each storage token
is the base62 encoding of the token. In the HyperStore File System, base62 encoded tokens will be part of the
directory structure for stored S3 object data. For example, under directory <mount-point>/hsfs/<base62-
encoded-tokenX>/... would be the S3 object replica data associated with the token range for which tokenX is
the upper bound. For more information on S3 storage directory structure see "HyperStore Service and the
HSFS" (page 23).

11.1.5. hsstool metadata
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 662)

l "Command/Response Example" (page 663)

This hsstool command returns metadata for a specified S3 object, such as the object size and the date-time
that the object was last accessed by an S3 client application.

11.1.5.1. Command Syntax

The hsstool metadata command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool metadata Parameters" (page 664).

hsstool [-h <host>] metadata <bucket>/<object> [-v <version>]

You can also run the hsstool metadata command through the CMC UI:

662

11.1. hsstool

11.1.5.2. Command/Response Example

The metadata command example below returns the metadata for the specified object. For description of a par-
ticular response item, click on the response item; or for the full list of response item descriptions see "hsstool
metadata Response Items" (page 664).

hsstool -h cloudian-node1 metadata hsfsbn/so

Key: hsfsbn/so

Policy ID: 43c3e277945403c98e5b8f9441d85e16

Version: null

Compression: NONE

Create Time: 2020-07-02T06:16:54.681Z

Last Modified: 2020-07-02T06:16:54.681Z

Last Access Time: 2020-07-02T06:16:54.681Z

Digest: 7bcec86b667ff2be2982f637b67e4942

Size: 1048576

Region: region1

CLOUDIAN_METADATA metadata: {"Path": "hsfsbn/so", "Type": "FILE", "Etag":

"7bcec86b667ff2be2982f637b67e4942", "Locale": null, "GroupId": "CloudianTest1","UserId":

"77600d5e7dfb7e0f46a198fbded86fe3", "CreatorId": "77600d5e7dfb7e0f46a198fbded86fe3",

"Ttl": null, "CreateTime": "2020-07-02T06:16:54.681Z", "ModifyTime": null, "ContentType":

null, "HttpHeaders": null, "Size": 1048576, "UserMetadata": null, "Part": 0, "Acl": null,

"Version": null, "DeleteMarker": false, "Uri": "file://", "PartSize": 10485760, "UploadId":

null, "PartInfo": null, "Policy": null, "PublicUrl": null, "HyperStoreVersion": "4",

"BlobVersion": null, "TotalSize": "1048578", "websiteIndex": null, "websiteError": null,

"websiteRedirect": null, "encryptionKey": null, "encryptionInitVec": null, "Lifecycle": null,

"Compression": null, "LastAccessTime": null, "TransitionState": null, "Replication": null,

"ReplicationState": null, "Tagging": null, "WriteTime": "1593670614681614929-0A140151",

"DeleteMarkerExpired": null, "TransitionedVersion": null, "EventNotification": null,

"chunkLevelHashValues": null, "AccumulateSize": null, "LockInfo": null}

CLOUDIAN_OBJMETADATA metadata: {"Path": "hsfsbn/so", "Type": "FILE", "Etag":

"7bcec86b667ff2be2982f637b67e4942", "Locale": null, "GroupId": "CloudianTest1",

663

Chapter 11. Commands

"UserId": "user1", "CreatorId": "77600d5e7dfb7e0f46a198fbded86fe3", "Ttl":

"CHUNK_SIZE=10485760", "CreateTime": "2020-07-02T06:16:54.681Z", "ModifyTime": null,

"ContentType": "application/octet-stream", "HttpHeaders": "", "Size": 1048576,

"UserMetadata": "", "Part": 0, "Acl": null, "Version": null, "DeleteMarker": null,

"Uri": "file://", "PartSize": 10485760, "UploadId": null, "PartInfo": null, "Policy":

null, "PublicUrl": null, "HyperStoreVersion": "4", "BlobVersion": null, "TotalSize":

"1048578", "websiteIndex": null, "websiteError": null, "websiteRedirect": null,

"encryptionKey": null, "encryptionInitVec": null, "Lifecycle": null, "Compression":

null, "LastAccessTime": null, "TransitionState": null, "Replication": null,

"ReplicationState": null, "Tagging": null, "WriteTime": "1593670614681614929-0A140151",

"DeleteMarkerExpired": null, "TransitionedVersion": null, "EventNotification": null,

"chunkLevelHashValues": [{"bytes": "{ÎÈkf\u007Fò¾)\u0082ö7¶~IB"}], "AccumulateSize":

1048576, "LockInfo": null}

11.1.5.3. hsstool metadata Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

<bucket>/<object>

(Mandatory) Bucket name, followed by a forward slash, followed by the full object name (including "folder
path", if any). For example,mybucket/file1.txt or mybucket/Videos/Vacation/Italy_2016-06-27.mpg.

If the object name has spaces in it, enclose the bucket/object name pair in quotes. For example, "mybucket/big
document.doc".

The bucket/object name is case-sensitive.

Note In the CMC UI implementation of this command, you enter the bucket name and the full object
name (including folder path) in separate fields. For example, bucket name mybucket and full object
name Videos/Vacation/Italy_2016-06-27.mpg.

-v <version>

(Optional) Version ID of the object, if versioning has been used for the object. Versions are identified by
timeuuid values in hexadecimal format (for example, "fe1be647-5f3b-e87f-b433-180373cf31f5"). If versioning
has been used for the object but you do not specify a version number in this field, the operation returns
metadata for the most recent version of the object.

11.1.5.4. hsstool metadata Response Items

Key

Key that uniquely identifies the S3 object, in format <bucketname>/<objectname>. For example, buck-
et1/Documents/Meetings_2016-06-27.docx.

PolicyID

664

11.1. hsstool

System-generated identifier of the storage policy that applies to the bucket in which this object is stored.

Version

Object version, if versioning has been used for the object. Versions are identified by timeuuid values in hexa-
decimal format. If versioning has not been used for the object, the Version field displays "Null".

Compression

Compression type applied to the object, if any.

Create Time

Timestamp for the original creation of the object. Format is ISO 8601 and the time is in Coordinated Universal
Time (UTC).

Last Modified

Timestamp for last modification of the object. Format is ISO 8601 and time is in UTC.

Last Access Time

Timestamp for last access of the object. An object’s Last Access Time is updated if the object is accessed either
for retrieval (GET or HEAD) or modification (PUT/POST/Copy). Format is ISO 8601 and time is in UTC.

Digest

MD5 digest of the object. This will be a 32 digit hexadecimal number. This digest is used in a variety of oper-
ations including data repair.

Size

The object’s size in bytes.

Region

The HyperStore service region in which the object is stored.

CLOUDIAN_METADATA and CLOUDIAN_OBJMETADATA metadata

This is additional raw metadata for the object from the Cassandra CLOUDIAN_METADATA column family (in
which object metadata is organized per bucket) and CLOUDIAN_OBJMETADATA column family (in which
object metadata is organized per object). This raw object metadata may be useful if you are working Cloudian
Support to troubleshoot an issue in regard to the object.

Note There is overlap in the content of these two sets of raw object metadata.

11.1.6. hsstool opctl
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 666)

l "Command/Response Examples " (page 666)

665

Chapter 11. Commands

This hsstool command returns a list of all hsstool repair, hsstool repairec, hsstool cleanup, and hsstool
cleanupec operations currently running in a service region. You can also use the command to stop all those
in-progress operations.

11.1.6.1. Command Syntax

The hsstool opctl command line syntax is as follows. For description of a particular parameter, click on the para-
meter; or for the full list of parameter descriptions see "hsstool opctl Parameters" (page 666).

hsstool -h <host> opctl [-l] [-stop]

With this command you must use either the -l option or the -stop option ("hsstool opctl" by itself doesn't do any-
thing).

Note The hsstool opctl command is not supported in the CMC UI.

11.1.6.2. Command/Response Examples

The example below shows the responses to hsstool opctl commands. The first command lists the in-progress
repair and cleanup operations in the cluster (in this example only a replica repair operation is in progress). The
second command stops the in-progress operation(s).

hsstool -h cloudian-node1 opctl -l

10.10.0.184:

REPAIR: rebuild=false,keyspaces=nokeyspaces,max-modified-ts=1526942350092,primary-range=false,

min-modified-ts=0,logging=true,full-repair=true,check-metadata=true,cmdno=1,merkletree=true,

computedigest=false

hsstool -h cloudian-node1 opctl -stop

Aborted REPAIR on 10.10.0.184

11.1.6.3. hsstool opctl Parameters

-h <host>

(Mandatory) Hostname or IP address of the node to which to submit the command. This can be any node in the
service region. The command will apply to all nodes in the service region.

-l

(Optional) List all in-progress repair, repairec, cleanup, and cleanupec operations in the service region.

-stop

(Optional) Terminate all in-progress repair, repairec, cleanup, and cleanupec operations in the service region.

11.1.7. hsstool opstatus
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 667)

666

11.1. hsstool

l "Command/Response Examples" (page 668)

This hsstool command returns the status of the most recent runs of repair, cleanup, rebalance, or decom-
mission operations that have been performed on a specified node. For each operation type:

l If a run of the operation is in progress on the node, then that’s the run for which status is returned.

l If the operation is not currently in progress on the node, then status is returned for the most recent run
of that operation on the node, in the time since the last restart of the node.

For checking the status of repair runs other than the most recent run, opstatus also supports a command line
option to return a 90-day history of repairs performed on the target node.

Note For operations that you've launched through the CMC UI, a convenient way to check operation
status is through the CMC's Operation Status page. This page does not report on operations that
you've launched on the command line -- for such operations hsstool opstatus is your only option for
checking status.

11.1.7.1. Command Syntax

The hsstool opstatus command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool opstatus Parameters" (page 671).

hsstool [-h <host>] opstatus [<op-type>] [-a] [-q history]

You can also run the hsstool opstatus command through the CMC UI:

667

Chapter 11. Commands

11.1.7.2. Command/Response Examples

opstatus for cleanup and cleanupec

For description of a particular response item, click on the response item; or for the full list of response item
descriptions see "hsstool cleanup and hsstool opstatus cleanup Response Items " (page 650) and
"hsstool cleanupec and hsstool opstatus cleanupec Response Items" (page 656).

hsstool -h cloudian-node1 opstatus cleanup

optype: CLEANUP cmdno#: 1 status: COMPLETED

arguments: deleteobject-without-bucketinfo=false check-protection=true deletedata=true

deleteobject-without-policy=false keyspaces=UserData logging=true delete-only-outofrange-

objects=false

start: Thu May 18 05:13:50 PDT 2017

end: Thu May 18 05:13:50 PDT 2017

duration: 0.145 sec

progress percentage: 100%

cassandra cleanup time: 0.015 sec

task count: 2

completed count: 2

deleted count: 0

failed count: 0

skipped count: 2

hsstool -h cloudian-node1 opstatus cleanupec

optype: CLEANUPEC cmdno#: 1 status: COMPLETED

arguments: deleteobject-without-bucketinfo=false check-protection=true deletedata=true logging=true

delete-only-outofrange-objects=false

start: Thu May 18 05:14:18 PDT 2017

end: Thu May 18 05:14:18 PDT 2017

duration: 0.011 sec

progress percentage: 100%

task count: 0

completed count: 0

deleted count: 0

failed count: 0

skipped count: 0

Note For in-progress operations, rather than an end time and duration the opstatus response will show
an estimated completion time and estimated time remaining.

opstatus for repair and repairec

For description of a particular response item, click on the response item; or for the full list of response item
descriptions see "hsstool repair and hsstool opstatus repair Response Items" (page 692) and "hsstool
repairec and hsstool opstatus repairec Response Items" (page 704).

hsstool -h cloudian-node1 opstatus repair

optype: REPAIR cmdno#: 1 status: COMPLETED

arguments: keyspaces=UserData max-modified-ts=1495109681947 primary-range=false min-modified-ts=0

668

11.1. hsstool

logging=true check-metadata=true merkletree=true computedigest=false

operation ID: ddec91f8-0b56-1149-bd85-5254005d772d

start: Fri Dec 08 05:14:42 PDT 2017

end: Fri Dec 08 05:14:50 PDT 2017

duration: 8.107 sec

progress percentage: 100%

total range count: 3

executed range count: 3

keyspace count: 1

repair file count: 0

failed count: 0

repaired count: 0

pr queued count: 0

completed count: 3

total bytes streamed: 0

scan time: 0.3685

stream time: 0.0

hsstool -h cloudian-node1 opstatus repairec

optype: REPAIREC cmdno#: 1 status: COMPLETED

arguments: rebuild=false mountPoint=null logging=true range=null cmdno=1 computedigest=false

operation ID: 06186b78-1bec-1be0-a6a5-026a20c18bd8

start: Thu Sep 05 06:58:32 UTC 2019

end: Thu Sep 05 06:58:34 UTC 2019

duration: 2.17 sec

progress percentage: 100%

time remaining: 0 ms

total ranges: 0

task count: 9

completed count: 9

repaired count: 9

failed count: 0

skipped count: 0

rcvd connection count: 0

open connection count: 0

message threadpool active: 0

timer: cassandra.iterating.timer: count=10 mean=28916.792488333995;

repairec.task.timer: count=0 mean=NaN; digest.scan.per.Ep.timer: count=0 mean=NaN;

distributor.batch.execution.timer: count=1 mean=1.684142835E9;

unit.of.scan.task.timer: count=0 mean=NaN; session.sleep.timer: count=0 mean=NaN;

RocksDB.digests.per.disk.timer: count=0 mean=NaN;

Note For in-progress operations, rather than an end time and duration the opstatus response will show
an estimated completion time and estimated time remaining.

Note "REPAIRCASSANDRA" status metrics will appear in opstatus results for the Cassandra key-
space repair part of the auto-repair feature; or for when you manually run hsstool repair either with its
default behavior (which includes a repair of user data keyspaces in Cassandra) or with the "allkey-
spaces" option (which includes a repair of user data keyspaces and service metadata keyspaces in
Cassandra).

669

Chapter 11. Commands

opstatus for rebalance and rebalanceec

For description of a particular response item, click on the response item; or for the full list of response item
descriptions see " hsstool rebalance and hsstool opstatus rebalance/rebalanceec Response Items" (page
683).

hsstool -h cloudian-node1 opstatus rebalance

optype: REBALANCE cmdno#: 1 status: COMPLETED

arguments: logging=true

operation ID: 2edcb684-94f0-198d-91da-5254007cc5f2

start: Thu May 04 16:51:03 CST 2017

end: Thu May 04 16:51:04 CST 2017

duration: 0.324 sec

progress percentage: 100%

task count: 1

completed count: 1

streamed count: 1

failed count: 0

skipped count: 0

stream jobs total: 5

stream jobs completed: 5

streamed bytes: 500

hsstool -h cloudian-node1 opstatus rebalanceec

optype: REBALANCEEC cmdno#: 1 status: COMPLETED

arguments: logging=true

operation ID: 2edcb684-94f0-198d-91da-5254007cc5f2

start: Thu May 04 16:51:04 CST 2017

end: Thu May 04 16:51:04 CST 2017

duration: 0.248 sec

progress percentage: 100%

task count: 3

completed count: 3

streamed count: 3

failed count: 0

skipped count: 0

stream jobs total: 6

stream jobs completed: 6

streamed bytes: 1024

Note For in-progress operations, rather than an end time and duration the opstatus response will show
an estimated completion time and estimated time remaining.

opstatus for decommissionreplicas and decommissionec

Note The decommission operation is automatically invoked by the CMC's "Uninstall" feature, if you use
the Uninstall feature to remove a node that's "live" in the Cassandra ring. Status reporting on a decom-
mission operation is broken out to decommissionreplicas (for replicated data) and decommissionec (for
erasure coded data).

670

11.1. hsstool

For description of a particular response item, click on the response item; or for the full list of response item
descriptions see "Response Items for hsstool opstatus decommissionreplicas or decommissionec" (page
673).

hsstool -h cloudian-node1 opstatus decommissionreplicas

optype: DECOMMISSIONREPLICAS cmdno#: 1 status: INPROGRESS

operation ID: d697d9c4-2fc5-124b-ab0c-525400137a9c

start: Tue May 23 20:31:24 PDT 2017

cassandra decommission time: 61.072 sec

task count: 2410

completed count: 2139

streamed count: 2139

failed count: 0

skipped count: 0

stream jobs total: 40

stream jobs completed: 31

streamed bytes: 4403497430

hsstool -h cloudian-node1 opstatus decommissionec

optype: DECOMMISSIONEC cmdno#: 1 status: INPROGRESS

operation ID: d697d9c4-2fc5-124b-ab0c-525400137a9c

start: Tue May 23 20:32:38 PDT 2017

task count: 757

completed count: 743

streamed count: 743

failed count: 0

skipped count: 0

stream jobs total: 2

stream jobs completed: 1

streamed bytes: 0

11.1.7.3. hsstool opstatus Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

<op-type>

(Optional) Type of operation for which to retrieve status. Valid types are listed below. If you do not specify a
type, status is returned for all supported operation types.

l cleanup

l cleanupec

l decommissionreplicas

l decommissionec

671

Chapter 11. Commands

Note The decommission operation is automatically invoked by the CMC's "Uninstall" feature, if
you use the Uninstall feature to remove a node that's "live" in the Cassandra ring. Status report-
ing on a decommission operation is broken out to decommissionreplicas (for replicated data)
and decommissionec (for erasure coded data).

l proactiverebalance

l proactiverepair

l proactiverepairec

l rebalance

l rebalanceec

l repair

l repaircassandra

l repairec

Note The CMC does not support the "<op-type>" option.

-a

(Optional) Verbose status output for a repair or rebalance operation. This provides repair or rebalance status
details per token range. It also shows relevant configuration settings. This detailed data can be helpful if you
are working with Cloudian Support to troubleshoot a repair or rebalance problem. This option is supported only
for the "repair", "rebalance", and "rebalanceec" operation types — not for the other types.

For example:

[root]# /opt/cloudian/bin/hsstool -h <host> opstatus repair -a

Note The CMC does not support the "-a" option.

-q history

(Optional) Use hsstool -h <host> opstatus -q history to retrieve a history of rebalance, repair, and cleanup
options performed on the target node. By default this history spans the past 90 days. This period is con-
figurable by mts.properties.erb: "monitoring.ophistory.ttl" (page 568).

If you want just a history of a particular repair or cleanup operation type, use:

hsstool -h <host> opstatus -q history <op-type>

where <op-type> is rebalance, rebalanceec, repair, repairec, cleanup, or cleanupec. For example:

hsstool -h <host> opstatus -q history repairec

Note The CMC does not support the "-q history" option.

672

11.1. hsstool

11.1.7.4. Response Items for hsstool opstatus decommissionreplicas or decom-
missionec

You can check on the status of an in-progress decommission operation by using the "hsstool opstatus" (page
666) command.

optype

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, or FAILED

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation. For high-level information
about decommission operation successes and failures (if any), see the other fields in the response.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the response. For details on any FAILED operation you can also scan cloudian-hyperstore.log
for error messages from the period during which the operation was running.

Note Decommission processes replica data first and then erasure coded data. After decommission fin-
ishes for erasure coded data the HyperStore Service on the node immediately shuts down and can no
longer response to hsstool commands including hsstool opstatus. Therefore the decommissionec oper-
ation will never show a status of COMPLETED (since the HyperStore Service shuts down upon decom-
missionec completion).

operation ID

Globally unique identifier of the decommission run. This may be useful if Cloudian Support is helping you
troubleshoot a decommission failure. Note that when decommission is run, the
DECOMMISSIONREPLICAS part of the response (for replica data) and DECOMMISSIONEC part of the
response (for erasure coded data) will both have the same operation ID.

Note The "cmd#" (described further above) cannot serve as a globally unique identifier because that
counter resets to zero -- and subsequently starts to increment again -- when the HyperStore Service is
restarted.

start

Start time of the operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the percentage of work that has been
completed so far.

cassandra decommission time

The time spent decommissioning the node from the Cassandra ring. (Applicable to the decommissionreplicas

673

Chapter 11. Commands

task only -- not decommissionec).

task count

The total number of files that are evaluated for possible streaming from the node to be decommissioned to
other nodes in the cluster. Each such file constitutes a "task".

completed count

From the total task count, the number of tasks that have been completed so far (that is, the number of files for
which processing has been completed). Each completed task results in the incrementing of either the
"streamed count", the "failed count", or the "skipped count".

stream jobs total

The system breaks the decommission streaming operation down into a number of small "jobs", with the number
of jobs reflecting factors such as the particular storage policies in the cluster and the token ranges in which
data associated with those storage policies is stored. This metric shows the total number of such jobs.

stream jobs completed

The number of stream jobs completed so far.

streamed count

The number of object replica files successfully streamed (copied) from the decommissioned node to other
nodes in the cluster.

streamed bytes

The total number of object replica file bytes successfully streamed (copied) from the decommissioned node to
other nodes in the cluster.

failed count

The number of files for which the attempt to stream the file to a different node failed as a result of an error. For
information about such failures, on the decommissioned node you can scan /var/log/cloudian/cloudian-hyper-
store.log for error messages from the time period during which the decommission operation was running.

skipped count

The number of files for which the streaming operation is skipped because a file that was going to be streamed
from the decommissioned node to a different target node in the cluster is found to already exist on the target
node.

The "streamed count" plus the "failed count" plus the "skipped count" will equal the "completed count".

Note For "decommission" operations, opstatus can only report in-progress status, not final, completed
status. This is because the HyperStore service on the decommissioned node is immediately stopped at
the completion of the decommission operation. For final decommission operation status you can review
/var/log/cloudian/cloudian-hyperstore.log on the decommissioned node.

11.1.8. hsstool proactiverepairq
Subjects covered in this section:

674

11.1. hsstool

l Introduction (immediately below)

l "Command Syntax" (page 675)

l "Command/Response Examples" (page 676)

This hsstool command returns information about nodes that are in need of automated proactive repair. This
includes nodes for which automated proactive repair is in progress as well as nodes for which automated pro-
active repair will begin shortly. You can also use the command to immediately start proactive repair (rather
than waiting for the automatic hourly run); or to stop in-progress proactive repairs; or to temporarily disable the
proactive repair feature (and to re-enable it after having disabled it).

For more information about the HyperStore proactive repair feature see "Automated Data Repair Feature
Overview" (page 150).

11.1.8.1. Command Syntax

The hsstool proactiverepairq command line syntax is as follows. For description of a particular parameter, click
on the parameter; or for the full list of parameter descriptions see "hsstool proactiverepairq Parameters"
(page 676).

hsstool -h <host> proactiverepairq [-a] [-delete <host>]
[-start [-type replicas|ec]] [-stop] [-enable true|false]

In the CMC UI you can run the hsstool proactiverepairq command's proactive repair queue status reporting
function through this interface:

The functions for disabling or re-enabling proactive repair, immediately starting a proactive repair, or stopping
an in-progress proactive repair have their own separate CMC interface and the command is there renamed as
"proactiverepair" (although hsstool proactiverepairq is being invoked behind the scenes):

675

Chapter 11. Commands

11.1.8.2. Command/Response Examples

The proactiverepairq command example below shows that one node in the cluster is in need of proactive
repair, and that an estimated 100 objects are queued for proactive repair on that node. This proactive repair
occurs automatically; no operator action is required. The repair is either already underway or will be triggered
at the next interval (default is hourly). For description of a particular response item, click on the response item;
or for the full list of response item descriptions see "hsstool proactiverepairq Response Items" (page 678).

hsstool -h localhost proactiverepairq

Proactive repair: true

Number of nodes to repair: 1

Estimated number of PR events per node:

cloudian7(10.20.2.57) 100

The proactiverepairq -a command example below shows that one node in the cluster is in need of proactive
repair, and that the needed repair involves eight object replicas totaling about 1.6 MBs. This proactive repair
occurs automatically; no operator action is required. The repair is either already underway or will be triggered
at the next interval (default is hourly). For description of a particular response item, click on the response item;
or for the full list of response item descriptions see "hsstool proactiverepairq Response Items" (page 678).

hsstool -h cloudian-node1 proactiverepairq -a

Proactive repair: true

Number of nodes to repair: 1

cld01(10.20.2.123): REPLICAS[count = 8 bytes = 1602141] EC[count = 0 bytes = 0] REBALANCE[count =

0 bytes = 0]

Note The proactiverepairq -a option provides more precisely accurate information about the number of
queued objects than does the proactiverepairq command without the -a option -- but using the -a
option is resource intensive.

11.1.8.3. hsstool proactiverepairq Parameters

-h <host>

676

11.1. hsstool

(Mandatory) Hostname or IP address of the target node:

l For retrieving proactive repair queue information (hsstool -h <host> proactiverepairq) or for disabling or
re-enabling the proactive repair feature (hsstool -h <host> proactiverepairq -enable true|false), this can
be any host in your cluster. The command applies to all nodes in the service region of the host that you
specify.

l For starting or stopping a proactive repair (hsstool -h <host> proactiverepairq -start or hsstool -h <host>
proactiverepairq -stop), this is the host on which you want to start or stop a proactive repair.

Note In the CMC UI for this command this parameter is called "Target Node".

-a

(Optional) If you use hsstool -h <host> proactiverepairq -- without the -a flag or other options -- the command
will return the number of nodes that are in need of proactive repair, the IP addresses of those nodes, and an
estimate of the number of objects in need of proactive repair on those nodes.

If you use hsstool -h <host> proactiverepairq -a, the command will return the number of nodes that are in need
of proactive repair and the IP addresses of those nodes, and precise information about the count and total size
of objects that are in need of proactive repair on each node. When you use the -a option, a scan of Cassandra
metadata is done. This is a much more resource intensive operation than if you omit the -a option.

Note To see how much proactive repair work has already been completed on a given node, use the
"hsstool opstatus" (page 666) command on that node.

-delete <host>

(Optional) Use this option to completely clear out a specified node's current proactive repair queue. If you do
so, the objects that had been in the proactive repair queue will not be fixed by proactive repair, and instead you
will need to fix them by running "hsstool repair" (page 686) and "hsstool repairec" (page 697) on the node.

Under normal circumstances you should not need to use the -delete <host> option. You might however use
this option if you are working with Cloudian Support to troubleshoot problems on a node.

Note The CMC interface does not support the -delete <host> option. This option is supported only on
the command line.

-start [-type replicas|ec|rebalance]

(Optional) Use hsstool -h <host> proactiverepairq -start to immediately initiate proactive repair on the specified
host. This applies only to the specified host.

Optionally you can restrict the immediate proactive repair to a particular category of proactive repair: proactive
repair of replica data for an existing node; proactive repair of erasure coded data for an existing node; or pro-
active repair of object data streaming failures from a recently completed rebalance operation for a newly added
node. For example, use hsstool -h <host> proactiverepairq -start -type rebalance to immediately initiate pro-
active repair in the wake of a rebalance operation that reported failures for some objects.

If you do not include the -type option, then using -start will immediately initiate proactive repair for all types of
proactive repairs that are currently needed the target node.

677

Chapter 11. Commands

Note Proactive repair is triggered automatically every hour (by default configuration; see hyperstore-
server.properties.erb: "hyperstore.proactiverepair.poll_time" (page 550)), on all nodes that are in
need of proactive repair, for all proactive repair types. No operator action is required. So there is no
need to use the -start option unless for some reason you want proactive repair to begin immediately on
a particular node rather than waiting for the next automatic hourly run of proactive repair.

-stop

(Optional) Use hsstool -h <host> proactiverepairq -stop to immediately stop any in-progress proactive repair on
the specified host. This applies only to the specified host. Remaining repair tasks that are still in the proactive
repair queue for that host will be processed the next time that proactive repair is run.

If proactive repair is in progress on multiple hosts and you want to stop all the proactive repairs, you must sub-
mit a hsstool -h <host> proactiverepairq -stop command separately for each of those hosts.

Note Unlike the -start option, the -stop option does not support specification of a proactive repair type.
Instead the -stop option stops all types of in-progress proactive repair on the target host.

-enable true|false

(Optional) Enable or disable the proactive repair feature. By default the feature is enabled.

If you use hsstool -h <host> proactiverepairq -enable false to disable the proactive repair feature, this applies
to all nodes in the service region of the specified host. So, it doesn't matter which host you specify in the com-
mand as long as it's in the right service region. Likewise hsstool -h <host> proactiverepairq -enable true re-
enables the proactive repair feature for all nodes in the service region.

Disabling the proactive repair feature does not abort in-progress proactive repairs. Rather, it prevents any
additional proactive repairs from launching. To stop in-progress proactive repairs on a particular node use the -
stop option.

IMPORTANT ! The proactive repair feature is important for maintaining data integrity in your system.
Do not leave it disabled permanently.

Note The proactive repair feature can also be disabled and re-enabled by using hsstool repairqueue -
h <host> -enable true|false. The difference is that the "hsstool repairqueue" (page 707) approach dis-
ables and re-enables scheduled auto-repairs and also proactive repairs, whereas the hsstool pro-
activerepairq approach disables and re-enables only proactive repair.

If you use both types of commands, then whichever command you used most recently will be operative
in regard to the proactive repair feature. For example if you run hsstool repairqueue -h <host> -enable
false and then subsequently you run hsstool -h <host> proactiverepairq -enable true, then proactive
repair will be enabled in the cluster (while the scheduled auto-repair feature will remain disabled).

11.1.8.4. hsstool proactiverepairq Response Items

Proactive repair

This indicates whether the proactive repair feature is enabled, true or false. By default proactive repair is

678

11.1. hsstool

enabled.

Number of nodes to repair: <#>

Number of nodes that are in need of proactive repair.

Estimated number of PR events per node

This is an estimate of the number of objects queued for proactive repair, on each node that currently has
objects in its proactive repair queue. This gives you a general idea of the number of queued objects but it is not
an exact count.

An exact count is available if you use the proactiverepairq -a option, but using that option is resource intensive.

<hostname>(<IPAddress>)

Hostname and IP address of a node that is in need of proactive repair. The results will show one line for each
node that needs proactive repair, with each such line starting with the node’s IP address.

REPLICAS[count = <#> bytes = <#>]

For the node identified by <IP Address>, the number of object replicas that need to be written to the node by
proactive repair, and the total aggregate size of those replicas in bytes.

If the proactive repair is in progress, these numbers indicate how much is left to do.

EC[count = <#> bytes = <#>]

For the node identified by <IP Address>, the number of erasure coded object fragments that need to be written
to the node by proactive repair, and the total aggregate size of those replicas in bytes.

If the proactive repair is in progress, this number indicates how much is left to do.

REBALANCE[count = <#> bytes = <#>]

Starting in HyperStore version 7.2, rebalance retries are no longer included automatically within proactive
repair runs, so if this appears in the response the count should be 0.

11.1.9. hsstool rebalance
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 679)

l "Command/Response Example" (page 680)

l "When to Use hsstool rebalance" (page 681)

This hsstool command copies S3 object data from your existing nodes to a specified new node that you have
added to your HyperStore cluster. The rebalance operation populates the new node with its share of S3 object
replica data and erasure coded data, based on the token ranges that the system automatically assigned the
new node when you added it to the cluster.

11.1.9.1. Command Syntax

The hsstool rebalance command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool rebalance Parameters" (page 682).

679

Chapter 11. Commands

hsstool -h <host> rebalance [-list] [-cleanupfile|-cleanup] [-retry]
[-l <true|false>]

You can also run this command through the CMC UI:

Note If you launch the operation through the CMC UI, you can track the operation progress through the
CMC's Operation Status page. This way of tracking operation progress is not supported if you launch
the operation on the command line. However, regardless of how you launch the operation you can peri-
odically check on its progress by using the hsstool opstatus command.

11.1.9.2. Command/Response Example

The example below shows a rebalance operation being executed on a newly added node, and the command
response. Note that rebalance is implemented separately for replica data ("REBALANCE cmdno #1" in the
response) and erasure coded data ("REBALANCEEC cmdno #1"). For description of a particular response
item, click on the response item; or for the full list of response item descriptions see " hsstool rebalance and
hsstool opstatus rebalance/rebalanceec Response Items" (page 683).

Note For more detailed status information on a rebalance operation -- including a break-down of
status by token range -- you can run hsstool -h <host> opstatus rebalance -a (or opstatus rebalanceec -
a).

hsstool -h cloudian-node6 rebalance

Executing rebalance.

optype: REBALANCE cmdno#: 1 status: COMPLETED

arguments: cleanup=false logging=false cmdno=1 cleanupFile=true

operation ID: 763d04a2-f8bc-1901-a07c-5254000f88dc

start: Thu Nov 14 09:54:33 CST 2019

end: Thu Nov 14 10:02:43 CST 2019

duration: 489.969 sec

progress percentage: 100%

time remaining: 0 ms

task count: 2033

680

11.1. hsstool

completed count: 2033

streamed count: 1283

failed count: 0

skipped count: 0

rcvd connection count: 0

open connection count: 0

prqueued count: 750

job threadpool size: 4

message threadpool active: 0

stream jobs total: 8

stream jobs completed: 8

stream jobs failed: 0

streamed bytes: 1491288352

delete count: /10.20.2.135=186 /10.20.2.172=342 /10.20.2.173=328

/10.20.2.174=319 /10.20.2.136=0 /10.20.2.171=108

optype: REBALANCEEC cmdno#: 1 status: COMPLETED

arguments: cleanup=false logging=false cmdno=1 cleanupFile=true

operation ID: 763d04a2-f8bc-1901-a07c-5254000f88dc

start: Thu Nov 14 10:02:43 CST 2019

end: Thu Nov 14 10:05:01 CST 2019

duration: 138.117 sec

progress percentage: 100%

time remaining: 0 ms

task count: 2035

completed count: 2035

streamed count: 972

failed count: 0

skipped count: 2

rcvd connection count: 0

open connection count: 0

prqueued count: 1061

job threadpool size: 4

message threadpool active: 0

stream jobs total: 8

stream jobs completed: 8

stream jobs failed: 0

streamed bytes: 325598464

delete count: /10.20.2.135=0 /10.20.2.172=315 /10.20.2.173=342

/10.20.2.174=241 /10.20.2.136=0 /10.20.2.171=74

11.1.9.3. When to Use hsstool rebalance

The only time to use this command is when you have added a new node or nodes to an existing data cen-
ter.

For complete instructions on adding new nodes including the proper use of the rebalance command within the
context of the procedure, see:

l "Adding Nodes" (page 420)

The rebalance is a background operation that may take many hours or even days, depending on your Hyper-
Store cluster size and stored data volume. If you are adding multiple nodes to your cluster, it's OK to have rebal-
ance operations running on multiple new nodes concurrently. See the "Adding Nodes" (page 420) procedure
for detail.

681

Chapter 11. Commands

In the event that the rebalance operation fails for some objects that are supposed to be copied to the new
node, these failures will subsequently be corrected automatically by the "Proactive Repair" (page 151) fea-
ture.

11.1.9.4. hsstool rebalance Parameters

-h <host>

(Mandatory) Hostname or IP address of the newly added node for which to perform the rebalance operation. In
the CMC, only your newly added node(s) will appear in the drop-down node selection list. It is not appropriate
to run the rebalance command on any node other than a newly added node.

Note In the CMC UI for this command this parameter is called "Target Node".

Note If you are using the rebalance command's "-list" option then the target host can be any host in the
region. The returned list will be the list for the region, regardless of which host processes the command.

-list

(Optional) If you use this option the command returns a list of newly added nodes in the service region and
their status in regard to the rebalance operation.

l A node status of "REQUIRED" means that the node has been added to the cluster (through the CMC's
Add Node operation) but that you have not yet run hsstool rebalance on the new node.

l A node status of "DONE" means that rebalance has been successfully completed for the node.

l A node status of "FAILED" means that the rebalance operation failed for one or more token ranges.

Note This parameter is supported only on the command line -- not in the CMC UI.

Sample command and response, where one new node has been added to the cluster and rebalance has been
successfully completed on the node:

[root@vm151 bin]# ./hsstool -h localhost rebalance -list
vm124(10.50.41.49):DC1:ca-sm3 DONE

The response format is host(IPaddress):datacenter:region status

-cleanupfile | -cleanup

When you add a new node to your cluster, the new node takes over some portions of the token space from the
existing nodes in the cluster. Based on the new token space allocation, the rebalance operation copies certain
object replicas and/or erasure coded fragments to the new node, from the existing nodes. Then, having been
copied to the new node, replicas and/or fragments can be deleted from existing nodes on which they no longer
belong (as a result of some portions of the token space having been taken over by the new node). This
"cleanup" action frees up storage space on those existing nodes.

l To have the system delete each replica or fragment from the appropriate existing node as soon as it is
successfully copied to the new node, use the -cleanupfile option when you run rebalance. Using the -
cleanupfile option is the recommendedmethod in typical circumstances.

682

11.1. hsstool

l Alternatively, if you use the -cleanup option -- instead of the -cleanupfile option -- the system will clean
up entire token ranges on the appropriate existing nodes, after rebalance tasks (the copying over of rep-
licas or fragments) have successfully completed for those token ranges. This option is appropriately
only if you have reason to believe that your system had a lot of "garbage files" -- extra replicas and/or
fragments, on nodes on which they do not belong -- before you added the new node.

Note If you use neither the -cleanupfile option nor the -cleanup option when you run rebalance, then
after the rebalance operation completes for the new node -- or after rebalance operations complete for
all new nodes if you are adding multiple new nodes -- you will need to run hsstool cleanup on each of
the older nodes, one node at a time, in order to free up storage space on those nodes. For more details
about this approach to cleaning up data after a rebalance operation, see "When to Use hsstool
cleanup" (page 647).

-retry

(Optional) If an initial run of hsstool rebalance on a new node results in a failure for one or more of the token
ranges that the system has assigned to the new node, run hsstool rebalance again but this time do it with the -
retry option. The system will then retry to stream the data from the failed token range(s).

If you wish, when using the -retry option you can also use the -cleanupfile or -cleanup option.

Note For detailed status information on a rebalance operation that you have already run -- including a
break-down of status by token range, so you can see whether any token ranges failed -- you can run
hsstool -h <host> opstatus rebalance -a (or opstatus rebalanceec -a) on the node.

-l <true|false>

(Optional, defaults to true) If this option is true, entries for each object rebalanced by this operation will be writ-
ten to the cloudian-hyperstore-repair.log file on the newly added node. Object replicas will be logged with the
string "REBR" and object erasure coded fragments will be logged with the string "REBEC".

This option defaults to true, so you only need to specify the -l option if you do not want rebalanced object log-
ging (in which case you’d specify -l false).

Note This parameter is supported only on the command line -- not in the CMC UI.

11.1.9.5. hsstool rebalance and hsstool opstatus rebalance/rebalanceec Response
Items

optype

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, or FAILED

683

Chapter 11. Commands

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the operation response. For details on any FAILED operation you can also scan cloudian-hyper-
store.log for error messages from the period during which the operation was running.

arguments

Value of the command arguments used for the run, if any. The status results use internal system names for the
arguments which may not exactly match the command-line arguments that are defined in a command’s syntax,
but the relationships should be clear.

operation ID

Globally unique identifier of the rebalance run. This may be useful if Cloudian Support is helping you
troubleshoot a rebalance failure. Note that when rebalance is run, the REBALANCE part of the response (for
replica data) and REBALANCEEC part of the response (for erasure coded data) will both have the same oper-
ation ID.

Note The "cmd#" (described further above) cannot serve as a globally unique identifier because that
counter resets to zero -- and subsequently starts to increment again -- when the HyperStore Service is
restarted.

start

Start time of the operation.

end, duration

End time and duration of a completed operation.

time remaining

Estimated time remaining to complete the operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the percentage of work that has been
completed so far.

task count

From the existing cluster, the total number of files that are evaluated for possible streaming (copying) to the
newly added node, based on the newly added node's assigned tokens. Each such file constitutes a "task".

completed count

From the total task count, the number of tasks that have been completed so far -- that is, the number of files that
the system has evaluated and if appropriate has attempted to stream to the new node. Each "completed" task
results in the incrementing of either the "streamed count", the "failed count", the "skipped count", or the
"prqueued count".

At the end of the operation the "completed count" should equal the "task count".

streamed count

The number of files successfully streamed (copied) from the existing nodes to the new node.

684

11.1. hsstool

failed count

The number of files for which the attempt to stream the file to the new node fails, and the resulting attempt to
insert the file stream job into the proactive repairqueue fails also.

Note If the stream attempt for a file fails, but the stream job for that file is successfully added to the pro-
active repair queue, that file is counted toward the "prqueued count" -- not the "failed count".

For detail about rebalance streaming failures, on the target node for the rebalance operation (the new node)
you can scan /var/log/cloudian/cloudian-hyperstore.log for error messages from the time period during which
the rebalance operation was running.

skipped count

For rebalancing of replicated object data: Replicas of each object to be streamed (copied) to a newly added
node will typically exist on multiple existing nodes. For example, in a 3X replication environment, for a given
object that should be streamed to the new node (based on the new node's token ranges), typically a replica file
will reside on three of the existing nodes. The evaluation and processing of each such replica file counts
towards the "task count" (so, 3 toward the task count in our example). But once a replica is streamed from one
existing node to the new node, it doesn't need to be streamed from the other two existing nodes to the new
node. On those other two existing nodes the replica file is "skipped".

rcvd connection count

In support of implementing the rebalance operation, the current number of open TCP connections incoming to
the target node (the node on which you ran the rebalance command) from the other nodes in the cluster.

open connection count

In support of implementing the rebalance operation, the current number of open TCP connections outgoing
from the target node (the node on which you ran the rebalance command) to the other nodes in the cluster.

prqueued count

The number of files for which the attempt to stream the file to the new node fails (even after automatic retries),
but the stream job for that file is successfully added to the proactive repair queue. These stream jobs will then
be automatically executed by the next run of the hourly proactive repair process.

message threadpool active

In support of implementing the rebalance operation, the current number of active threads managing com-
munications between the target node (the node on which you ran the rebalance command) and the other
nodes in the cluster.

stream jobs total

The system breaks the rebalance streaming operation down into a number of small "jobs", with the number of
jobs reflecting factors such as the number of storage policies in the system and the number of token ranges in
which data associated with those storage policies is stored. This metric shows the total number of such jobs.

Note For rebalance status detail for each individual job (also known as a "session"), run hsstool -h
<host> opstatus rebalance -a for replicated object data or hsstool -h <host> opstatus rebalanceec -a for
erasure coded object data. This detailed information can be helpful if you are working with Cloudian
Support to troubleshoot rebalance problems.

685

Chapter 11. Commands

stream jobs completed

The number of stream jobs completed so far. Note that "completed" means that work on the job has ended and
does not necessarily mean success -- if any of the stream jobs ended in failure, they will count toward the
"stream jobs failed" metric.

stream jobs failed

The number of stream jobs that failed.

streamed bytes

The number of bytes of object data streamed to the new node.

11.1.10. hsstool repair
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 686)

l "Command/Response Example" (page 687)

l "When to Use hsstool repair" (page 688)

l "Problems Remedied by repair and repair computedigest" (page 688)

Use this hsstool command to check whether a physical node has all of the replicated data that it is supposed
to have (based on the node’s assigned tokens and on replication settings for the system); and to replace or
update any data that is missing or out-of-date. Replacement or update of data is implemented by retrieving cor-
rect and current replica data from other nodes in the system.

Note The system will not allow you to run hsstool repair:
* On a node on which hsstool cleanup is currently running.
* On any node if there is a disabled disk on any node in the same service region.
* On any node if hsstool repair is already running on a different node in the same service region. The
one exception to this rule is if you use the -pr option with each repair run -- you can run hsstool repair -
pr on multiple nodes concurrently.

11.1.10.1. Command Syntax

The hsstool repair command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool repair Parameters" (page 689).

hsstool -h <host> repair [allkeyspaces|nokeyspaces] [-pr] [-l <true|false>]
[-m <true|false>] [-computedigest] [-stop] [-resume] [-d <mount-point>] [-rebuild]
[-range <start-token,end-token>] [-t <min-timestamp,max-timestamp>]

You can also run the hsstool repair command through the CMC UI:

686

11.1. hsstool

Note If you launch the operation through the CMC UI, you can track the operation progress through the
CMC's Operation Status page. This way of tracking operation progress is not supported if you launch
the operation on the command line. However, regardless of how you launch the operation you can peri-
odically check on its progress by using the hsstool opstatus command.

11.1.10.2. Command/Response Example

The example below shows a default run of hsstool repair, using no options. For description of a particular
response item, click on the response item; or for the full list of response item descriptions see "hsstool repair
and hsstool opstatus repair Response Items" (page 692).

hsstool -h cloudian-node1 repair

Executing repair. keyspaces=UserData max-modified-ts=1495109681947 primary-range=false min-

modified-ts=0

logging=true check-metadata=true merkletree=true computedigest=false

optype: REPAIR cmdno#: 1 status: COMPLETED

arguments: keyspaces=UserData max-modified-ts=1495109681947 primary-range=false min-modified-ts=0

logging=true

check-metadata=true merkletree=true computedigest=false

operation ID: 085cab00-a069-1f51-92c5-525400814603

start: Fri Dec 08 01:03:53 PDT 2017

end: Fri Dec 08 01:03:58 PDT 2017

duration: 4.629 sec

progress percentage: 100%

total range count: 5

executed range count: 5

failed range count: 0

keyspace count: 1

repair file count: 195

failed count: 0

repaired count: 195

pr queued count: 0

completed count: 195

total bytes streamed: 504196225

687

Chapter 11. Commands

scan time: 0.37325

stream time: 3.74097663698E8

Note In the example above there is very little data in the system and so the operation completes
almost instantly. In a real-world environment this is a long-running operation and the command
response will not return until the operation completes. In the meanwhile you can track operation pro-
gress as described in the Note in the Command Format section above.

11.1.10.3. When to Use hsstool repair

The HyperStore system automatically uses a combination of read repair, proactive repair, and scheduled
auto-repair to keep the replica data on each node complete and current. Consequently, you should rarely
need to manually initiate a repair operation.

However, there are these uncommon circumstances when you should manually initiate repair on a specific
node:

l If you are removing a "dead" node from your cluster. In this circumstance, after removing the dead node
you will run repair on each of the remaining nodes, one node at a time. See "Removing a Node" (page
443) for details.

l If a node is unavailable for longer than the configurable "hyper-
store.proactiverepair.queue.max.time" (page 579) (default = 4 hours). In this case then the metadata
required for implementing proactive repair on the node will stop being written to Cassandra, and an
alert will display in the CMC's Alerts page. When the node comes back online you will need to:

1. Monitor the automatic proactive repair that initiates on the node when the node starts up, until it
completes. You can check the CMC's Repair Status page periodically to see whether proactive
repair is still running on the node that you've brought back online. This proactive repair will
repair the objects from during the period when proactive repair metadata was still being written
to the Cassandra for the node.

2. After proactive repair on the node completes, manually initiate a full repair of the node (using
hsstool repair and, if appropriate for your environment, hsstool repairec). This will repair objects
that were written after the proactive repair queueing time maximum was reached.

Note The repair operation will fail if the HyperStore service is down on any of the nodes affected by the
operation (the nodes storing the affected token ranges). The operation will also fail if any disk storing
affected token ranges is disabled ormore than 95% full.

11.1.10.4. Problems Remedied by repair and repair computedigest

The table below lists data problem cases and shows whether or not they are remedied by regular repair and by
repair that uses the computedigest option. Although regular repair can handle some cases of corruption, if cor-
ruption is suspected on a node and you’re not certain exactly which data is corrupted, it’s best to use repair
computedigest.

Case Will repair fix it? Will repair computedigest fix it?

Missing blob file yes yes

Missing digest yes yes

688

11.1. hsstool

Case Will repair fix it? Will repair computedigest fix it?

Missing blob file and digest yes yes

Corrupted blob file no yes

Corrupted digest yes yes

Corrupted blob file and digest yes yes

11.1.10.5. hsstool repair Parameters

-h <host>

(Mandatory) Hostname or IP address of the node to repair.

Note In the CMC UI for this command this parameter is called "Target Node".

allkeyspaces | nokeyspaces

(Optional) You have three alternatives for choosing which Cassandra metadata keyspaces to repair, while also
cleaning replicated S3 object data in the HyperStore File System (HSFS):

l Use allkeyspaces to repair replicated objects in the HSFS and also repair all the Cassandra keyspaces.
Cassandra repair will be completed first, then HSFS replica repair. The Cassandra keyspaces that will
be repaired are: UserData_<storage-policy-ID> keyspaces; AccountInfo; Reports; Monitoring; and
ECKeyspace. (For more information see the overview of Cassandra keyspaces for HyperStore).

l Use nokeyspaces to repair only replicated objects in the HyperStore File System, and not any Cas-
sandra keyspaces.

l If you specify neither allkeyspaces nor nokeyspaces then the default behavior is to repair replicated
objects in the HSFS and also to repair the Cassandra UserData_<storage-policy-ID> keyspaces (which
store object metadata). Cassandra repair will be completed first, then HSFS replica repair.

-pr

(Optional) Only repair objects that fall within the target node's primary ranges (objects for which the hash of the
object name falls into one of the token ranges assigned to the node). Do not repair objects that fall into other
nodes' primary ranges and that are replicated on to the target node. For background information on replication
in HyperStore, see "How vNodes Work" (page 42).

If each node in the cluster is being repaired in succession, using this option makes the successive repair oper-
ations less duplicative and more efficient.

Note The HyperStore auto-repair feature -- which automatically runs node repairs on a schedule --
uses the -pr option when it initiates the hsstool repair operation. For more on this feature see "Auto-
mated Data Repair Feature Overview" (page 150).

-l <true|false>

(Optional, defaults to true) If this option is true, write to a log file a list of all the objects that were repaired.
Defaults to true, so you only need to specify an -l option if you do not want repair object logging (in which case
you’d specify -l false).

689

Chapter 11. Commands

The log is named cloudian-hyperstore-repair.log and is written into the Cloudian HyperStore log directory of
the target node. Activity associated with a particular instance of a command run is marked with a unique com-
mand number.

-m <true|false>

(Optional, defaults to true) If this option is true, then before repairing a given object the Merkle Tree based
repair process will verify that metadata for the object exists in Cassandra. This prevents attempts to repair
objects that had been intentionally deleted by users, as indicated by the absence of corresponding object
metadata in Cassandra. Defaults to true, so you only need to specify an -m option if you do not want the object
metadata check to be performed (in which case you’d specify -m false).

-computedigest

(Optional) Use this option if you want to check for and repair not only missing replicas but also any replicas that
are present but corrupted. When doing the repair with the -computedigest option, the system will compute a
fresh digest for each replica rather than using cached digests. If the re-computed digest of a given replica does
not match the original digest (stored in a file alongside the object data) or does not match the re-computed
digests of the other replicas of that same object (on other nodes), the replica is considered to be corrupted and
is replaced by a copy of a correct replica streamed in from a different node.

This way of running repair is resource-intensive.

Note If you wish, you can have some or all of the scheduled auto-repairs of replica data use the "-com-
putedigest" option to combat bit rot. This aspect of auto-repair is controlled by the "auto_repair_com-
putedigest_run_number" (page 518) setting in common.csv. By default "-computedigest" is not used
in auto-repair runs.

-stop

(Optional) Use hsstool -h <host> repair -stop to terminate an in-progress repair on the specified node.

If Cassandra repair is in-progress— that is, if repair was launched with the default behavior or the allkey-
spaces option, and the Cassandra part of the repair is still in-progress — the Cassandra repair is terminated.
The HSFS replica repair — which would normally launch after the Cassandra repair — is canceled.

If HSFS replica repair is in-progress— that is, if repair was launched with the nokeyspaces option, or if it was
launched with the default behavior or the allkeyspaces option and the Cassandra part of the repair has already
completed and HSFS replica repair is underway — the HSFS replica repair is terminated.

You can subsequently use the "hsstool opstatus" (page 666) command to confirm that the repair has been
stopped (status = TERMINATED) and to see how much repair progress had been made before the stop.

If you subsequently want to resume a repair that you stopped, you can use the repair -resume option.

Note The -stop option stops a single in-progress repair on a single node. It does not disable the Hyper-
Store scheduled auto-repair feature.

-resume

(Optional) Use this option if you want to resume a previous repair operation that did not complete. This will
repair token ranges that were not repaired by the previous repair.

You may want to resume an incomplete repair in any of these circumstances:

690

11.1. hsstool

l The repair was interrupted by the repair -stop command.

l The repair was interrupted by a restart of the target node or a restart of the HyperStore Service on the
target node

l The repair reported failed token ranges

Note If during the incomplete repair run you used the -pr option or the -d <mount-point> option, you
do not need to re-specify the option when running repair -resume. The system will automatically detect
that one of those options was used in the previous repair and will use the same option when resuming
the repair.

If during the incomplete repair run you used the -range option, then resuming the repair is not sup-
ported. Repair resumption works by starting from whichever token ranges were not repaired by the pre-
vious repair. Since a repair that uses the -range option targets just one token range, resuming such a
repair would not be any different than running that same repair over again. If you want to run the repair
over again, do repair -range <start-token,end-token> again, not repair -resume.

Note If you run repair -resume, then in the command results the Arguments section will include "resum-
ing-cmd=<n>", where <n> is the number of times that repair -resume has been run on the node since
the last restart of the HyperStore Service. This Argument string -- which serves to distinguish repair -
resume result output from regular repair result output -- also appears in "hsstool opstatus" (page 666)
results for repair -resume operations.

-d <mount-point>

(Optional) If you use this option the repair is performed only for objects mapped to the vNodes that are
assigned to the specified HyperStore data mount point (for example /cloudian1), either as primary replicas or
as secondary or tertiary replicas. This option may be useful in circumstances where data is known or sus-
pected to be missing or incorrect on a particular disk.

Note For best repair efficiency in repairing a mount point, use the -rebuild option together with the -d
<mount-point> option -- for example hsstool repair -d /cloudian1 -rebuild.

Note If you use the -d <mount-point> option do not use the -pr option or the -range <start-token,end-
token> option. The system does not support using the -d option together with the -pr option, or the -d
option together with the -range option.

-rebuild

(Optional) Use this option together with the -d <mount-point> option -- for example hsstool repair -d /cloudian1
-rebuild. Using the -rebuild option makes the mount point repair process more efficient and less time-con-
suming than it would be without using the -rebuild option.

-range <start-token,end-token>

(Optional) If you use this option the repair is performed only for objects mapped to your specified token range.
You specify the range by indicating the start token and end token (an example of a token is
18315119863185730105557340630830311535). The repair operation will repair all objects that fall within the

691

Chapter 11. Commands

token range bounded by the start and end tokens.

The end-token must be a token that is assigned to the target host. To see what tokens are assigned to each
node you can use the "hsstool ring" (page 712) command. The start-token must be the next-lower token in
the ring from the end-token. Put differently, the start-token is the token that forms the lower boundary of the
vNode that's identified by the end-token.

This option may be useful if a previous full node repair failed for particular ranges. You can obtain Information
about range repair failures (including the start and end tokens that bound any failed ranges) by running hsstool
-h <host> opstatus repair -a on the command line.

Note If you use the -range <start-token,end-token> option do not use the -pr option or the -d <mount-
point> option. The system does not support using the -range option together with the -pr option, or the -
range option together with the -d option.

-t <min-timestamp,max-timestamp>

(Optional) If you use this option the repair is performed only for objects that have a last-modified timestamp
equal to or greater than min-timestamp and less than max-timestamp. When using this option, use Unix mil-
liseconds as the timestamp format.

Note This option is not supported in the CMC interface -- only on the command line.

11.1.10.6. hsstool repair and hsstool opstatus repair Response Items

optype

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, FAILED, or TERMINATED.

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation. For example in the case of
repair, a COMPLETED status means that all objects in the scope of the operation were checked to see if they
needed repair. It does not mean that all objects determined to need repair were successfully repaired. For
high-level information about object repair successes and failures (if any), see the other fields in the repair
response.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the repair response. For details on any FAILED operation you can also scan cloudian-hyper-
store.log for error messages from the period during which the operation was running. More details can also be
had by running hsstool -h <host> opstatus repair -a on the command line.

A TERMINATED status means that the repair run was terminated by an operator, using repair -stop.

arguments

Value of the command arguments used for the run, if any. The status results use internal system names for the

692

11.1. hsstool

arguments which may not exactly match the command-line arguments that are defined in a command’s syntax,
but the relationships should be clear. For example, hsstool repair command-line syntax supports a "-pr" option,
and within "arguments" response item the use or non-use of this option is indicated as "primary-range=true" or
"primary-range=false".

operation ID

Globally unique identifier of the repair run. This may be useful if Cloudian Support is helping you troubleshoot
a repair failure.

Note The "cmd#" (described further above) cannot serve as a globally unique identifier because that
counter resets to zero -- and subsequently starts to increment again -- when the HyperStore Service is
restarted.

start

Start time of the operation.

end, duration

End time and duration of a completed operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the percentage of work that has been
completed so far.

total range count

The total number of token ranges that will be repaired during this repair operation. The repair operation will
encompass not only the token ranges assigned to the target repair node but also certain token ranges on other
nodes in the cluster. These are token ranges in which are stored replicas of the same objects that are on the tar-
get repair node. As a simplified example, if objects residing in token range "c to d" on the target repair node are
also replicated in ranges "d to e" and "e to f" on other nodes in the cluster, then ranges "d to e" and "e to f" will
be among the ranges repaired by the repair operation (as well as "c to d"). Consequently the total number of
ranges to be repaired will be larger than the number of tokens assigned to the node that is the target of the
repair.

The exception is if the "-pr" option was used when the hsstool repair operation was executed, in which case the
repair operation addresses only the target node’s "primary ranges". In this case the "total range count" value
will equal the number of tokens assigned to the node.

Note For repair status detail for each token range, run hsstool -h <host> opstatus repair -a. This
detailed, per-range status information can be helpful if you are working with Cloudian Support to
troubleshoot repair problems.

executed range count

For each of the token ranges in the "total range count" metric, the repair thread pool schedules a sub-job. The
"executed range count" metric indicates the number of sub-jobs scheduled. This does not necessarily mean
that all these ranges were successfully repaired -- only that the per-range sub-jobs were scheduled by the
thread pool.

failed range count

693

Chapter 11. Commands

The number of token ranges for which the range repair sub-job did not run successfully. For example if range
repair sub-jobs are scheduled by the thread pool but then you subsequently terminate the repair operation
(using the -stop option) or reboot the node, this will result in some failed ranges. Problems with the endpoint
nodes or the disks impacted by repair of particular token ranges are other factors that may result in failed
ranges.

For information about such failures, on the target node for the repair you can scan /var/log/cloudian/cloudian-
hyperstore-repair.log for the time period during which the repair operation was running. Running hsstool -h
<host> opstatus repair -a on the command line will also provide useful details about repair failures.

keyspace count

Number of Cassandra keyspaces repaired. With the default repair behavior this will equal the number of stor-
age policies that are in your HyperStore system. There is one Cassandra UserData_<policyid> keyspace for
each storage policy. This is where object metadata is stored.

repair file count

Of all the replica files evaluated by the repair operation, this is the number of files that were determined to be in
need of repair. This figure may include files on other nodes as well as files on the target repair node. For
example, if an object is correct on the target node but one of the object’s replicas on a different node is missing
and needs repair, then that counts as one toward the repair file count. For a second example, if two of an
object’s three replicas are found to be out-dated, that counts as two toward the "repair file count".

failed count

Of the files that were found to be in need of repair, the number of files for which the attempted repair failed. For
information about such failures, on the target node for the repair you can scan /var/log/cloudian/cloudian-hyper-
store-repair.log for the time period during which the repair operation was running. Running hsstool -h <host>
opstatus repair -a on the command line will also provide useful details about repair failures.

If possible, files for which the repair attempt fails are added to the proactive repair queue (see "pr queued
count" below).

The "repaired count" plus the "failed count" plus the "pr queued count" should equal the "repair file count".

Note One thing that can increment the "failed count" is if the operation entails writing data to a disk that
is in a stop-write condition (which by default occurs when a disk is 90% full). Such write attempts will
fail.

repaired count

Of the files that were found to be in need of repair, the number of files for which the repair succeeded. The
"repaired count" plus the "failed count" plus the "pr queued count" should equal the "repair file count".

pr queued count

The number of files that the hsstool repair operation adds to the proactive repair queue, to be fixed by the next
proactive repair run. If the hsstool repair operation fails to repair a file that requires repair, it adds the file to the
proactive repair queue. Proactive repair is a different type of repair operation and may succeed in cases where
regular hsstool repair failed. By default proactive repair runs every 60 minutes.

The "repaired count" plus the "failed count" plus the "pr queued count" should equal the "repair file count".

completed count

The total number of files that were assessed to see if they were in need of repair. This number reflects

694

11.1. hsstool

replication across the cluster — for example, if an object is supposed to be replicated three times (with one rep-
lica on the target repair node and two replicas on other nodes), then repair assessment of that object counts as
three files toward the "completed count".

Note that "completed" here does not necessarily mean that all object repair attempts succeeded. For more
information on success or failure of object repair attempts, see the other status metrics.

total bytes streamed

Total number of bytes streamed to the target repair node or other nodes in order to implement repairs. For
example, if a 50000 byte object on the target repair node is found to be out-dated, and an up-to-date replica of
the object is streamed in from a different node, that counts as 50000 toward "total bytes streamed". As a second
example, if a 60000 byte object exists on the target node, and replicas of that object are supposed to exist on
two other nodes but are found to be missing, and the repair streams the good object replica from the target
repair node to the two other nodes — that counts as 120000 toward "total bytes streamed".

scan time

Total time in seconds that it took to scan the file systems and build the Merkle Tree that is used to detect dis-
crepancies in object replicas across nodes.

stream time

Total time in seconds that was spent streaming replicas across nodes, in order to implement needed repairs.

11.1.11. hsstool repaircassandra
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 695)

Use this hsstool command to repair only the Cassandra data on a node (the system metadata and object
metadata stored in Cassandra) and not the object data on the node. Under normal circumstances you should
not need to use this command, but you might use it when in a troubleshooting or recovery situation.

IMPORTANT ! If you do need to initiate a Cassandra-only repair (with no repair of the object data in
the HyperStore File System), use this command rather than using the native Cassandra utility nodetool
to initiate the repair. Using hsstool repaircassandra has multiple advantages over using nodetool
repair, including that with hsstool repaircassandra you can track the repair's progress with hsstool
opstatus and you can stop the repair if you need to for some reason.

11.1.11.1. Command Syntax

The hsstool repaircassandra command line syntax is as follows. For description of a particular parameter, click
on the parameter; or for the full list of parameter descriptions see "hsstool repaircassandra Parameters"
(page 696).

hsstool -h <host> repaircassandra [-pr]
[-keyspace <keyspacename> [<columnfamily> <columnfamily>...]] [-stop [enforce]]

You can also run the hsstool repaircassandra command through the CMC UI:

695

Chapter 11. Commands

Note As is shown in the CMC interface for hsstool repaircassandra and in the status response when
you run the command, the command applies a "ranges=true" argument by default (the status response
includes "ranges=true" in the list of arguments). With this method of Cassandra repair, each impacted
token range is repaired one range at a time, sequentially. This approach improves the performance for
Cassandra repair. Prior to HyperStore release 7.1.5 using this method was optional, but starting with
release 7.1.5 it became the default repair behavior.

11.1.11.2. hsstool repaircassandra Parameters

-h <host>

(Mandatory) Hostname or IP address of the node to repair.

Note In the CMC UI for this command this parameter is called "Target Node".

-pr

(Optional) Only repair data that falls within the target node's primary ranges (data for which the hash of the data
row key falls into one of the token ranges assigned to the node). Do not repair data that falls into other nodes'
primary ranges and that is replicated on to the target node.

If each node in the cluster is being repaired in succession, using this option makes the successive repair oper-
ations less duplicative and more efficient.

-keyspace <keyspacename> [<columnfamily> <columnfamily>...]

(Optional) Use the -keyspace option if you want to repair only a specific keyspace in Cassandra (rather than
repairing all keyspaces, which is the default behavior). You can also optionally specify one or more column
families within that keyspace, if you want to repair just that column family or those column families. If you do not
specify a column family then all column families in the specified keyspace will be repaired.

696

11.1. hsstool

You can only specify one -keyspace option per hsstool repaircassandra run. Specifying multiple keyspaces is
not supported. Note again that the default behavior of hsstool repaircassandra -- if you omit the -keyspace
option -- is to repair all of the Cassandra keyspaces.

Example of using the -keyspace option together with a target column family name:

... -keyspace UserData_a36d2c44fbfcc12222e9587b3a42997f CLOUDIAN_OBJMETADATA

Note The -keyspace option is supported only on the command line, not in the CMC UI.

-stop [enforce]

(Optional) Use hsstool -h <host> repaircassandra -stop to terminate an in-progress Cassandra repair that was
initiated via hsstool (whether by you or automatically by the system, such as with auto-repair).

If you need to terminate an in-progress Cassandra repair that was initiated via the native Cassandra utility
nodetool, use hsstool -h <host> repaircassandra -stop enforce. Note that using nodetool to initiate a Cas-
sandra repair is not recommended.

Note In the CMC UI the -stop enforce option is called "force stop".

The hsstool repaircassandra command does not support a 'resume' option. If you stop an in-progress Cas-
sandra repair, to do the repair again use the hsstool repaircassandra command again and the repair will start
over.

Note The -stop option stops a single in-progress Cassandra repair on a single node. It does not dis-
able the HyperStore scheduled auto-repair feature.

11.1.12. hsstool repairec
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 698)

l "Command/Response Example" (page 699)

l "When to Use hsstool repairec" (page 700)

l "Repairing Objects Specified in a File" (page 700)

Use this hsstool command to evaluate and repair erasure coded object data. When you run hsstool repairec
on a target node, the scope of the repair depends on the storage policy or policies that you are using in your
system:

l For an erasure coding storage policy confined to a single data center, the hsstool repairec operation
repairs all erasure coded data on all nodes in the data center in which the target node resides.

l For a distributed erasure coding storage policy spanning multiple data centers, the hsstool repairec
operation repairs all erasure coded data on all nodes in all of the data centers included in the storage
policy. To repair all the data associated with this type of storage policy you only need to run hsstool
repairec on one node in any one of the data centers included in the storage policy.

l For a replicated erasure coding storage policy spanning multiple data centers, the hsstool repairec
operation repairs all erasure coded data on all nodes in the data center in which the target node

697

Chapter 11. Commands

resides. To repair all the data associated with this type of storage policy you must run hsstool repairec
on one node in each of the data centers included in the storage policy.

The command also supports options for repairing just a single disk or just a single token range.

The repair process entails replacing erasure coded object fragments that are missing, outdated, or corrupted.
Replacement of a missing or bad object fragment is implemented by using the object's good fragments to
decode the object, re-encoding the object, and then re-writing the missing or bad fragment to the correct end-
point node. To repair an erasure coded object in this manner, there must be at least "k" good fragments present
for the object within the system.

Note In a large cluster with high data volume hsstool repairec is a long-running operation that may
take multiple weeks to complete.

Note The system will not allow you to run hsstool repairec:
* On a node on which hsstool cleanupec is currently running.
* On any node if there is a disabled disk on any node in the same service region.
* On any node if hsstool repairec is already running on a different node in the same service region.

11.1.12.1. Command Syntax

The hsstool repairec command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool repairec Parameters" (page 702).

hsstool -h <host> repairec [-l <true|false>] [-computedigest] [-stop]
[-rebuild] [-d <mount-point>] [-range <start-token,end-token>]
[-f <input-file-path>]

You can also run the hsstool repairec command through the CMC UI:

698

11.1. hsstool

Note If you launch the operation through the CMC UI, you can track the operation progress through the
CMC's Operation Status page. This way of tracking operation progress is not supported if you launch
the operation on the command line. However, regardless of how you launch the operation you can peri-
odically check on its progress by using the hsstool opstatus command.

11.1.12.2. Command/Response Example

The example below shows a default run of repairec, using no options. For description of a particular response
item, click on the response item; or for the full list of response item descriptions see "hsstool repairec and
hsstool opstatus repairec Response Items" (page 704).

hsstool -h cloudian-node1 repairec

Executing repairec. computedigest=false, logging=true, rebuild=false

optype: REPAIREC cmdno#: 1 status: COMPLETED

arguments: rebuild=false mountPoint=null logging=true range=null cmdno=1 computedigest=false

operation ID: 06186b78-1bec-1be0-a6a5-026a20c18bd8

start: Thu Sep 05 06:58:32 UTC 2019

end: Thu Sep 05 06:58:34 UTC 2019

duration: 2.17 sec

progress percentage: 100%

time remaining: 0 ms

total ranges: 0

task count: 9

completed count: 9

repaired count: 9

failed count: 0

skipped count: 0

rcvd connection count: 0

open connection count: 0

message threadpool active: 0

timer: cassandra.iterating.timer: count=10 mean=28916.792488333995;

repairec.task.timer: count=0 mean=NaN; digest.scan.per.Ep.timer: count=0 mean=NaN;

distributor.batch.execution.timer: count=1 mean=1.684142835E9;

unit.of.scan.task.timer: count=0 mean=NaN; session.sleep.timer: count=0 mean=NaN;

RocksDB.digests.per.disk.timer: count=0 mean=NaN;

Note In the example above there is very little data in the system and so the operation completes
almost instantly. In a real-world environment this is a long-running operation and the command
response will not return until the operation completes. In the meanwhile you can track operation pro-
gress as described in the Note in the Command Format section above.

To get more information about repair failures -- in the event that the "failed count" in the repairec response is
non-zero -- you can run hsstool -h <host> opstatus repairec -a (the -a is the verbose output flag) on the same
node on which you ran the repairec operation. This will return the same status metrics that are returned by
repairec and opstatus repairec, followed by a categorization of repair failures (if any) into various failure types.
The response excerpt below is for an operation in which no failures occurred.

...

Reason: CONNECTION_ERROR Count: 0

Reason: UNKNOWN Count: 0

699

Chapter 11. Commands

Reason: CREATE_TASK_FAILED Count: 0

Reason: EC_DECODE_FAILED Count: 0

Reason: EC_ENCODE_FAILED Count: 0

Reason: REPAIR_TASK_EXPIRED Count: 0

Reason: REPAIR_CYCLE_EXCEEDED Count: 0

Reason: REPAIR_MESSAGE_REQUEST_FAILED Count: 0

Reason: CASSANDRA_CHECK_FAILED Count: 0

Reason: NODE_DOWN Count: 0

This same information about failure types is logged in cloudian-hyperstore.log, as part of the standard logging
of repairec operations.

Also, in cloudian-hyperstore-repair.log you can obtain repair status information for specific objects that the
repairec operation determined to be in need of repair.

11.1.12.3. When to Use hsstool repairec

The HyperStore system automatically uses a combination of read repair, proactive repair, and scheduled
auto-repair to keep the erasure coded data on each node complete and current. Consequently, you should
rarely need to manually initiate a repairec operation.

However, if you use erasure coding in your system, there are these uncommon circumstances when you
should manually initiate a repairecoperation:

l If you are removing a "dead" node from your cluster. In this circumstance, after removing the dead node
you will run repairec on one node in each of your data centers. See "Removing a Node" (page 443) for
details.

l If a node is unavailable for longer than the configurable "hyper-
store.proactiverepair.queue.max.time" (page 579) (default = 4 hours). In this case then the metadata
required for implementing proactive repair on the node will stop being written to Cassandra, and an
alert will display in the CMC's Alerts page. When the node comes back online you will need to:

1. Monitor the automatic proactive repair that initiates on the node when the node starts up, until it
completes. You can check the CMC's Repair Status page periodically to see whether proactive
repair is still running on the node that you've brought back online. This proactive repair will
repair the objects from during the period when proactive repair metadata was still being written
to the Cassandra for the node.

2. After proactive repair on the node completes, manually initiate a full repair of the node (using
hsstool repairec and hsstool repair). This will repair objects that were written after the proactive
repair queueing time maximum was reached.

11.1.12.4. Repairing Objects Specified in a File

The hsstool repairec command supports an option for repairing one or more specific objects that you list in an
input file:

/opt/cloudian/bin/hsstool -h <host> repairec -f <input-file-path>

For <input-file-path>, specify the full absolute path to the input file (including the file name). Both the input file
and the directory in which it is located must be readable by the 'cloudian' user or else the repair command
will immediately fail and report an error.

The target node can be any node that is part of the erasure coding storage policies used by the objects that
you specify in the input file.

700

11.1. hsstool

Note The CMC does not support the -f <input-file-path> option. This option is only supported if you use
hsstool repairec on the command line.

11.1.12.4.1. Input File Format

In the HyperStore File System on each of your nodes, objects are stored as "chunks". Objects smaller than or
equal to the chunk size threshold (10MB) are stored as a single chunk. Objects larger than the chunk size
threshold are broken into and stored as multiple chunks, with no chunk exceeding the threshold in size. In the
case of large objects that S3 client applications upload to HyperStore by the Multipart Upload method, Hyper-
Store breaks the individual parts into chunks if the parts exceed the chunk size threshold.

In the context of erasure coding storage policies, after objects (or object parts) are broken into chunks, each
object chunk is erasure coded.

The hsstool repairec -f <input-file-path> feature operates on individual chunks, and so in the input file each line
must specify a chunk name and the full path to the chunk, in the following format:

chunkName|chunkPath

There is no limit on the number of lines that you can include in the file (no limit on the number of chunks that
you can specify in the file).

Here is an example in which the object is smaller than the chunk size threshold and so the object is stored as
just one chunk. In this case the chunk name is simply in the form of <bucketname>/<objectname>. (For back-
ground information about chunk paths within the HyperStore File System see "HyperStore Service and the
HSFS" (page 23).)

bucket1/HyperFileInstallGuide_v-3.6.pdf|/cloudian1/ec/std8ZdRJDskcPvmOg4/

0bb5332b429ccb76466e05bee2915d34/074/156/90721763863541208072539249099911078458.

1554130786616795163-0A3232C9

Note Although the example above and those that follow below break to multiple lines in this doc-
umentation, in the actual input file each chunkName|chunkPath combination constitutes just one line in
the file.

Here is a second example, for an object that was uploaded by a regular PUT operation (not a Multipart Upload)
but which is larger than the chunk size threshold and so has been broken into multiple chunks. The example
shows an input file entry for one of those chunks. Note that the chunk name here includes a chunk number suf-
fix (shown in bold).

bucket1/HyperFileAdminGuide_v-3.6.pdf..0001|/cloudian1/ec/std8ZdRJDskcPvmOg4/

0bb5332b429ccb76466e05bee2915d34/087/073/13080395222414127681573583484873262519.

1554124662019670529-0A3232C9

In this third example, the object has been uploaded via Multipart Upload. In this example which specifies one
of the object's chunks, the chunk name includes a prefix based on the upload ID, as well as a number suffix
(both shown in bold).

m-MDA1NTE5NjExNTU0MTIzODU3Mjg1/bucket1/cloudian-hyperfile_v-3.6.tar.gz..0001|/cloudian1/

ec/std8ZdRJDskcPvmOg4/0bb5332b429ccb76466e05bee2915d34/082/100/

39535768889303436494640495599026926454.1554123857285865726-0A3232C9

701

Chapter 11. Commands

Collecting Chunk Names and Paths

You have two options for obtaining the chunk name and chunk path for chunks that you want to target for
repair. The first option is to use the hsstool whereis command for each object that you want to repair. The
whereis response includes the chunk name(s) and chunk path(s) for the object that you specify. You can copy
the chunk name and path from the whereis response into your input file.

Note The whereis response has information for each erasure coded fragment, on each node on which
the fragments reside. For a given object chunk, each erasure coded fragment has the same chunk
name and chunk path, so you can get this information from any of the fragments, regardless of which
node a particular fragment is stored on.

The second option for obtaining the chunk name and chunk path for chunks that you want to target for repair is
to collect failed task information from cloudian-hyperstore-repair.log. In this log, all repairec failed task log
entries have this format:

FailedTask|timestamp|chunkName|chunkPath|failedReason

You can extract the required information from the repair log. An example Linux command for doing so is:

zgrep "FailedTask" /var/log/cloudian/cloudian-hyperstore-repair.log | cut -d "|"

-f3,4 >> /tmp/failedTasks.txt

This command extracts chunk name and chunk path from the failed task entries in cloudian-hyperstore-repair.-
log and exports that information to /tmp/failedTasks.txt. You can then use /tmp/failedTasks.txt as the input file
for the repairec -f <input-file-path> command.

11.1.12.5. hsstool repairec Parameters

This command supports these parameters:

-h <host>

(Mandatory) Hostname or IP address of the target node on which to execute the repairec operation. By default
the repairec operation will repair the erasure coded object data on all nodes in the data center in which the tar-
get node resides. Consequently as the target node you can choose any node in the data center for which you
want to repair erasure coded data.

The exception is if you want to use the "-i" (proactive repair), "-d <mountpoint>", or "-range <start-token,end-
token>" option. For those options it does matter which host you specify as the target. See the description of
those options for more detail.

Note In the CMC UI for this command this parameter is called "Target Node".

-l <true|false>

(Optional, defaults to true) If this option is true, write to a log file a list of all the objects that were repaired.
Defaults to true, so you only need to specify an -l option if you do not want repair object logging (in which case
you’d specify -l false).

702

11.1. hsstool

The log is named cloudian-hyperstore-repair.log and is written into the Cloudian HyperStore log directory of
the target node. Activity associated with a particular instance of a command run is marked with a unique com-
mand number.

-computedigest

(Optional) Use this option if you want to check for and repair not only missing erasure coded fragments but
also any fragments that are present but corrupted. When doing the repair with the -computedigest option, the
system computes a fresh digest for each fragment rather than using cached digests. The re-computed digest of
each fragment is compared to the original digest of those fragment (stored alongside the fragment data) and if
there is a mismatch the fragment is considered to be corrupted. The object is then decoded from healthy frag-
ments and then re-encoded, and the corrupted fragment is replaced by a new and correct fragment.

This way of running repairec is resource-intensive.

Note If you wish, you can have some or all of the scheduled auto-repairs of erasure coded data use
the "-computedigest" option to combat bit rot. This aspect of auto-repair is controlled by the "auto_
repair_computedigest_run_number" (page 518) setting in common.csv. By default "-computedigest"
is not used in auto-repair runs.

-stop

(Optional) Use hsstool -h <host> repairec -stop to abort an in-progress erasure coded data repair. This stops
the repair immediately. You can subsequently use the "hsstool opstatus" (page 666) command to confirm
that the repair has been stopped (status = TERMINATED) and to see how much repair progress had been
made before the stop.

If you stop an in-progress repairec operation, you will not be able to resume the operation from the progress
point at which you stopped it. Instead, to perform a complete repair of erasure coded data you will need to run
the repairec operation again from the beginning.

Note If the repair that you want to stop is a rebuild of the erasure coded data on a particular disk -- a
repair launched as hsstool -h <host> repairec -d <mountpoint> -rebuild -- you can stop it with hsstool -h
<host> repairec -stop. Do not include the -d <mountpoint> -rebuild options when executing the stop
command.

Note The -stop option stops a single in-progress repair. It does not disable the HyperStore scheduled
auto-repair feature.

-rebuild

(Optional) Use the -rebuild option together with the -d <mount-point> option -- for example hsstool -h localhost
repairec -rebuild -d /cloudian1 . The -rebuild option serves to make the repair of erasure coded data on a
single target disk more efficient and faster.

-d <mount-point>

(Optional) If you use this option the repair is performed only for object fragments mapped to the vNodes that
are assigned to the specified HyperStore data mount point (for example /cloudian1) on the target node. This
option may be useful in circumstances where data is known or suspected to be missing or incorrect on a par-
ticular disk. Use the -rebuild option together with the -d <mount-point> option -- for example hsstool -h

703

Chapter 11. Commands

localhost repairec -rebuild -d /cloudian1 . The -rebuild option serves to make the repair of erasure coded data
on a single target disk more efficient and faster.

Note If you use the -d <mount-point> option do not use the -range <start-token,end-token> option. The
system does not support using the -d option together with the -range option.

-range <start-token,end-token>

(Optional) If you use this option the repair is performed only for objects mapped to your specified token range.
You specify the range by indicating the start token and end token (an example of a token is
18315119863185730105557340630830311535). The repair operation will repair all objects that fall within the
token range bounded by the start and end tokens.

The end-token must be a token that is assigned to the target host. To see what tokens are assigned to each
node you can use the "hsstool ring" (page 712) command. The start-token must be the next-lower token in
the ring from the end-token. Put differently, the start-token is the token that forms the lower boundary of the
vNode that's identified by the end-token.

This option may be useful if a previous full node repair reported failures.

Note If you use the -range <start-token,end-token> option do not use the -d <mount-point> option. The
system does not support using the -d option together with the -range option.

-f <input-file-path>

(Optional) See "hsstool repairec" (page 697).

11.1.12.6. hsstool repairec and hsstool opstatus repairec Response Items

optype

The type of hsstool operation.

cmdno#

Command number of the run. Each run of a command is assigned a number.

status

Status of the command run: INPROGRESS, COMPLETED, FAILED, or TERMINATED.

A COMPLETED status means only that the operation did not error out and prematurely end. It does not mean
that the operation succeeded in respect to every object checked by the operation. For example in the case of
repair, a COMPLETED status means that all objects in the scope of the operation were checked to see if they
needed repair. It does not mean that all objects determined to need repair were successfully repaired. For
high-level information about object repair successes and failures (if any), see the other fields in the repairec
response.

A FAILED status means that the operation ended prematurely due to errors. For additional status detail see the
other fields in the repair response. For details on any FAILED operation you can also scan cloudian-hyper-
store.log for error messages from the period during which the operation was running.

A TERMINATED status means that the repair run was terminated by an operator, using repairec -stop.

704

11.1. hsstool

arguments

Value of the command arguments used for the run, if any. The status results use internal system names for the
arguments which may not exactly match the command-line arguments that are defined in a command’s syntax,
but the relationships should be clear. For example, hsstool repair command-line syntax supports a "-pr" option,
and within "arguments" response item the use or non-use of this option is indicated as "primary-range=true" or
"primary-range=false".

operation ID

Globally unique identifier of the repairec run. This may be useful if Cloudian Support is helping you
troubleshoot a repair failure.

Note The "cmd#" (described further above) cannot serve as a globally unique identifier because that
counter resets to zero -- and subsequently starts to increment again -- when the HyperStore Service is
restarted.

start

Start time of the operation.

end, duration

End time and duration of a completed operation.

progress percentage

Of the total work that the operation has identified as needing to be done, the approximate percentage of work
that has been completed so far.

time remaining

Estimated time remaining to complete the operation.

total ranges

The total number of token ranges for which data is being evaluated to determine if it needs repair.

task count

In the HyperStore File System, objects are stored as "chunks". Objects smaller than or equal to the chunk size
threshold (10MB) are stored as a single chunk. Objects larger than the chunk size threshold are broken into
and stored as multiple chunks, with no chunk exceeding the threshold in size. In the case of large objects that
S3 client applications upload to HyperStore by the Multipart Upload method, HyperStore breaks the individual
parts into chunks if the parts exceed the chunk size threshold. In the context of erasure coding storage policies,
after objects (or object parts) are broken into chunks, each object chunk is erasure coded.

In the repairec operation, the evaluation of a single chunk -- to determine whether all of its erasure coded frag-
ments are present on the nodes on which they should be stored -- constitutes a single "task". For example, the
evaluation of a 100MB object that has been broken into 10 chunks -- each of which has been erasure coded
using a 4+2 erasure coding scheme -- would count as 10 "tasks", with one task per chunk.

The "task count" metric, then, is the total number of chunks that are being evaluated to determine whether any
of them are in need of repair.

completed count, repaired count, failed count, skipped count

The "completed count" is the number of tasks completed so far, from among the tasks in the "task count" (for the

705

Chapter 11. Commands

definition of a "task" see the description of "task count" above). A "completed" task means that an erasure
coded object chunk was evaluated and, if it needs repair, an attempt was made to repair it.

A completed task has one of three possible results: a successful repair, a failed repair attempt, or the determ-
ination that the chunk does not need repair (i.e., all of the chunk's fragments are in the proper locations within
the cluster). These results are tallied by other repairec response metrics:

l "repaired count" -- The number of erasure coded object chunks for which a repair was found to be
necessary and was successfully executed.

l "failed count" -- The number of erasure coded object chunks for which a repair was found to be neces-
sary, but the repair attempt failed.

l "skipped count" -- The number of erasure coded object chunks that were evaluated and determined not
to need repair.

The "repaired count", "failed count", and "skipped count" should add up to equal the "completed count".

Note Notice from the descriptions above that a failed repair attempt counts as a "completed" task. In
other words, "completed" in this context does not necessarily mean success. It means only that the
repairec operation has finished its processing of that chunk, resulting in one of the three outcomes
described above.

To get more information about repair failures -- in the event that the "failed count" in the repairec response is
non-zero -- you can run hsstool -h <host> opstatus repairec -a (the -a is the verbose output flag) on the same
node on which you ran the repairec operation. This will return the same status metrics that are returned by
repairec and opstatus repairec, followed by a categorization of repair failures (if any) into various failure types.
The response excerpt below is for an operation in which no failures occurred.

...

Reason: CONNECTION_ERROR Count: 0

Reason: UNKNOWN Count: 0

Reason: CREATE_TASK_FAILED Count: 0

Reason: EC_DECODE_FAILED Count: 0

Reason: EC_ENCODE_FAILED Count: 0

Reason: REPAIR_TASK_EXPIRED Count: 0

Reason: REPAIR_CYCLE_EXCEEDED Count: 0

Reason: REPAIR_MESSAGE_REQUEST_FAILED Count: 0

Reason: CASSANDRA_CHECK_FAILED Count: 0

Reason: NODE_DOWN Count: 0

This same information about failure types is logged in cloudian-hyperstore.log, as part of the standard logging
of repairec operations.

Also, in cloudian-hyperstore-repair.log you can obtain repair status information for specific objects that the
repairec operation determined to be in need of repair.

Note If the "completed count" is less than the "task count" this means that the repair was interrupted in
such a way that some erasure coded object chunks were identified by a scan of object metadata in Cas-
sandra (and thus counted toward the "task count") but were not yet evaluated or repaired.

rcvd connection count

In support of implementing the repair operation, the current number of open TCP connections incoming to the

706

11.1. hsstool

target node (the node on which you ran the repairec command) from the other nodes in the cluster.

open connection count

In support of implementing the repair operation, the current number of open TCP connections outgoing from
the target node (the node on which you ran the repairec command) to the other nodes in the cluster.

message threadpool active

In support of implementing the repair operation, the current number of active threads managing com-
munications between the target node (the node on which you ran the repairec command) and the other nodes
in the cluster.

timer

This shows detailed timing metrics for various parts of the repairec operation. These metrics may be useful if
Cloudian Support is working with you to troubleshoot repairec performance issues in your environment.

Note that even more detailed timing information for a completed repairec operation is available in the Hyper-
Store Service application log. The timing metrics lines in the log are preceded by a line that says "Per-
formance meters". For example here is a log except showing some of the timing detail (this is from a repairec
run in which there was no data to repair and so the timings are "0"):

Performance meters:

Timer name: RocksDB.digests.per.disk.timer, event count: 0, mean rate: 0.0,

recent 15 min rate: 0.0, mean duration: 0.0, median duration: 0.0,

75% events average duration: 0.0, 99% events average duration: 0.0.

Rate unit: events/s, Duration unit: milliseconds.

Timer name: cassandra.iterating.timer, event count: 0, mean rate: 0.0,

recent 15 min rate: 0.0, mean duration: 0.0, median duration: 0.0,

...

...

11.1.13. hsstool repairqueue
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 708)

l "Command/Response Example " (page 709)

l "When to Use hsstool repairqueue" (page 709)

The HyperStore "auto-repair" feature implements a periodic automatic repair of replicated object data, erasure
coded object data, and Cassandra metadata on each node in your system. With the hsstool repairqueue com-
mand you can:

l Check on the upcoming auto-repair schedule as well as the status from the most recent auto-repair
runs.

l Temporarily disable auto-repair for a particular repair type or all types.

l Re-enable auto-repair, if it has previously been disabled by the hsstool repairqueue command.

For background information on the auto-repair feature, see "Automated Data Repair Feature Overview"
(page 150).

707

Chapter 11. Commands

Note You cannot enable or disable auto-repair for just one particular node — the auto-repair feature is
either enabled or disabled for the cluster as a whole.

11.1.13.1. Command Syntax

The hsstool repairqueue command line syntax is as follows. For description of a particular parameter, click on
the parameter; or for the full list of parameter descriptions see "hsstool repairqueue Parameters" (page 710).

hsstool [-h <host>] repairqueue [-enable true|false] [-t replicas|ec|cassandra]
[-inc]

In the CMC UI you can run the hsstool repairqueue command's auto-repair queue status reporting function
through this interface:

The function for disabling and re-enabling auto-repair has its own separate CMC interface and the command is
there renamed as "autorepair" (although hsstool repairqueue is being invoked behind the scenes):

708

11.1. hsstool

Note If you use this command to disable or re-enable auto-repair and you do not specify a repair type,
then the disabling or re-enabling applies also to the "proactive repair" feature. (If you want to disable or
re-enable only proactive repair without impacting the scheduled auto-repair feature see hsstool pro-
activrepairq.)

11.1.13.2. Command/Response Example

The first repairqueue example below shows the "replicas" auto-repair queue status for a recently installed six-
node cluster. For description of a particular response item, click on the response item; or for the full list of
response item descriptions see "hsstool repairqueue Response Items" (page 711).

hsstool -h cloudian-node1 repairqueue -t replicas

Queue: replicas Auto-repair: enabled #endpoints: 6

1: endpoint: 192.168.204.201 next repair at: Tue Mar 17 22:32:57 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

2: endpoint: 192.168.204.202 next repair at: Tue Mar 17 22:32:58 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

3: endpoint: 192.168.204.203 next repair at: Tue Mar 17 22:32:59 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

4: endpoint: 192.168.204.204 next repair at: Tue Mar 17 22:33:01 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

5: endpoint: 192.168.204.205 next repair at: Tue Mar 17 22:33:02 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

6: endpoint: 192.168.204.206 next repair at: Tue Mar 17 22:33:03 PDT 2015 last repair status:

INIT interval: 43200 mins count: 0

Note The response attributes for the "ec" and "cassandra" auto-repair queues would be the same as
for the "replicas" queue ("next repair at", "last repair status", and so on) -- except that for the "cassandra"
repair queue the response also includes a "repairScope" attribute which distinguishes between
"INCREMENTAL" (for Cassandra incremental repairs) and "DEFAULT" (for Cassandra full repairs).

The next example command disables "replicas" auto-repair. Note that this disables replicated object data auto-
repair for the whole cluster. It does not matter which node you submit the command to.

hsstool -h cloudian-node1 repairqueue -enable false -t replicas

Auto replicas repair disabled

11.1.13.3. When to Use hsstool repairqueue

With the hsstool repairqueue command you can disable (and subsequently re-enable) the HyperStore auto-
repair feature. You should disable auto-repair before performing the following cluster operation:

o "Removing a Node" (page 443)

IMPORTANT ! If you disable auto-repair in order to perform an operation, be sure to re-enable it after-
ward.

709

Chapter 11. Commands

Note The system automatically disables the auto-repair feature when you upgrade your HyperStore
software version or when you add nodes to your cluster; and the system automatically re-enables auto-
repair after these operations are completed. You do not need to use hsstool repairqueue when you per-
form those operations.

11.1.13.4. hsstool repairqueue Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

-enable true|false

(Optional) Enable or disable the auto-repair feature. By default the feature is enabled.

If you use hsstool -h <host> repairqueue -enable false to disable the auto-repair feature, this applies to all
nodes in the service region of the specified host. So, it doesn't matter which host you specify in the command
as long as it's in the right service region. Likewise hsstool -h <host> repairqueue -enable true re-enables the
auto-repair feature for all nodes in the service region.

If you do not use the optional -t flag (described below) to specify an auto-repair type, then the disabling or re-
enabling applies to all auto-repair types and also to the proactive repair feature. (If you want to disable or
re-enable only proactive repair without impacting the scheduled auto-repair feature see "hsstool pro-
activerepairq" (page 674).)

Note that disabling the auto-repair feature does not abort in-progress auto-repairs. Rather, it prevents any
additional scheduled auto-repairs from launching. (For information about stopping in-progress repairs, see
"hsstool repair" (page 686) and "hsstool repairec" (page 697)).

IMPORTANT ! The scheduled auto-repair feature is important for maintaining data integrity in your sys-
tem. Do not leave it disabled permanently.

Note In the CMC UI the enable/disable option is presented as part of a Maintenance -> autorepair
command rather than the Info -> repairqueue command.

-t replicas|ec|cassandra

(Optional) You can use this option if you want to restrict the repairqueue command action to a particular type of
auto-repair -- replicas or ec or cassandra:

l In combination with the -enable true|false option, you can use the -t option to disable or re-enable just a
particular type of auto-repair. For example, use hsstool -h <host> repairqueue -enable false -t ec to dis-
able auto-repairs of erasure coded object data. In this example auto-repairs would continue to be
enabled for replicated object data and for Cassandra metadata.

710

11.1. hsstool

Note If you do not use the optional -t flag to specify an auto-repair type, then the disabling or re-
enabling applies to all auto-repair types and also to the proactive repair feature. (If you want
to disable or re-enable only proactive repair without impacting the scheduled auto-repair feature
see "hsstool proactiverepairq" (page 674).)

l Without the -enable true|false option, you can use the -t option to retrieve scheduling information for just
a particular type of scheduled auto-repair. For example, use hsstool -h <host> repairqueue -t replicas to
retrieve scheduling information for auto-repairs of replicated object data. Using hsstool -h <host>
repairqueue by itself with no -t flag will retrieve scheduling information for all auto-repair types.

-inc

(Optional) You can use this option in combination with the -enable true|false -t cassandra option if you want the
enabling or disabling action to apply only to Cassandra incremental auto-repair. For Cassandra, two types of
auto-repair are executed on schedule for each node: incremental repair (once a day) and full repair (once a
week). For further information see "Auto-Repair Schedule Settings" (page 350).

If you use the -enable true|false -t cassandra option without the -inc option then your enabling or disabling
action applies to both types of Cassandra auto-repair (incremental and full).

Note The -inc option is only supported on the command line, not in the CMC.

11.1.13.5. hsstool repairqueue Response Items

When you use the repairqueue command to retrieve auto-repair queue information, the command results have
three sections — one for each repair type. Each section consists of the following items:

Queue

Auto-repair type — either "replicas", "ec", or "cassandra"

Auto-repair

Enabled or disabled

#endpoints

Number of nodes in the cluster. Each node is separately scheduled for repair, for each repair type.

<Queue position>

This is an integer that indicates the position of this node within the cluster-wide queue for auto-repairs of this
type. The node at the head of the queue has queue position "1" and is listed first in the command results.

endpoint

IP address of a node

next repair at

For each repair type, each node’s next repair at value is determined by adding the configurable auto-repair
interval for that repair type to the start-time of the last repair of that type done on that node. It’s important to note
that next repair at values are used to order the cluster-wide queues for each repair type, but the next repair of
that type on that node won’t necessarily start at that exact time. This is because the queue processing logic

711

Chapter 11. Commands

takes into account several other considerations along with the scheduled repair time.

Note For erasure coded (EC) object repair, the "next repair at" values are not relevant. Ignore these val-
ues. This is because auto-repair for erasure coded objects is run against just one randomly selected tar-
get host in each data center each 29-day auto-repair period (and this results in repair of all EC objects
in the whole data center).

last repair status

This can be INIT (meaning no repair has been performed on that node yet), INPROGRESS, COMPLETED,
TERMINATED (meaning that an in-progress repair was aborted by the operator using the "stop" option for
"hsstool repair" (page 686) or "hsstool repairec" (page 697)), or FAILED.

If a node restart interrupts a repair, that repair job is considered FAILED and it goes to the head of the queue.

interval

The configurable interval at which this type of repair is automatically initiated on each node, in number of
minutes. (Note though the qualifiers indicated in the "next repair at"description above).

count

The number of repairs of this type that have been executed on this node since HyperStore was installed on the
node.

11.1.14. hsstool ring
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 712)

l "Command/Response Example" (page 713)

This hsstool command provides status information for each of the dozens or hundreds of virtual nodes
(vNodes) in your storage cluster. It is very granular and verbose. In most circumstances you will find more
value in using the hsstool info or hsstool status commands rather than ring.

11.1.14.1. Command Syntax

The hsstool ring command line syntax is as follows.

hsstool [-h <host>] ring

You can also run the hsstool ring command through the CMC UI:

712

11.1. hsstool

11.1.14.2. Command/Response Example

The ring command results display a status line for each virtual node (vNode) in the storage cluster. In a typical
cluster the ring command may return hundreds of lines of information. The returned information is sorted by
ascending vNode token number.

The example below is an excerpt from a ring command response for a four node HyperStore system that spans
two data centers. Each of the four physical nodes has 32 vNodes, so the full response has 128 data lines. The
list is sorted by ascending vNode token number. Note that although the command is submitted to a particular
node ("cloudian-node1"), it returns information for the whole cluster. It doesn’t matter which node you submit
the command to. For description of a particular response item, click on the response item; or for the full list of
response item descriptions see "hsstool ring Response Items" (page 714).

hsstool -h cloudian-node1 ring

Address DC Rack Cassandra Cassandra-Load Hss State Token

105.236.130.70 DC1 RAC1 Up 2.05 MB Up Normal 2146203117201265879150333284323068618

105.236.130.70 DC1 RAC1 Up 2.05 MB Up Normal 5542328528654630725776532927863868383

105.236.218.176 DC2 RAC1 Up 1.35 MB Up Normal

12000523287982171803377514999547780254

105.236.218.176 DC2 RAC1 Up 1.35 MB Up Normal

13878365488241145156735727847865047180

198.199.106.194 DC1 RAC1 Up 1.9 MB Up Normal

18315119863185730105557340630830311535

...

...

11.1.14.3. hsstool ring Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

713

Chapter 11. Commands

11.1.14.4. hsstool ring Response Items

Address

IP address of the physical node on which the vNode resides.

DC

Data center in which the vNode resides.

Rack

Rack in which the vNode resides.

Cassandra

Cassandra Service status of the vNode. Will be one of: "Up", "Down", "Joining" (in the process of joining the
cluster), "Leaving" (in the process of decommissioning or being removed from the cluster), or "?" (physical host
cannot be reached). All vNodes on a physical node will have the same Cassandra status.

Cassandra-Load

Cassandra load (quantity of data stored in Cassandra) for the physical host on which the vNode resides. There
will be some Cassandra load even if all S3 objects are stored in the HyperStore File System or the erasure cod-
ing file system. For example, Cassandra is used for storage of object metadata and service usage data, among
other things. Note that Cassandra load information is available only for the physical node as a whole; it is not
available on a per-vNode basis.

HSS

HyperStore Service status for the vNode. Will be one of: "Up", "Down", or "?" (physical host cannot be reached).
All vNodes on a physical node will have the same HSS status.

State

HyperStore Service state for the vNode. Will be one of: "Normal" or "Decommissioning". All vNodes on a given
physical node will have the same HSS state.

Token

The vNode’s token (from an integer token space ranging from 0 to 2 127 -1). This token is the top of the token
range that constitutes the vNode. Each vNode's token range spans from the next-lower token (exclusive) in the
cluster up to its own token (inclusive).

11.1.15. hsstool status
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 714)

l "Command/Response Example" (page 715)

This hsstool command returns status information for a storage cluster as a whole.

11.1.15.1. Command Syntax

The hsstool status command line syntax is as follows.

714

11.1. hsstool

hsstool [-h <host>] status

You can also run the hsstool status command through the CMC UI:

11.1.15.2. Command/Response Example

The status command example below retrieves the status of a four-node cluster. For description of a particular
response item, click on the response item; or for the full list of response item descriptions see "hsstool status
Response Items" (page 716).

hsstool -h localhost status

Datacenter: DC1

===============

Address DC Rack Cassandra Tokens Cassandra-Load Hss State Hyperstore-Disk Host-ID

Hostname

10.20.2.54 DC1 RAC1 Up 32 0.24118415 Up Normal 427.66MB/7.75GB(5.39%) cfa851df-4170-

4006-a516-d5b56f99a820 cld05-04

10.20.2.57 DC1 RAC1 Down 32 0.2239672 Up Normal 79.45MB/11.17GB(0.69%) 6bf98091-

5318-4ae6-acc3-f1524f5e7da3 cld05-07

10.20.2.55 DC1 RAC1 Up 32 0.23458646 Up Normal 1.1GB/20.48GB(5.36%) c77ff93a-5579-

4f9f-b5a3-9e22d68fab84 cld05-05

10.20.2.52 DC1 RAC1 Up 32 0.3002622 Up Normal 692.7MB/12.61GB(5.37%) 914117cb-

3ec5-4c79-9dff-5a9f33002ce3 cld05-02

11.1.15.3. hsstool status Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

715

Chapter 11. Commands

11.1.15.4. hsstool status Response Items

Address

IP address of the node.

DC

Data center in which the node resides.

Rack

Rack in which the node resides.

Cassandra

Cassandra Service status of the node. Will be one of: "Up", "Down", "Joining" (in the process of joining the
cluster), "Leaving" (in the process of leaving the cluster), or "?" (host cannot be reached).

Tokens

Number of tokens (also known as vNodes) assigned to the physical node. The tokens assigned to a physical
node determine which S3 objects will be stored on the node. For more information on how tokens are assigned
to physical nodes, see "How vNodes Work" (page 42).

Cassandra-Load

From among the total token space in the storage cluster, the portion of token space that is owned by this node.
This is expressed as a decimal value. For example, if 25% of the cluster's total token space is owned by this
node, this field displays .25.

Note that this is a different meaning of "Cassandra-Load" than is used for hsstool ring and hsstool info results.

Hss

HyperStore Service status for the node. Will be one of: "Up", "Down", or "?" (physical host cannot be reached).

State

HyperStore Service state for the node. Will be one of: "Normal" or "Decommissioning".

HyperStore-Disk

The total volume of S3 object data stored in the HyperStore File System on the node. This includes S3 objects
for which the node serves as a secondary or tertiary replica as well as S3 objects for which the node is the
primary replica.

This field also shows the total amount of disk space designated for S3 object storage on the node.

Host-ID

System-generated hexadecimal number uniquely identifying the physical node. Note that with the use of
vNodes, tokens uniquely identify vNodes while Host IDs uniquely identify each physical node within the
cluster.

Hostname

Hostname of the node.

716

11.1. hsstool

11.1.16. hsstool trmap
[Command]

Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 717)

l "Command/Response Examples" (page 718)

This hsstool command returns a list of token range map snapshot IDs along with information about each snap-
shot such as the snapshot creation time. You can also use the command to return the contents of a specified
token range map snapshot.

The system creates a token range map snapshot each time you add a new node to your cluster. The token
range map identifies, for each storage policy in your system, the nodes (endpoints) that store data from each
token range. The data from each token range will be stored on multiple nodes, with the number of nodes
depending on the storage policy (for example, in a 3X replication storage policy each token range would be
mapped to three storage endpoints). When you've added new nodes to your cluster, the system uses token
range maps to manage the rebalancing of S3 object data from existing nodes to the new nodes.

Typically you should not need to use this command unless you are working with Cloudian Support to
troubleshoot a failed attempt to add nodes to your HyperStore cluster or a failed attempt to rebalance the
cluster after adding nodes.

11.1.16.1. Command Syntax

The hsstool trmap command line syntax is as follows. For description of a particular parameter, click on the
parameter name; or for the full list of parameter descriptions see "hsstool trmap Parameters" (page 719).

/opt/cloudian/bin/hsstool -h <host> trmap [list [-a]] [show <snapshotId>]
[set <snapshotId> <active/disabled>] [delete <snapshotId>]

IMPORTANT ! Do not use the set or delete options unless instructed to do so by Cloudian Support.

You can also run the hsstool trmap command through the CMC UI:

717

Chapter 11. Commands

11.1.16.2. Command/Response Examples

In this first example a list of active token range map snapshot IDs is retrieved. These are token range map snap-
shots for which the associated rebalancing operation has not yet completed.

/opt/cloudian/bin/hsstool -h localhost trmap list

061e9190-6d62-429d-85dc-e4baec07f49e Wed Jun 19 15:26:07 EDT 2019

22351e62-e921-4130-afaf-1ca3183046e1 Thu Jun 20 14:17:04 EDT 2019

1c84d57e-dccb-47b0-af6d-015e823eab07 Wed Jun 19 21:42:42 EDT 2019

9e096b8f-5914-42fc-8dc7-063de85deb4a Thu Jun 20 06:56:17 EDT 2019

In this next example, a token range map snapshot is retrieved (this is from a different system and is not one of
the snapshots listed in the first example). The map is in JSON format. The response is very large, and is trun-
cated below. In practice, if you use this command you should redirect the output to a text file. For description of
a particular response item, click on the response item; or for the full list of response item descriptions see
"hsstool trmap Response Items" (page 720).

/opt/cloudian/bin/hsstool -h cloudian-node1 trmap show fbcdf5be-7c15-40a4-be59-

955df70e7fb2

{

"id" : "fbcdf5be-7c15-40a4-be59-955df70e7fb2",

"version" : "1",

"timestamp" : 1477266709616,

"rebalance" : "REQUIRED",

"policies" : {

"5871e62dae4ccfd618112ca3403b3251" : {

"policyId" : "5871e62dae4ccfd618112ca3403b3251",

"keyspaceName" : "UserData_5871e62dae4ccfd618112ca3403b3251",

"replicationScheme" : {

"DC2" : "1",

"DC1" : "1",

"DC3" : "1"

},

"ecScheme" : null,

"ecMap" : null,

718

11.1. hsstool

"replicasMap" : [{

"left" : 163766745962987615139826681359528839019,

"right" : 164582023203604297970082254372849331112,

"endPointDetails" : [{

"endpoint" : "10.10.10.114",

"datacenter" : "DC3",

"rack" : "RAC1"

}, {

"endpoint" : "10.10.10.115",

"datacenter" : "DC2",

"rack" : "RAC1"

}, {

"endpoint" : "10.10.10.111",

"datacenter" : "DC1",

"rack" : "RAC1"

}]

}, {

"left" : 6341660663762096831290541188712444913,

"right" : 6449737778660216877727472971404857143,

"endPointDetails" : [{

...

...

See Also:

l "How vNodes Work" (page 42)

11.1.16.3. hsstool trmap Parameters

-h <host>

(Mandatory) You can specify the hostname or IP address of any node in the cluster. The command retrieves
cluster-wide information that is available from any node that belongs to the cluster.

Note In the CMC UI for this command this parameter is called "Target Node".

list [-a]

(Optional) Using listwithout the optional -a flag returns only a list of active token range map snapshot IDs.
These are token range map snapshots for which the associated rebalancing operation has not yet completed.

If you use the -a flag -- that is, trmap list -a -- then the command returns the IDs of all snapshots -- the active
snapshots and also the disabled snapshots (snapshots for which the associated rebalancing operation has
completed). When you use the -a flag the return includes a status field for each snapshot, to distinguish active
snapshots from disabled snapshots. For example:

[root]# /opt/cloudian/bin/hsstool -h localhost trmap list -a

59af5410-b303-41bd-94a0-31ce92058e11 Tue Jun 26 09:03:56 EDT 2018 DISABLED

061e9190-6d62-429d-85dc-e4baec07f49e Wed Jun 19 15:26:07 EDT 2019 ACTIVE

22351e62-e921-4130-afaf-1ca3183046e1 Thu Jun 20 14:17:04 EDT 2019 ACTIVE

1c84d57e-dccb-47b0-af6d-015e823eab07 Wed Jun 19 21:42:42 EDT 2019 ACTIVE

9e096b8f-5914-42fc-8dc7-063de85deb4a Thu Jun 20 06:56:17 EDT 2019 ACTIVE

719

Chapter 11. Commands

3bf72d7e-a2a1-4551-972c-1223a4485335 Mon Jun 25 17:23:32 EDT 2018 DISABLED

dbf98852-2557-4cfd-8708-0398009fc6d7 Mon Jun 25 18:38:47 EDT 2018 DISABLED

show <snapshotId>

(Optional) This returns the content of the specified token range map snapshot. This option is only supported on
the command line, not in the CMC interface.

set <snapshotId> <active/disabled>

(Optional) Do not use this option unless instructed to do so by Cloudian Support. This sets the status of the
specified token range map snapshot to active (rebalancing in connection with this snapshot still needs to be
completed) or disabled (rebalancing in connection with this snapshot has been completed). This option is only
supported on the command line, not in the CMC interface.

delete <snapshotId>

(Optional) Do not use this option unless instructed to do so by Cloudian Support. This deletes the specified
token range map snapshot. This option is only supported on the command line, not in the CMC interface.

11.1.16.4. hsstool trmap Response Items

id

System-generated unique identifier of this token range map snapshot.

version

Version of the token range map snapshot. This integer is incremented each time a new snapshot is created.

timestamp

Timestamp indicating when the token range map snapshot was created.

rebalance

Status of the hsstool rebalance operation in regard to this token range map snapshot, such as REQUIRED or
COMPLETED. Each time you add a node to your system (using the CMC's function for adding a node, in the
Data Centers page), the system automatically generates a token range snapshot. After adding a node, you
then must run hsstool rebalance on the new node (which you can do from the CMC's Nodes Advanced page).
The rebalance operation utilizes the token range map snapshot. For complete instructions on adding nodes,
see "Adding Nodes" (page 420).

policies

This marks the beginning of the per-policy token range map information. The token range map will have sep-
arate token range map information for each of your storage policies.

policyId

System-generated unique identifier of a storage policy. Note that this ID appears three times: at the outset of
the policy block, then again as the policyId attribute, then again within the keyspaceName.

keyspaceName

Name of the Cassandra keyspace in which object metadata is stored for this storage policy. The name is in
format UserData_<policyId>.

replicationScheme

720

11.1. hsstool

Specification of the replication scheme, if this policy block is for a replication storage policy. In the example the
policy's replication scheme calls for one replica in each of three data centers.

ecScheme

Specification of the erasure coding scheme, if this policy block is for an erasure coding storage policy. In the
example, the policy block is for a replication policy so the ecScheme value is null.

ecMap

Content of the token range map for the policy scheme, if this policy block is for an erasure coding storage
policy. In the example, the policy block is for a replication policy so the ecMap value is null.

replicasMap

Content of the token range map for the policy scheme, if this policy block is for a replication storage policy. The
map consists of lists of endpoints per token range.

left

Token at the low end of the token range (exclusive). This is from the consistent hashing space of 0 to 2127 from
which HyperStore generates tokens for the purpose of allocating data across the cluster.

right

Token at the high end of the token range (inclusive). This is from the consistent hashing space of 0 to 2127 from
which HyperStore generates tokens for the purpose of allocating data across the cluster.

endPointDetails

Endpoint mapping information for this particular token range, for this storage policy. This is a list of endpoints
(nodes), with each endpoint identified by IP address as well as data center name and rack name. The number
of endpoints per token range will depend on the storage policy scheme. In the example the policy is a 3X rep-
lication policy, so there are three endpoints listed for each token range. Objects for which the object token
(based on a hash of the bucket name / object name combination) falls into this token range will have replicas
placed on each of these nodes.

11.1.17. hsstool whereis
Subjects covered in this section:

l Introduction (immediately below)

l "Command Syntax" (page 721)

l "Command/Response Examples " (page 722)

l "Log File for "whereis -a"" (page 723)

This hsstool command returns the current storage location of each replica of a specified S3 object (or in the
case of erasure coded objects, the location of each of the object’s fragments). The command response also
shows the specified object's metadata such as last modified timestamp and object digest.

11.1.17.1. Command Syntax

The hsstool whereis command line syntax is as follows. For description of a particular parameter, click on the
parameter; or for the full list of parameter descriptions see "hsstool whereis Parameters" (page 723).

hsstool [-h <host>] whereis <bucket>/<object> [-v <version>] [-ck] [-a]

721

Chapter 11. Commands

You also can run the hsstool whereis command through the CMC UI:

11.1.17.2. Command/Response Examples

The first whereis command example below retrieves location information for an object named "Guide.pdf". This
is from a single-node HyperStore system, so there is just one replica of the object. The detail information for the
object replica is truncated in this example. For description of a particular response item, click on the response
item; or for the full list of response item descriptions see "hsstool whereis Response Items" (page 724).

hsstool -h sirius whereis bucket2/Guide.pdf

Key: bucket2/Guide.pdf

Policy ID: c4a276180b0c99346e2285946f60e59c

Version: null

Compression: NONE

Create Time: 2017-02-20T16:38:09.783Z

Last Modified: 2017-02-20T16:38:09.783Z

Last Access Time: 2017-02-20T16:38:10.273Z

Size: 7428524

Type: REPLICAS

Region: region1

[DC1 10.50.10.21 sirius] bucket2/Guide.pdf file://10.50.10.21:/var/lib/cloudian/hsfs/1L1t...

The second whereis command example retrieves location information for an object named "obj1.txt". This is
from a two data center HyperStore system, using replicated 2+1 erasure coding (a configuration that is no
longer supported). Note that the response indicates that one of the expected six fragments is missing. The
detail information for each found fragment is truncated in this example. For description of a particular response
item, click on the response item; or for the full list of response item descriptions see "hsstool whereis
Response Items" (page 724).

hsstool -h cloudian-node3 whereis bucket1/obj1.txt

Key: bucket1/obj1

Policy ID: 1d140a90b17285cf2d1502cbd424d621

Version: null

Compression: NONE

Create Time: 2018-01-29T23:07:52.626Z

Last Modified: 2018-01-29T23:07:52.626Z

722

11.1. hsstool

Last Access Time: 2018-01-29T23:07:52.626Z

Size: 11231

Type: EC

Region: region1

5 out of 6 fragments were found, 1 fragments missing

[DC1 2 10.100.186.47 cloudian-node3] bucket1/obj1.txt ec://10.100.186.47:/var/lib/cloudian/ec/...

[DC1 3 10.100.76.90 cloudian-node4] bucket1/obj1.txt ec://10.100.76.90:/var/lib/cloudian/ec/...

[DC2 1 10.100.61.17 cloudian-node6] bucket1/obj1.txt ec://10.100.61.17:/var/lib/cloudian/ec/...

[DC2 2 10.100.80.35 cloudian-node7] bucket1/obj1.txt ec://10.100.80.35:/var/lib/cloudian/ec/...

[DC2 3 10.100.218.23 cloudian-node8] bucket1/obj1.txt ec://10.100.218.23:/var/lib/cloudian/ec/...

[DC1 1 10.100.186.42 cloudian-node1] 0 replication found

Note For objects for which the Type is "TRANSITIONED" (auto-tiered), the response will also include a
URL field.

11.1.17.3. Log File for "whereis -a"

When you use the whereis -a command, information about all replicas and erasure coded fragments of all
objects in the entire service region is written to a log file. The log file is written on the HyperStore host that you
connect to when you run whereis -a, and by default the log file path is:

/var/log/cloudian/whereis.log

In the whereis.log file, the start and completion of the output from a single run of whereis -a is marked by
"START"and "END" timestamps. Within those timestamps, the output is organized by user. The start of output
for a particular user is marked by "#user:<canonical UID>". This line is then followed by lines for the user’s
buckets and objects, with the same object detail information as described in the whereis command results doc-
umentation above. Users who do not have any buckets will not be included in the log file.

The output of multiple runs of whereis -a may be written to the same log file, depending on the size of the out-
put. Because the output of whereis -a may be very large, it’s also possible that the output of a single run may
be spread across multiple log files, if maximum file size is reached and log rotation occurs.

By default this log is rotated if it reaches 10MB in size or at the end of the day, whichever occurs first. The old-
est rotated whereis log file is automatically deleted if it reaches 180 days in age or if the aggregate size of all
rotated whereis log files (after compression) reaches 100MB. These rotation settings are configurable in the
RollingRandomAccessFile name="APP" section of the /etc/cloudian-<version>-pup-
pet/modules/cloudians3/templates/log4j-hsstool.xml.erb file. For information about changing these settings see
"Log Configuration Settings" (page 626).

11.1.17.4. hsstool whereis Parameters

-h <host>

(Optional) Hostname or IP address of the node for which to retrieve token and load information. If not supplied,
this defaults to the hostname of the host on which you are executing hsstool.

Note In the CMC UI for this command this parameter is called "Target Node".

<bucket>/<object>

(Mandatory unless using the -a option) Bucket name, followed by a forward slash, followed by the full object

723

Chapter 11. Commands

name (including "folder path", if any). For example,mybucket/file1.txt or mybucket/Videos/Vacation/Italy_2016-
06-27.mpg.

If the object name has spaces in it, enclose the bucket/object name pair in quotes. For example, "mybucket/big
document.doc".

The bucket/object name is case-sensitive.

Note In the CMC UI implementation of this command, you enter the bucket name and the full object
name (including folder path) in separate fields. For example, bucket name mybucket and full object
name Videos/Vacation/Italy_2016-06-27.mpg.

-v <version>

(Optional) If versioning is enabled on the bucket that contains the object, you can optionally specify the version
ID of a particular version of the object. Version IDs are system-generated hexadecimal values (for example,
fe1be647-5f3b-e87f-b433-180373cf31f5). If versioning has been used for the object but you do not specify a
version ID, location information will be retrieved for the most recent version of the object.

-ck

(Optional) Use the -ck option if you want the whereis results to indicate whether any of the target object's rep-
licas or fragments are corrupted. When you use this option, the whereis operation detects corruption by com-
paring a freshly computed MD5 hash of each replica or fragment to what the MD5 hash of each replica or
fragment should be, based on the object's stored metadata.

-a

(Optional) Use the -a option if you want a full list of all replicas of all objects in the entire service region. This
information will be written to a log file. For more information on the log file, see the section that follows the com-
mand/response example.

If you use the -a option do not use the <bucket/object> parameter or the -v <version> parameter. Run the com-
mand simply as hsstool -h <host> whereis -a

Note The CMC does not support the -a option. To use this option you need to use hsstool whereis on
the command line.

11.1.17.5. hsstool whereis Response Items

Key

Key that uniquely identifies the S3 object, in format <bucketname>/<objectname>. For example, buck-
et1/Documents/Meetings_2018-06-27.docx.

PolicyID

System-generated identifier of the storage policy that applies to the bucket in which this object is stored.

Version

Object version, if versioning has been used for the object. Versions are identified by timeuuid values in hexa-
decimal format. If versioning has not been used for the object, the Version field displays "null".

724

11.1. hsstool

Compression

Type of server-side compression applied to the object, if any. Possible values are NONE, SNAPPY, ZLIB, or
LZ4. The type of compression applied depends on the storage policy used by the bucket. Each storage policy
has its own configuration as to whether compression is used and the compression type.

Create Time

Timestamp for the original creation of the object. Format is ISO 8601 and the time is in Coordinated Universal
Time (UTC).

Last Modified

Timestamp for last modification of the object. Format is ISO 8601 and time is in UTC.

Last Access Time

Timestamp for last access of the object. An object’s Last Access Time is updated if the object is accessed either
for retrieval (GET or HEAD) or modification (PUT/POST/Copy). Format is ISO 8601 and time is in UTC.

Size

The object’s size in bytes.

Type

One of:

l REPLICAS — The object is replicated in the HyperStore File System (HSFS).

l EC — The object is erasure coded in the HSFS.

l TRANSITIONED — The object has been transitioned (auto-tiered) to a different storage system such as
Amazon S3.

Region

The HyperStore service region in which the object is stored.

URL

This field appears only in the case of TRANSITIONED objects. For such objects, this field shows the URL that
identifies the location of the object in the tiering destination system. For example:

http://s3.amazonaws.com/bucket2.mdazyjgxnjyxndu2ody4mji1nty3/notes.txt

In this example, the tiering destination is Amazon S3; the bucket name in the destination system is buck-
et2.mdazyjgxnjyxndu2ody4mji1nty3 (which is the HyperStore source bucket name — bucket2 in this case —
appended by a 28 character random string); and the object name is notes.txt. Note that the URL field will spe-
cify the transfer protocol as http, whereas to actually access the object in the destination system the protocol
would typically be https.

Location detail

For objects stored locally (objects that are not of type TRANSITIONED), the lower part of the response shows
the location of each object replica (for replicated objects) or of each erasure coded object fragment (for EC
objects).

For HSFS replicated objects each location is specified as:

725

Chapter 11. Commands

[<datacenter> <IP-address> <hostname>] <bucket>/<objectname>

file://<IP-address>:<mountpoint>/hsfs/<base62-encoded-vNode-token>/<policyid>/

<000-255>/<000-255>/<filename> <last-modified> <version> <digest>

For erasure coded object fragments each location is specified as:

[<datacenter> <key-suffix-digit> <IP-address> <hostname>] <bucket>/<objectname>

ec://<IP_address>:<mountpoint>/ec/<base62-encoded-vNode-token>/<policyid>/

<000-255>/<000-255>/<filename> <last-modified> <version> <digest>

l The <base62-encoded-vNode-token> is a base-62 encoding of the token belonging to the vNode to
which the object instance or fragment is assigned (for background information see "How vNodes
Work" (page 42)).

l The <policyid> segment is the unique identifier of the storage policy applied to the bucket in which the
object is stored.

l The two <000-255> segments of the path are based on a hash of the <filename>, normalized to a
255*255 number.

l The <filename> is a dot-separated concatenation of the object’s hash token and the object’s Last Modi-
fied Time timestamp. The timestamp is formatted as <UnixTimeMillis><6digitAtomicCounter>-
<nodeIPaddrHex> (the last element is the IP address -- in hexadecimal format -- of the S3 Service node
that processed the object upload request). Note: For objects last modified prior to HyperStore version
6.1, the timestamp is simply Unix time in milliseconds. This was the timestamp format used in Hyper-
Store 6.0.x and older..

l For EC objects only, the <key_suffix_digit> at the beginning of each location is a digit that the system
generates and uses to ensure that each fragment goes to a different node.

Note If an object replica or fragment is supposed to be on a node (according to system metadata) but
is missing, the node’s IP address is listed in the command results along with a message stating "0 rep-
lication found". For example, "[10.10.3.52] 0 replication found".

Note For multipart objects (large objects uploaded via the S3 multipart upload method), storage loc-
ation detail is shown for each part.

Fragment count summary

For erasure coded objects, the hsstool whereis response includes a line stating the number of fragments found
and (if applicable) the number of fragments missing. For objects for which all expected fragments were found,
the line will state "x out of x fragments were found". For objects for which one or more of the expected frag-
ments are missing, the line will state "x out of y fragments were found, z fragments missing".

11.2. Redis Monitor Commands
The HyperStore "Redis Monitor Service" (page 27) monitors Redis Credentials and Redis QOS cluster health
and implements automatic failover of the Redis master node role in each cluster. The Redis Monitor runs on
two nodes, with one instance being the primary and the other being the backup. When you submit Redis Mon-
itor commands you must submit them to the primary node, not the backup. To check which of your nodes is
running the primary Redis Monitor, go to the CMC's Cluster Information page.

726

11.2. Redis Monitor Commands

You can submit commands to the Redis Monitor primary host through the Redis Monitor CLI. A couple of the
more useful commands can also be executed through the CMC.

l To initiate a Redis Monitor CLI session, use netcat to connect to port 9078 on the node on which the
primary Redis Monitor is running:

nc <redismon_primary_host> 9078

Specify the hostname or IP address (do not use 'localhost'). Once connected, you can then use any of
the Redis Monitor CLI commands listed below. When you're done using Redis Monitor commands,
enter quit to end your Redis Monitor CLI session and then enter <ctrl>-d to end your netcat session and
return to the terminal prompt.

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, at the HSH prompt you can open a net-
cat session to the Redis Monitor port:

$ nc <redismon_primary_host> 9078

You can then use any of the Redis Monitor CLI commands listed below. When you're done, enter quit to
end your Redis Monitor CLI session and then <ctrl>-d to end your netcat session and return to the HSH
prompt.

l To access Redis Monitor commands in the CMC, go to the Node Advanced page and from the "Com-
mand Type" drop-down list select "Redis Monitor Operations". Note that only a small number of Redis
Commands are available through the CMC (specifically get cluster and set master) -- for all the other
Redis Monitor commands you must use the Redis Monitor CLI or a JMX client.

The Redis Monitor supports the following commands:

11.2.1. get cluster

get cluster
Use this command to retrieve basic status information that the Redis Monitor currently has for a specified Redis
cluster. The cluster status information includes:

l The identity of the Redis master node within the cluster

l Whether monitoring of the cluster by the Redis Monitor is enabled

l Whether the sending of cluster status notifications to clients of the cluster is enabled

l A list of cluster member nodes, with an indication of the status (UP/DOWN) of each node

l A list of cluster clients (which write to and/or read from this Redis database), with an indication of the
status (UP/DOWN) of each client. The clients will include S3 Service instances (identified by JMX listen-
ing socket <host>:19080), IAM Service instances (<host>:19084), Admin Service instances
(<host>:19081), and HyperStore Service instances (<host>:19082). These are the clients to which the
Redis Monitor sends notifications regarding the Redis cluster’s status.

l "state" information that includes a timestamp indicating the last date and time that the master role status
was updated (if there have been any fail-overs of the master role, the timestamp is the time of the last
fail-over -- otherwise, it's the time of the last start-up of the Redis Monitor)

11.2.1.1. Command Line Syntax

get cluster redis.credentials|redis.qos.<region>

727

Chapter 11. Commands

Note For this and all other Redis Monitor commands, the Redis QOS cluster identifier includes the
name of the service region in which the cluster resides. This is necessary since in a multi-region Hyper-
Store system each region has its own Redis QoS cluster. By contrast the Redis Credentials cluster,
since it is global (extending across all service regions), does not include a region name in its identifier.

Example:

nc 10.50.20.12 9078

get cluster redis.credentials

OK master: store1(10.50.20.1):6379, monitoring: enabled, notifications: enabled

nodes: [[store1(10.50.20.1):6379,UP,master], [store4(10.50.20.4):6379,UP,slave],

[store5(10.50.20.5):6379,UP,slave]]

clients: [[store1(10.50.20.1):19080,UP,store1], [store2(10.50.20.2):19080,UP,store1],

[store3(10.50.20.3):19080,UP,store1], [store4(10.50.20.4):19080,UP,store1],

[store5(10.50.20.5):19080,UP,store1], [store6(10.50.20.6):19080,UP,store1],

[store1(10.50.20.1):19081,UP,store1], [store2(10.50.20.2):19081,UP,store1],

[store3(10.50.20.3):19081,UP,store1], [store4(10.50.20.4):19081,UP,store1],

[store5(10.50.20.5):19081,UP,store1], [store6(10.50.20.6):19081,UP,store1],

[store1(10.50.20.1):19082,UP,store1], [store2(10.50.20.2):19082,UP,store1],

[store3(10.50.20.3):19082,UP,store1], [store4(10.50.20.4):19082,UP,store1],

[store5(10.50.20.5):19082,UP,store1], [store6(10.50.20.6):19082,UP,store1]]

state: redis.credentials: master= 10.50.20.1 updatetime= Fri Sep 21 16:17:23 PDT 2018

11.2.1.2. CMC UI

Path: Cluster → Nodes → Advanced

11.2.2. get master

get master
Use this command to retrieve from the Redis Monitor the identity of the current master node within a specified
Redis cluster.

728

11.2. Redis Monitor Commands

11.2.2.1. Command Line Syntax

get master redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

get master redis.qos.region1

OK store2(10.50.20.2):6380

11.2.3. get nodes

get nodes
Use this command to retrieve from the Redis Monitor a list of all current members of a specified Redis cluster.
The command response also indicates the status (UP/DOWN) and role (master/slave> of each member node.

11.2.3.1. Command Line Syntax

get nodes redis.credentials|redis.qos.<region>

Example:

$ nc 10.50.20.12 9078

get nodes redis.credentials

OK [[[store1(10.50.20.1):6379,UP,master], [store4(10.50.20.4):6379,UP,slave],

[store5(10.50.20.5):6379,UP,slave]]]

11.2.4. get clients

get clients
Use this command to retrieve from the Redis Monitor a list of clients of a specified Redis cluster (client nodes
that write to and/or read from the Redis database). These are the clients to which the Redis Monitor sends noti-
fications regarding the Redis cluster’s status. For example, if the cluster’s master role changes from one node
to another, the Redis Monitor will notify these clients of the change.

The clients will include S3 Service instances (identified by JMX listening socket <host>:19080), IAM Service
instances (<host>:19084), Admin Service instances (<host>:19081), and HyperStore Service instances
(<host>:19082). The command response also indicates the status (UP/DOWN) of each client, and for each cli-
ent it shows which node the client thinks is the Redis master.

11.2.4.1. Command Line Syntax

get clients redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

get clients redis.credentials

OK [[[store1(10.50.20.1):19080,UP,store1], [store2(10.50.20.2):19080,UP,store1],

[store3(10.50.20.3):19080,UP,store1], [store4(10.50.20.4):19080,UP,store1],

[store5(10.50.20.5):19080,UP,store1], [store6(10.50.20.6):19080,UP,store1],

[store1(10.50.20.1):19081,UP,store1], [store2(10.50.20.2):19081,UP,store1],

729

Chapter 11. Commands

[store3(10.50.20.3):19081,UP,store1], [store4(10.50.20.4):19081,UP,store1],

[store5(10.50.20.5):19081,UP,store1], [store6(10.50.20.6):19081,UP,store1],

[store1(10.50.20.1):19082,UP,store1], [store2(10.50.20.2):19082,UP,store1],

[store3(10.50.20.3):19082,UP,store1], [store4(10.50.20.4):19082,UP,store1],

[store5(10.50.20.5):19082,UP,store1], [store6(10.50.20.6):19082,UP,store1]]]

In the above example, "store1" is the current Redis Credentials master node. All the clients correctly have this
information.

11.2.5. enablemonitoring

enable monitoring
Use this command to enable monitoring of a specified Redis cluster by the Redis Monitor.

Note Monitoring is enabled by default. This command is relevant only if you have previously disabled
monitoring.

11.2.5.1. Command Line Syntax

enable monitoring redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

enable monitoring redis.credentials

OK enabled

11.2.6. disablemonitoring

disable monitoring
Use this command if you want to temporarily disable Redis Monitor’s monitoring of a specified Redis cluster —
for example if you are performing maintenance work on the Redis cluster. (You can subsequently use the
enable monitor command re-enable monitoring of that cluster.)

11.2.6.1. Command Line Syntax

disable monitoring redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

disable monitoring redis.qos.region1

OK disabled

11.2.7. enable notifications

enable notifications
Use this command to enable Redis Monitor’s sending of notifications to the clients of a specified Redis cluster.
(The clients are the S3 Service instances, IAM Service instances, Admin Service instances, and HyperStore

730

11.2. Redis Monitor Commands

Service instances that write to and/or read from that Redis cluster).

The Redis Monitor sends notifications to inform clients of the identity of the Redis cluster’s master node, in
either of these circumstances:

l The Redis master role has switched from one host to another. (This could happen if the original master
goes down and Redis Monitor detects this and fails the master role over to one of the slave nodes; or if
an operator uses the Redis Monitor CLI to move the master role from one node to another).

l The Redis Monitor in its regular polling of cluster clients' status detects that one of the clients has incor-
rect information about the identity of the Redis cluster master node. In this case the Redis Monitor noti-
fies the client to give it the correct information.

Note Notifications are enabled by default. This operation is relevant only if you have previously dis-
abled notifications using the disable notifications command.

11.2.7.1. Command Line Syntax

enable notifications redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

enable notifications redis.credentials

OK enabled

11.2.8. disable notifications

disable notifications
Use this command to temporarily disable Redis Monitor’s sending of Redis cluster status notifications to the cli-
ents of that cluster. For more information on the notification feature see "enable notifications" (page 730).

11.2.8.1. Command Line Syntax

disable notifications redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

disable notifications redis.qos.region1

OK disabled

11.2.9. set master

set master
Use this command to assign the Redis master role to a different node within a specified Redis cluster. The
node to which you assign the master role must be one of the current slaves within the same Redis
cluster.

The Redis master node within a cluster is the node to which Redis clients submit writes. The writes are asyn-
chronously replicated to the slave(s) within that cluster. Redis clients read from the slave(s).

731

Chapter 11. Commands

An example of when you would move the Redis master role is if you want to remove the current Redis master
host from your cluster.

Using this command is part of a broader procedure for moving a Redis master role to a slave. For the full pro-
cedure including the use of this command within the procedure, see "Move the Redis Credentials Master or
QoS Master Role" (page 458).

11.2.9.1. Command Line Syntax

set master redis.credentials|redis.qos.<region> [<host:redisPort>]

Example:

nc 10.50.20.12 9078

set master redis.credentials store5:6379

OK set new master store5(10.50.20.5):6379

Note If you do not specify a <host:redisPort> value, the Redis Monitor chooses a slave node at random
(from within the cluster) to elevate to the master role.

11.2.9.2. CMC UI

Path: Cluster → Nodes → Advanced

In the CMC UI, use the "Hostname" field to specify the host to which you want to move the Redis master role.

11.2.10. add node

add node
Use this command to add a Redis node to the list of nodes that Redis Monitor is monitoring, for a specified
Redis cluster. This would be if you have used the installer (cloudianInstall.sh in the installation directory on
your Puppet master node) to activate Redis on a HyperStore node that wasn’t previously running Redis. In this

732

11.2. Redis Monitor Commands

circumstances you have two options to make Redis Monitor aware of the new member of the Redis cluster:

l Restart Redis Monitor

OR

l Use this command.

11.2.10.1. Command Line Syntax

add node redis.credentials|redis.qos.<region> <host:redisPort>

Example:

nc 10.50.20.12 9078

add node redis.qos.region1 store3:6380

OK added node store3(10.50.20.3):6380 to redis

11.2.11. add client

add client
This command can be used to add a new S3 Service, IAM Service, Admin Service, and/or HyperStore Service
node to the list of clients to which Redis Monitor will send notifications regarding the status of a specified Redis
cluster.

In normal circumstances you should not have to use this command. If you add a new node to your HyperStore
cluster (as described in "Adding Nodes" (page 420)), the system automatically makes Redis Monitor aware of
the new clients of the Redis Credentials and Redis QoS clusters.

If you do use this command, add only one client per command run. A client is identified by its JMX socket (for
example "cloudian12:19080" for an S3 Service instance running on host cloudian12, or "cloudian12:19081" for
an Admin Service instance running on host cloudian12).

11.2.11.1. Command Line Syntax

add client redis.credentials|redis.qos.<region> <host:JMXport>

Example:

nc 10.50.20.12 9078

add client redis.credentials store7:19080

OK added client store7(10.50.20.7):19080 to redis

11.2.12. test dc partition

test dc partition
If your HyperStore system includes multiple data centers (DCs), you can use this command to check whether or
not there is a DC partition in the specified Redis cluster. A Redis cluster is considered to have a DC partition if
the Redis Monitor -- from its location within one of the DCs -- cannot reach any of that cluster's Redis nodes or
any of that cluster's Redis clients (S3, IAM, Admin, HyperStore) in one of the other DCs.

733

Chapter 11. Commands

Note The Redis Monitor automatically checks for a DC partition once every five seconds, and if a par-
tition is detected an alert is logged in cloudian-redismon.log on the Redis Monitor node and is dis-
played in the CMC's Alerts page. So under normal circumstances you should not need to manually
trigger a DC partition check by using this command.

11.2.12.1. Command Line Syntax

test dc partition redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

test dc partition redis.credentials

OK

Redis cluster, DC: us-east-2a # of Nodes: 1 Failure nodes: 0

Client side, DC: us-east-2a # of Clients: 9 Failure Clients: 0

Redis cluster, DC: us-east-1a # of Nodes: 3 Failure nodes: 0

Client side, DC: us-east-1a # of Clients: 16 Failure Clients: 0

Redis cluster, DC: us-east-1b # of Nodes: 2 Failure nodes: 0

Client side, DC: us-east-1b # of Clients: 12 Failure Clients: 0

Has Partition: false

11.2.13. test split brain

test split brain
You can use this command to check whether or not there is a "split brain" condition in the specified Redis
cluster. A Redis cluster is consider to have a "split brain" if two different Redis nodes within the cluster have the
master role at the same time. For proper cluster operation and metadata integrity, each Redis cluster should
have just one master node at any given point in time. A split brain can occur, for instance, if the master role fails
over from one node to another, and then the original master node comes back up and -- due to connectivity fail-
ures or some other system problem -- starts acting as master again rather than rejoining the cluster as a slave.

Note The Redis Monitor automatically checks for a "split brain" condition once every five seconds,
and if a split brain condition is detected an alert is logged in cloudian-redismon.log on the Redis Mon-
itor node and is displayed in the CMC's Alerts page. So under normal circumstances you should not
need to manually trigger a split brain check by using this command.

11.2.13.1. Command Line Syntax

test split brain redis.credentials|redis.qos.<region>

Example #1:

nc 10.50.20.12 9078

test split brain redis.credentials

OK

Number of Master in cluster redis.credentials: 1

Has No Brain: false

Has Split Brain: false

734

11.2. Redis Monitor Commands

Example #2:

nc 10.50.20.12 9078

test split brain redis.credentials

OK

Number of Master in cluster redis.credentials: 2

Has No Brain: false

Has Split Brain: true

11.2.14. disable dc partitionmonitoring

disable dc partition monitoring
This command affects how the Redis Monitor behaves after it has detected a data center partition in a Redis
cluster. (For a description of how the Redis Monitor determines that a Redis cluster is in a DC partition con-
dition, see "test dc partition" (page 733)).

If DC partition monitoring is enabled, then in the circumstance where DC partition has been detected and the
Redis master node is in the unreachable DC, the Redis Monitor will continue with its normal master role mon-
itoring and managing behavior by promoting a reachable slave in a different DC to the master role (in other
words, failover of the master role will be executed).

If DC partition monitoring is disabled, then in the circumstance where DC partition has been detected and the
Redis master node is in the unreachable DC, the Redis Monitor will discontinue its normal master role mon-
itoring behavior and will not promote a reachable slave in a different DC to the master role (in other words,
failover of the master role will not be executed). Once the unreachable DC becomes reachable again -- which
will be detected by the Redis Monitor -- then the Redis Monitor will resume its normal monitoring behavior and
will execute failover of the master role if the existing master node goes down.

By default DC partition monitoring/failover is disabled. This is controlled by the setting "redis-
.monitor.skip.dc.monitoring" (page 571) in mts.properties.erb (which defaults to true, so that DC partition
monitoring/failover is "skipped" [disabled]).

Since DC partition monitoring/failover is disabled by default, the only circumstances in which you might want to
use the disable dc partition monitoring command is if you have previously changed the redis-
.monitor.skip.dc.monitoring configuration property (so that DC partition monitoring/failover is enabled by con-
figuration) or if you have previously used the enable dc partition monitoring command (so that DC partition
monitoring/failover is enabled in the current session of the Redis Monitor).

Note If the Redis Monitor (or its host) is restarted, it will revert to using the value of the redis-
.monitor.skip.dc.monitoring configuration property to determine whether DC partition mon-
itoring/failover is enabled or disabled. Note also that the configuration property applies to all Redis
clusters in the system, while the enable/disable commands apply only to the Redis cluster that you spe-
cify when you run the command.

Note If a Redis cluster DC partition occurs an alert will be written to cloudian-redismon.log on the
Redis Monitor node and an alert will display in the CMC. You can also confirm that the condition exists
by using the test dc partition command. For additional guidance on managing and recovering from a
Redis cluster DC partition condition consult with Cloudian Support.

735

Chapter 11. Commands

11.2.14.1. Command Line Syntax

disable dc partition monitoring redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

disable dc partition monitoring redis.credentials

OK

Skip Monitoring when DC Partition detected

11.2.15. enable dc partitionmonitoring

enable dc partition monitoring
This command affects how the Redis Monitor behaves after it has detected a data center partition in a Redis
cluster. (For a description of how the Redis Monitor determines that a Redis cluster is in a DC partition con-
dition, see "test dc partition" (page 733)).

If DC partition monitoring is enabled, then in the circumstance where DC partition has been detected and the
Redis master node is in the unreachable DC, the Redis Monitor will continue with its normal master role mon-
itoring and managing behavior by promoting a reachable slave in a different DC to the master role (in other
words, failover of the master role will be executed).

If DC partition monitoring is disabled, then in the circumstance where DC partition has been detected and the
Redis master node is in the unreachable DC, the Redis Monitor will discontinue its normal master role mon-
itoring behavior and will not promote a reachable slave in a different DC to the master role (in other words,
failover of the master role will not be executed). Once the unreachable DC becomes reachable again -- which
will be detected by the Redis Monitor -- then the Redis Monitor will resume its normal monitoring behavior and
will execute failover of the master role if the existing master node goes down.

By default DC partition monitoring/failover is disabled. This is controlled by the setting "redis-
.monitor.skip.dc.monitoring" (page 571) in mts.properties.erb (which defaults to true, so that DC partition
monitoring/failover is "skipped" [disabled]).

Note If the Redis Monitor (or its host) is restarted, it will revert to using the value of the redis-
.monitor.skip.dc.monitoring configuration property to determine whether DC partition mon-
itoring/failover is enabled or disabled. Note also that the configuration property applies to all Redis
clusters in the system, while the enable/disable commands apply only to the Redis cluster that you spe-
cify when you run the command.

Note If a Redis cluster DC partition occurs an alert will be written to cloudian-redismon.log on the
Redis Monitor node and an alert will display in the CMC. You can also confirm that the condition exists
by using the test dc partition command. For additional guidance on managing and recovering from a
Redis cluster DC partition condition consult with Cloudian Support.

11.2.15.1. Command Line Syntax

enable dc partition monitoring redis.credentials|redis.qos.<region>

Example:

736

11.2. Redis Monitor Commands

nc 10.50.20.12 9078

enable dc partition monitoring redis.credentials

OK

Keep Monitoring when DC Partition detected

11.2.16. disable split brain monitoring

disable split brain monitoring
This command affects how the Redis Monitor behaves after it has detected a "split brain" condition (two sim-
ultaneous masters) in a Redis cluster.

If split brain monitoring is enabled, then in the circumstance where split brain has been detected the Redis
Monitor will continue with its normal master role monitoring and managing behavior by demoting one of the
masters to a slave role. Of the two masters that constitute the "split brain", Redis Monitor will demote the one
that most recently became a master. The node that had been master for a longer period of time will be left as
the one master.

If split brain monitoring is disabled, then in the circumstance where split brain has been detected the Redis
Monitor will discontinue its normal master role monitoring behavior and will not automatically demote one of
the masters to a slave role. Instead it will be left to you to resolve the split brain condition by using the
resolve split brain command (which will let you choose which node should remain as the one master).

By default split brain monitoring/resolution is enabled. This is controlled by the setting "redis-
.monitor.skip.brain.monitoring" (page 571) in mts.properties.erb (which defaults to false, so that split brain
monitoring/resolution is enabled [is not "skipped"]).

Note If the Redis Monitor (or its host) is restarted, it will revert to using the value of the redis-
.monitor.skip.brain.monitoring configuration property to determine whether split brain mon-
itoring/resolution is enabled or disabled. Note also that the configuration property applies to all Redis
clusters in the system, while the enable/disable commands apply only to the Redis cluster that you spe-
cify when you run the command.

Note If a Redis cluster "split brain" condition occurs an alert will be written to cloudian-redismon.log on
the Redis Monitor node and an alert will display in the CMC. For additional guidance on managing and
recovering from a Redis cluster split brain condition consult with Cloudian Support.

11.2.16.1. Command Line Syntax

disable split brain monitoring redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

disable split brain monitoring redis.credentials

OK

Skip Monitoring when Split Brain detected

737

Chapter 11. Commands

11.2.17. enable split brain monitoring

enable split brain monitoring
This command affects how the Redis Monitor behaves after it has detected a "split brain" condition (two sim-
ultaneous masters) in a Redis cluster.

If split brain monitoring is enabled, then in the circumstance where split brain has been detected the Redis
Monitor will continue with its normal master role monitoring and managing behavior by demoting one of the
masters to a slave role. Of the two masters that constitute the "split brain", Redis Monitor will demote the one
that most recently became a master. The node that had been master for a longer period of time will be left as
the one master.

If split brain monitoring is disabled, then in the circumstance where split brain has been detected the Redis
Monitor will discontinue its normal master role monitoring behavior and will not automatically demote one of
the masters to a slave role. Instead it will be left to you to resolve the split brain condition by using the
resolve split brain command (which will let you choose which node should remain as the one master).

By default split brain monitoring/resolution is enabled. This is controlled by the setting "redis-
.monitor.skip.brain.monitoring" (page 571) in mts.properties.erb (which defaults to false, so that split brain
monitoring/resolution is enabled [is not "skipped"]).

Since split brain monitoring/resolution is enabled by default, the only circumstances in which you might want to
use the enable split brain monitoring command is if you have previously changed the redis-
.monitor.skip.brain.monitoring configuration property (so that split brain monitoring/resolution is disabled by
configuration) or if you have previously used the disable split brain monitoring command (so that split brain
monitoring/resolution is disabled in the current session of the Redis Monitor).

Note If the Redis Monitor (or its host) is restarted, it will revert to using the value of the redis-
.monitor.skip.brain.monitoring configuration property to determine whether split brain mon-
itoring/resolution is enabled or disabled. Note also that the configuration property applies to all Redis
clusters in the system, while the enable/disable commands apply only to the Redis cluster that you spe-
cify when you run the command.

Note If a Redis cluster "split brain" condition occurs an alert will be written to cloudian-redismon.log on
the Redis Monitor node and an alert will display in the CMC. For additional guidance on managing and
recovering from a Redis cluster split brain condition consult with Cloudian Support.

11.2.17.1. Command Line Syntax

enable split brain monitoring redis.credentials|redis.qos.<region>

Example:

nc 10.50.20.12 9078

enable split brain monitoring redis.credentials

OK

Keep Monitoring when Split Brain detected

738

11.2. Redis Monitor Commands

11.2.18. resolve split brain

resolve split brain
This command is applicable only if you have previously disabled automatic split brain resolution (either by
having changed the redis.monitor.skip.brain.monitoring configuration property to "true" in mts.properties.erb, or
by having run the disable split brain monitoring command).

If a Redis cluster is in a "split brain" condition and automatic split brain resolution is disabled, you can use the
resolve split brain command to resolve the condition. When you run the command, it will show you how long
each of the current masters has been acting as a master, and you will be prompted to choose one of the mas-
ters to continue as master. The other master will be demoted to slave.

Note If a Redis cluster "split brain" condition occurs an alert will be written to cloudian-redismon.log on
the Redis Monitor node and an alert will display in the CMC. You can also confirm that the condition
exists by using the test split brain command. For additional guidance on managing and recovering
from a Redis cluster split brain condition consult with Cloudian Support.

11.2.18.1. Command Line Syntax

resolve split brain redis.credentials|redis.qos.<region>

Example:

nc 10.112.2.12 9078

resolve split brain redis.credentials

OK

1. ch-us-east-1-us-east-1a-2-251(10.112.2.251):6379

ch-us-east-1-us-east-1a-2-251(10.112.2.251):6379: Consecutive time being master: 2.51 min

2. ch-us-east-1-us-east-1b-2-33(10.112.2.33):6379

ch-us-east-1-us-east-1b-2-33(10.112.2.33):6379: Consecutive time being master: 8.73 min

Please select which redis instance as master:

1

Forced new Master: ch-us-east-1-us-east-1a-2-251(10.112.2.251):6379

739

This page left intentionally blank

Chapter 12. Admin API

12.1. Introduction

12.1.1. HyperStore Admin API Introduction

IMPORTANT ! The Admin API is not designed to be exposed to end users of the Cloudian HyperStore
storage service. It is intended to be accessed only within an internal network, by the CMC and by sys-
tem administrators using other types of clients (such as cURL). Do not expose the Admin Service to an
external network.

Cloudian HyperStore provides a RESTful HTTP API through which you can provision users and groups, man-
age rating plans and quality of service (QoS) controls, retrieve monitoring data, and perform other admin-
istrative tasks. This Admin API is implemented by the Admin Service, which runs on the same nodes as your S3
Service.

By default the HTTPS listening port for the Admin Service is 19443 and the HTTP port is 18081. In HyperStore
systems for which the first installed version was 6.0.2 or later, the Admin Service supports only HTTPS con-
nections, and clients are required to use Basic Authentication. (For more detail see "HTTP and HTTPS for
Admin API Access" (page 747) and "HTTP/S Basic Authentication for Admin API Access" (page 748)).

The Cloudian Management Console (CMC) accesses the Admin API to implement its provisioning and report-
ing functions. You also have the option of accessing the Admin API directly, using a command line tool such as
cURL or a REST client application of your own creation. When you access the Admin API directly, you can sub-
mit requests to any HyperStore node in your default service region.

HyperStore Admin API response payloads are JSON encoded. For POST or PUT requests that require a
request payload, the request payloads must be JSON encoded as well.

12.1.1.1. RBAC Versions of Admin API Methods

For some read-only Admin API methods, there are alternative versions of the method implemented in the
HyperStore IAM Service. This feature provides for granular role-based access control (RBAC) to a subset of
HyperStore administrative functions, invoked by making calls to the HyperStore IAM Service (rather than the
Admin Service). For more information on this feature, including information about the client tool that HyperStore
provides to help you use this feature, see "IAM Extensions for Role-Based Access to HyperStore Admin
Functions" (page 1027).

12.1.1.2. Admin API Behavior in Multi-Region Systems

If your HyperStore system has multiple service regions, then:

l The Admin Service in the default service region supports executing all of the Admin API operations in
this document.

l The Admin Service in regions other than the default region supports executing only the following sub-
set of Admin API operations:

741

Chapter 12. Admin API

o POST /usage/storage

o POST /usage/storageall

o POST /usage/rollup

o POST /usage/repair/dirtyusers

If in a non-default region you send your local Admin Service a request to execute an operation other than those
listed above, you will receive a 403:Forbidden response.

Consequently, in a multi-region system your DNS configuration must resolve the Admin Service endpoint to
nodes in the default service region. The CMC will use this endpoint to submit requests to the Admin API. And
if you access the Admin API directly -- through a command line tool or a client application of your own creation
-- you must submit the requests to nodes in the default service region (with the exception of the four calls listed
above)

For API calls that involve retrieving data from multiple regions, this is all handled by the Admin Service in the
default region. For example in a GET /usage call submitted to the Admin Service in your default service region
you can retrieve service usage data for all of your regions or for any single one of your regions.

See Also:

l "Admin API Methods List" (page 742)

l "Common Request and Response Headers" (page 745)

l "Common Response Status Codes" (page 746)

l "cURL Examples" (page 746)

l "HTTP and HTTPS for Admin API Access" (page 747)

l "HTTP/S Basic Authentication for Admin API Access" (page 748)

l "Admin API Logging" (page 750)

12.1.2. Admin API Methods List
The table below shows all of the HyperStore Admin API methods. For more detail about a method or methods,
click on the corresponding Resource link.

Resource Method Purpose

billing
GET /billing Get a bill for a user or group

POST /billing Create a bill for a user or group

bppolicy
GET /bppolicy/bucketsperpolicy Get list of buckets using each storage policy

GET /bppolicy/listpolicy Get list of storage policy IDs

bucketops

GET /bucketops/id Get a bucket's canonical ID

GET /bucketops/gettags Get bucket tags for users in a group

POST /bucketops/purge Delete all the objects in a bucket

742

12.1. Introduction

Resource Method Purpose

group

DELETE /group Delete a group

GET /group Get a group's profile

GET /group/list Get a list of group profiles

GET /group/ratingPlanId Get a group's rating plan ID

POST /group Change a group's profile

POST /group/ratingPlanId Assign a rating plan to a group

PUT /group Create a new group

monitor

DELETE /mon-
itor/notificationrule

Delete a notification rule

GET /monitor/events Get the event list for a node

GET /monitor/nodelist Get the list of monitored nodes

GET /monitor/host Get current monitoring statistics for a node

GET /monitor Get current monitoring statistics for a service region

GET /monitor/history Get historical monitoring statistics for a node

GET /monitor/notificationrules Get the list of notification rules

POST /mon-
itor/acknowledgeevents

Acknowledge monitoring events

POST /mon-
itor/notificationruleenable

Enable or disable notification rules

POST /monitor/notificationrule Change a notification rule

PUT /monitor/notificationrule Create a new notification rule

permissions
GET /permissions/publicUrl Get public URL permissions for an object

POST /permissions/publicUrl Create or change public URL permissions for an object

qos

DELETE /qos/limits Delete QoS settings for a user or group

GET /qos/limits Get QoS settings for a user or group

POST /qos/limits Create QoS settings for a user or group

ratingPlan

DELETE /ratingPlan Delete a rating plan

GET /ratingPlan Get a rating plan

GET /ratingPlan/list Get the list of rating plans in the system

POST /ratingPlan Change a rating plan

PUT /ratingPlan Create a new rating plan

743

Chapter 12. Admin API

Resource Method Purpose

system

GET /system/audit Get summary counts for system

GET /system/bucketcount Get count of buckets owned by a group's members

GET /system/bucketlist Get list of buckets owned by a group's members

GET /system/bytecount Get stored byte count for the system, a group, or a user

GET /system/bytestiered Get tiered byte count for the system, a group, or a user

GET /system/groupbytecount Get stored byte counts for all of a group's users

GET /system/groupobjectcount Get stored object counts for all of a group's users

GET /system/license Get HyperStore license terms

GET system/objectcount Get stored object count for the system, a group, or a user

GET /system/version Get HyperStore system version

POST /sys-
tem/processProtectionPolicy

Process pending storage policy deletion or creation jobs

POST /system/repairusercount Reconcile user counts in Redis and Cassandra

tiering

DELETE /tiering/credentials
Delete a tiering credential for Amazon, Google, or other S3-
compliant destination

DELETE /tier-
ing/azure/credentials

Delete a tiering credential for Azure

DELETE /tier-
ing/spectra/credentials

Delete a tiering credential for Spectra

GET /tiering/credentials
Get a tiering credential for Amazon, Google, or other S3-com-
pliant destination

GET /tiering/credentials/src
Check whether a bucket uses a bucket-specific or system
default tiering credential

GET /tiering/azure/credentials Get a tiering credential for Azure

GET /tiering/spectra/credentials Get a tiering credential for Spectra

POST /tiering/credentials
Post a tiering credential for Amazon, Google, or other S3-
compliant destination

POST /tiering/azure/credentials Post a tiering credential for Azure

POST /tier-
ing/spectra/credentials

Post a tiering credential for Spectra

744

12.1. Introduction

Resource Method Purpose

usage

DELETE /usage Delete usage data

GET /usage Get usage data for group, user, or bucket

POST /usage/bucket Get raw usage data for multiple buckets

POST /usage/repair Repair storage usage data for group or system

POST /usage/repair/bucket Retrieve total bytes and total objects for a bucket

POST /usage/repair/dirtyusers Repair storage usage data for users with recent activity

POST /usage/repair/user Repair storage usage data for a user

POST /usage/rollup Roll up usage data

POST /usage/storage Post raw storage usage data for users with recent activity

POST /usage/storageall Post raw storage usage data for all users

user

DELETE /user Delete a user

DELETE /user/credentials Delete a user's S3 security credential

DELETE /user/deleted Purge profile data of a deleted user or users

GET /user Get a user's profile

GET /user/credentials Get a user's S3 security credential

GET /user/credentials/list Get a user's list of S3 security credentials

GET /user/credentials/list/active Get a user's list of active S3 security credentials

GET /user/list Get a list of user profiles

GET /user/password/verify Verify a user's CMC password

GET /user/ratingPlan Get a user's rating plan content

GET /user/ratingPlanId Get a user's rating plan ID

POST /user Change a user's profile

POST /user/credentials Post a user's supplied S3 credential

POST /user/credentials/status Deactivate or reactivate a user's S3 credential

POST /user/password Create or change a user's CMC password

POST /user/ratingPlanId Assign a rating plan to a user

PUT /user Create a new user

PUT /user/credentials Create a new S3 credential for a user

whitelist

GET /whitelist Get whitelist content

POST /whitelist Change whitelist content (by request body object)

POST /whitelist/list Change whitelist content (by query parameters)

12.1.3. CommonRequest and Response Headers
12.1.3.0.1. Common Request Headers

For PUT requests, the Content-Type header should be set to "application/json". For POST requests, the Con-
tent-Type header should be set to "application/json", "application/x-www-form-urlencoded", or "multipart/form-

745

Chapter 12. Admin API

data".

Depending on the request type and the result, the response from the Admin API may be in format applic-
ation/json, text/html, or text/plain. So in your requests do not use an Accept header that excludes these content
types.

12.1.3.0.2. Common Response Headers

In responses, the Content-Type will be either "application/json", "text/html", or "text/plain" depending on the
type of request being processed and the result.

12.1.4. CommonResponse Status Codes
The following HTTP Status Codes are relevant for every Admin API method. Each method may return these
codes, in addition to method-specific status codes indicated in the method documentation.

Status Code Description

200 OK

500 Internal Server Error

404

Not found.

Note URIs for the Admin API are case-sensitive. If you submit a request
wherein the case of the specified request resource and URI parameters does
not match the case documented in this Admin API Guide — or a request
wherein the URI contains any other typographical error — the system will
return a 404 error response.

The following HTTP Status Code is relevant for all Admin API methods that are forbidden in the non-default
regions of a multi-region HyperStore system.

Status Code Description

403

Not allowed. Only the Admin API service in the default region can execute this method.

The only Admin API methods that are allowed in non-default regions of a multi-region
deployment are:

o POST /usage/storage

o POST /usage/storageall

o POST /usage/rollup

o POST /usage/repair/dirtyusers

For any other Admin API method, submitting the method request to a non-default
region’s Admin Service will result in the 403 response.

12.1.5. cURL Examples
This Admin API documentation includes examples using the open source command-line utility cURL. When a
JSON object is the expected response payload, the example commands pipe the output through the standard
Python tool mjson.tool so that the JSON pretty-prints. If you wish you can copy the commands from the doc-
umentation, paste them on to your command line, customize them appropriately, and the commands should

746

https://curl.haxx.se/

12.1. Introduction

work against your local HyperStore Admin Service (so long as you have cURL and Python on your local
machine).

Here is a sample command, for retrieving a user group's profile:

curl -X GET -k -u sysadmin:public \

https://localhost:19443/group?groupId=QA | python -mjson.tool

With this example you would replace "sysadmin" and "public" with whatever the HTTP Basic Authentication
user name and password are in your HyperStore system; replace "localhost" with the IP address of one of
your HyperStore nodes in the default service region; and replace "QA" with the name of one of your user
groups. Note that the backslash in this and other examples indicates line continuation -- telling the Linux shell
to ignore the newline for purposes of running the command. These are used in the examples so that a long
command can be split to multiple lines in this documentation, while still allowing you to copy all the text (includ-
ing the backslash) and paste it on your command line and be able to run the command.

Note By default the Admin Server uses a self-signed SSL certificate and so in the example cURL com-
mands the "-k" flag is used to disable certificate checking.

In cases where a JSON object is required as the request payload, the examples use the cURL "-d" flag to ref-
erence the name of a text file that contains the JSON object. For example:

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:public \

-d @group_QA.txt https://localhost:19443/group

In the full documentation the content of the referenced text file is also shown. Note that if a request includes mul-
tiple query parameters with ampersand delimitation, the URL must be enclosed in single quotes -- as in this
example which deletes a user:

curl -X DELETE -k -u sysadmin:public \

'https://localhost:19443/user?userId=John&groupId=QA'

12.1.6. HTTP and HTTPS for Admin API Access
The Admin Service by default requires clients to use HTTPS. It rejects attempts to connect with regular HTTP.
The exception is if your original HyperStore installation was a version older than 6.0.2 -- for such systems, both
HTTPS and HTTP are accepted by default. For information about configuring such systems so that the Admin
Service accepts only HTTPS connections and not regular HTTP connections, see "If Your Original Hyper-
Store Install Was Older Than Version 6.0.2" (page 747).

The Admin Service requires Basic Authentication from connecting HTTP(S) clients. For more information includ-
ing how to customize the required Basic Authentication password see "HTTP/S Basic Authentication for
Admin API Access" (page 748).

12.1.6.1. If Your Original HyperStore Install Was Older Than Version 6.0.2

If your original HyperStore install was older than version 6.0.2 and you have upgraded to the current version,
the Admin Service by default accepts regular HTTP requests (through port 18081) as well as HTTPS requests
(through port 19443). Also for such systems, the CMC uses regular HTTP when submitting requests to the
Admin Service.

If you want the Admin Service to accept only HTTPS requests from clients -- and to reject regular
HTTP requests -- follow the steps below. Following these steps also has the effect of reconfiguring the CMC so
that it uses exclusively HTTPS when submitting requests to the Admin Service.

747

Chapter 12. Admin API

1. On your Puppet master, open this configuration file in a text editor:

/etc/cloudian-7.2.3-puppet/manifests/extdata/common.csv

2. Anywhere in the "S3/Admin Services" section of common.csv, add this line:

admin_secure,true

Note By default the "admin_secure" setting does not appear in the common.csv file for systems
that were originally installed as version 6.0.2 or older (even after the upgrade process). You
must manually add an "admin_secure" line to the file, set to "true" as shown above.

Save your change and close the file.

3. Still on your Puppet master node, change into the installation staging directory and launch the Hyper-
Store installer:

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Puppet mas-
ter node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

4. From the main menu select "Cluster Management", and then select "Push Configuration Settings to
Cluster". Follow the prompts to trigger a Puppet push out to the cluster.

5. Return to the "Cluster Management" menu, then select "Manage Services". Select the S3 Service, then
enter "restart". This automatically restarts the Admin Service as well as the S3 Service.

6. From the same menu, restart your CMC service. The CMC needs to be restarted so that it can update its
configuration settings and start using exclusively HTTPS to communicate with the Admin Service.

Note You do not need to take any action in regard to an SSL certificate for the Admin Service (for
HTTPS support). A self-signed certificate -- unique to your system -- is generated automatically during
HyperStore installation and is used by the Admin Service.

12.1.7. HTTP/S Basic Authentication for Admin API Access
The Admin Service requires that clients use HTTP/S Basic Authentication credentials (user name and pass-
word) when connecting to the service. By default the required user name for this purpose is "sysadmin" and the
default password is either a randomly generated password unique to your system (if your original HyperStore
install was version 7.2.2 or newer) or "public" (if your original HyperStore install was older than version 7.2.2).
To check to see what the current password is, in common.csv check the value of the admin_auth_pass setting
which shows both a Jetty-obfuscated version of the password and the clear text version of the password.

If the Admin API HTTP/S Basic Authentication password in your system is "public", you should change it
to something more secure. Even if the password is a random one generated upon system install, you may still

748

12.1. Introduction

wish to change it to a password of your own creation. The procedure below describes how to do so. Optionally
you can also change the user name, as also described below.

Note If your original HyperStore install was older than version 6.0.2, the Admin Service by default does
not require Basic Authentication. The procedure below includes instructions for enabling the Basic
Authentication requirement, if it is not already enabled in your system.

1. To change the Admin Service HTTP/S Basic Authentication password, start by logging into the Puppet
master node and using the Jetty password tool that’s included in your HyperStore package to generate
a Jetty-obfuscated version of your desired password. The following example runs the tool to generate a
Jetty-obfuscated version of the password "test1234":

cd /opt/cloudian/lib

java -cp jetty-util* org.eclipse.jetty.util.security.Password test1234

test1234

OBF:1mf31j8x1lts1ltu1lq41lq61j651mbj

MD5:16d7a4fca7442dda3ad93c9a726597e4

After running the tool, copy or make a note of the "OBF" (Jetty-obfuscated) version of the new password;
you will need to supply it in later steps of this procedure. The "OBF" prefix is not a part of the password --
in the example above the obfuscated password starts with 1mf31...

If you are using the HyperStore Shell...

If you are using the HyperStore Shell, the Jetty password tool referenced above is not available from
the shell. Instead you can obtain an OBF version of your new password by running the jetty_pass-
word.sh script as shown in the example below (replace newpassword with your new password).

sa_admin@node1$ jetty_password.sh newpassword

2019-09-08 11:59:41.520:INFO::main: Logging initialized @217ms

newpassword

OBF:1uo91vn61ymf1yt41v1p1ym71v2p1yti1ylz1vnw1unp

MD5:5e9d11a14ad1c8dd77e98ef9b53fd1ba

2. Still on your Puppet master node, open this configuration file in a text editor:

/etc/cloudian-7.2.3-puppet/manifests/extdata/common.csv

3. In common.csv edit these settings, then save and close the file:

l admin_auth_user: Set to the user name you want to use for HTTP/S Basic Authentication for the
Admin Service (or just leave this at the default which is "sysadmin").

l admin_auth_pass: Set to a quote-enclosed comma-separated pair: "<Jetty_obfuscated_pass-
word>, <cleartext_password>". The obfuscated version is what you generated in Step 1, and the
clear text version is the plain password without obfuscation. For example, "1mf31j8x1lt-
s1ltu1lq41lq61j651mbj,test1234".

l admin_auth_enabled: Set to true, if it's not already set to true (it will be true by default if your ori-
ginal HyperStore install was 6.0.2 or newer).

Note Leave the admin_auth_realm setting at its default of "CloudianAdmin"

4. Still on your Puppet master node, use the installer to:

a. Push your changes to the cluster.

749

Chapter 12. Admin API

b. Restart the S3 Service (doing so will automatically restart the Admin Service as well).

c. Restart the CMC (the CMC needs to be restarted so that it can update its configuration settings
for using Basic Authentication when communicating with the Admin Service).

If you need more detailed instructions for this step see "Pushing Configuration File Edits to the Cluster
and Restarting Services" (page 506).

12.1.8. Admin API Logging
Admin API transactions are logged in the Admin Service application log, for which the default location is /var/-
log/cloudian/cloudian-admin.log. API transactions are logged at log level INFO. As with all Admin Ser-
vice application log entries, the format for API transaction entries is:

Date(ISO8601) PriorityLevel [ThreadId] ClassName:MethodName(Line#) MESSAGE

In the following example, first a request to retrieve the current list of user groups in the system is successfully
processed. Then a request is received which is asking to retrieve a specific group that doesn’t actually exist in
the system (perhaps the requestor made a typo in the group ID). That request results in a 204 HTTP error
response from the system. Note that each API transaction is identified by an integer within the MESSAGE ele-
ment — "7" for the first transaction in the example and "8" for the second transaction.

2016-01-02 09:45:07,841 INFO [qtp21028611-57] LoggingFilter:log(153) 7 * Server has

received a request on thread qtp21028611-57

7 > GET http://192.168.2.16:18081/group/list

7 > Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

7 > Accept-Encoding: gzip, deflate

7 > Accept-Language: null

7 > Connection: keep-alive

7 > DNT: 1

7 > Host: 192.168.2.16:18081

7 > User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0

2016-01-02 09:45:08,607 INFO [qtp21028611-57] LoggingFilter:log(153) 7 * Server

responded with a response on thread qtp21028611-57

7 < 200

7 < Content-Type: application/json

2016-01-02 09:48:17,596 INFO [qtp21028611-59] LoggingFilter:log(153) 8 * Server

has received a request on thread qtp21028611-59

8 > GET http://192.168.2.16:18081/group?groupId=SalesGroup

8 > Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

8 > Accept-Encoding: gzip, deflate

8 > Accept-Language: null

8 > Connection: keep-alive

8 > DNT: 1

8 > Host: 192.168.2.16:18081

8 > User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0

2016-01-02 09:48:17,621 INFO [qtp21028611-59] GroupResource:getGroup(88) Group Id

not found:SalesGroup

2016-01-02 09:48:17,623 INFO [qtp21028611-59] LoggingFilter:log(153) 8 * Server

responded with a response on thread qtp21028611-59

8 < 204

750

12.2. billing

12.2. billing
The Admin API methods built around the billing resource are for generating or retrieving a billable activity
report for a specified user or group. The report shows the user or group’s billable activity and the charges for
that activity based on the assigned rating plan(s).

For an overview of the HyperStore billing feature, see "Usage Reporting and Billing Feature Overview"
(page 138).

12.2.1. GET /billing

GET /billing Get a bill for a user or group
The request line syntax for this method is as follows.

GET /billing?[userId=xxx&][groupId=xxx][canonicalUserId=xxx]&billingPeriod=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "billing Query Parameters" (page 755).

There is no request payload.

This method retrieves an existing bill for a user or group (a bill that has already been generated by the POST
/billingmethod.) You must use the POST /billingmethod for the user or group and billing period of interest
before you can use this method.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 752).

12.2.1.0.1. Example Using cURL

The example below generates a billable activity report for the user "glad" from the "eng" group, for the month of
July 2017. This is an existing billable activity report that has previously been generated by the POST /billing
method.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/billing?userId=glad&groupId=eng&billingPeriod=201707' \

| python -mjson.tool

The response payload is a JSON-formatted Bill object, which in this example is as follows. For description of a
particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Bill Object" (page
756).

{

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b",

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e",

"currency": "USD",

"endCal": 1501545599000,

"groupId": "eng",

"notes": null,

"regionBills": [

{

"currency": "USD",

"items": {

751

Chapter 12. Admin API

"SB": {

"item":"SB",

"quantity":108.00,

"rules":"1,0.14:5,0.12:0,0.10",

"subtotal":10.94

}

},

"region": "taoyuan",

"total": 10.94,

"whitelistItems": {},

"whitelistTotal": 0

}

],

"startCal": 1498867200000,

"total": 10.94,

"userId": "glad",

"whitelistTotal": 0

}

12.2.1.0.2. Response Format

The response payload is a JSON-formatted Bill object (see example above). For response status code this
method will return one of the Common Status Codes or one of these method-specific status codes:

Status Code Description

204 Billing data does not exist

400 User does not exist

400 Missing required parameter : {billingPeriod}

400 Conflicting parameters: {canonicalUserId, groupId, userId}

12.2.1.1. RBAC Version of this Method

IMPORTANT ! Before the RBAC version of this method can be used to retrieve billing data for a spe-
cified user and billing period, you must either execute the Admin API method POST /billing to generate
billing data for that user and billing period, or else use the CMC's Account Activity page to generate
billing data for that user and billing period. There is currently no RBAC version of the POST /billing call
that generates user billing data.

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianBill

l Parameters: Same as for GET /billing, except:

o userId and groupId are not supported. A user can only be specified by canonical ID, and retriev-
ing a bill for a whole group is not supported.

o All parameter names start with an upper case letter rather than lower case

752

12.2. billing

l Response body: Same response data as for GET /billing except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get a bill for any user

o HyperStore group admin user can only get bills for users within her group

o HyperStore regular user can only get own bill

o IAM user can only use this method if granted admin:GetCloudianBill permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianBill" action retrieves billing data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. The system does not maintain billing data per
IAM user. For example, if a HyperStore group administrator grants admin:GetCloudianBill
permission to an IAM user, the IAM user will be able to retrieve billing information for any
HyperStore user in the group administrator's group. And if a HyperStore regular user
grants admin:GetCloudianBill permission to an IAM user, the IAM user will be able to
retrieve billing information for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://

localhost:16080/?Action=GetCloudianBill&CanonicalUserId=d47151635ba8d94efe981b24db00c07e

&BillingPeriod=201807

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianBillResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<Bill>

<billID>936265a2-fbd5-47c2-82ed-d62298299a1b</billID>

etc...

...

...

</Bill>

</GetCloudianBillResponse>

12.2.2. POST /billing

POST /billing Create a bill for a user or group
The request line syntax for this method is as follows.

753

Chapter 12. Admin API

POST /billing?[userId=xxx&][groupId=xxx][canonicalUserId=xxx]&billingPeriod=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "billing Query Parameters" (page 755).

There is no request payload.

This method generates a user's monthly bill or a whole group’s monthly bill, and returns the bill in the response
body. The billing period must be a month that has already completed. You cannot generate a bill for the cur-
rent, in-progress month.

IMPORTANT ! Billing calculation is derived from hourly rollup usage data. The retention period for
hourly rollup usage data is configured by mts.properties.erb: "reports.rolluphour.ttl" (page 567). The
default retention period is 65 days. Once this rollup data is deleted it can no longer be used to generate
users' bills.

12.2.2.0.1. Example Using cURL

The example below generates a billable activity report for the user "glad" from the "eng" group, for the month of
July 2017.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/billing?userId=glad&groupId=eng&billingPeriod=201707' \

| python -mjson.tool

The response payload is a JSON-formatted Bill object, which in this example is as follows. For description of a
particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Bill Object" (page
756).

{

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b",

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e",

"currency": "USD",

"endCal": 1501545599000,

"groupId": "eng",

"notes": null,

"regionBills": [

{

"currency": "USD",

"items": {

"SB": {

"item":"SB",

"quantity":108.00,

"rules":"1,0.14:5,0.12:0,0.10",

"subtotal":10.94

}

},

"region": "taoyuan",

"total": 10.94,

"whitelistItems": {},

"whitelistTotal": 0

}

],

"startCal": 1498867200000,

754

12.2. billing

"total": 10.94,

"userId": "glad",

"whitelistTotal": 0

}

12.2.2.0.2. Response Format

The response payload is a JSON-formatted Bill object (see example above). For response status code this
method will return one of the Common Status Codes or one of these method-specific status codes:

Status Code Description

204 No billing data

400 Invalid billing period

400 Missing required parameter : {billingPeriod}

400 Conflicting parameters: {canonicalUserId, groupId, userId}

12.2.3. billing Query Parameters
userId, groupId, canonicalUserId

(Optional, strings) Identifiers of the user or group for which to generate or retrieve a bill.

l To generate or retrieve a bill for a user who currently is part of the service, you can either use
the "userId" parameter in combination with the "groupId" parameter (for example user-
Id=martinez@groupId=operations), or use the "canonicalUserId" parameter by itself (with no
"groupId" parameter).

l To generate or retrieve a bill for a user who has been deleted from the service, you must use
the "canonicalUserId" parameter by itself (not the "userId" or "groupId" parameter).

Note If you don’t know the user’s system-generated canonical ID, you can obtain it by
using the GET /user/listmethod.

l To generate or retrieve a bill for a whole user group, use the "groupId" parameter by itself (not
the "userId" or "canonicalUserId" parameter). Note that if you generate a bill for a whole group,
the bill will be based on the rating plan assigned to the group as a whole, and will not take into
account any different rating plans that administrators may have assigned to specific users within
the group.

billingPeriod

(Mandatory, string) Specifies the year and month of bill. Format is yyyyMM— for example "201708" for
August 2017. Note that the system uses GMT time when demarcating exactly when a month begins and
ends.

12.2.4. billing Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Billing related Admin API methods.

755

Chapter 12. Admin API

Note For examples of this object see the API method request and response examples.

l "Bill Object" (page 756)

12.2.4.1. Bill Object

The Bill object consists of the following attributes and nested objects:

billID

(String) System-generated globally unique bill ID. Example:

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b"

canonicalUserId

(String) System-generated canonical user ID for the user. Empty if the bill is for a whole group. Example:

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e"

currency

(String) Currency string. Example:

"currency": "USD"

endCal

(String) End date/time of the billing period in UTC milliseconds. Example:

"endCal": 1501545599000

groupId

(String) ID of the group to which the user belongs (or of the group for which the bill was generated, in
the case of a whole group bill). Example:

"groupId": "eng"

notes

(String) Notes regarding the bill, if any. Example:

"notes": null

regionBills

(Map<string,RegionBill>) List of RegionBill objects, with one such object per service region. The
RegionBill object consists of the following attributes and nested objects:

currency

(String) Currency string. Example:

"currency": "USD"

items

(Map<string,BillItem>) List of BillItem objects, with one such object for each activity type that’s
being charged for, per the terms of the user’s rating plan. Supported activity types are "SB" (stor-
age bytes), "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD" (HTTP

756

12.2. billing

Deletes). This list excludes activity for whitelisted IP addresses. Note that some or even most
activity types may not appear, depending on the rating plan terms. For example, it may be that
only storage bytes ("SB") are billed for, if that’s how the user’s rating plan is configured.

In the items list, each BillItem object is preceded by its activity type string, such as "SB": {BillItem
data}. In the example only storage bytes ("SB") are charged for in the rating plan that was applied
when this bill was generated.

The BillItem object consists of the following attributes:

item

(String) Usage type being billed for. Types are "SB" (storage bytes), "BI" (bytes in), "BO"
(bytes out), "HG" (HTTP GETs), "HP" (HTTP PUTs), "HD" (HTTP DELETEs). Example:

"item":"SB"

quantity

(Number) Usage quantity during billing period. Usage quantity metrics depend on the
usage type:

l For storage bytes (SB), the metric is GB-Month (average number of GBs of data
stored for the billing month). This is calculated by summing the month’s hourly
readings of stored bytes, converting to GB, then dividing by the number of hours in
the month. In the example above the usage quantity during the billing period was
108 GB-months (that is, the user’s storage bytes volume average 108GBs over the
course of the month)

l For data transfer bytes in (BI) or out (BO), the metric is number of bytes.

l For HTTP GETs (HG), PUTs (HP), or DELETEs (HD), the metric is number of mul-
tiples of 10,000 requests. For example, if usage type is HG and quantity is 7.50,
that means 75,000 HTTP GET requests.

Example:

"quantity":108.00

rules

(String) Specification of billing rules for this usage type (as configured in the user’s
assigned rating plan). In the example the "rules" attribute indicates that the user’s rating
plan is such that the first 1 GB-month is charged at $0.14, the next 5 GB-months is
charged at $0.12 per GB-month, and all GB-months above that are charged at $0.10 per
GB-month.

Example:

"rules":"1,0.14:5,0.12:0,0.10"

subtotal

(Number) Total billing charge for the particular usage type specified by the "item" attribute.
This will be in units of the currency specified by the "currency" attribute of the
RegionBillobject that contains this BillItem object. It’s labeled as "subtotal" because it will
be added together with subtotals for other usage types (from otherBillItemobject instances
within theRegionBillobject, if any) to compute the "total" attribute for the encompassing
RegionBill instance. In the example the $10.94 sub-total comes from applying the billing

757

Chapter 12. Admin API

rules to the 108 GB-months usage quantity ([1 X .14] + [5 X .12] + [102 X .10] = 10.94).

Example:

"subtotal":10.94

region

(String) Region name. Example:

"region": "taoyuan"

total

(Number) For the region, the total charges incurred — excluding activity originating from whitel-
isted source IP addresses. Example:

"total": 10.94

whitelistItems

(Map<string,BillItem>) List of BillItemobjects, for activity originating from whitelisted IP addresses
(if any). Types are "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD"
(HTTP Deletes). Example:

"whitelistItems": {}

whitelistTotal

(Number) For the region, the total charges incurred for activity originating from whitelisted source
IP addresses. Typically there are no charges for such activity. Example:

"whitelistTotal": 0

startCal

(String) Start date/time of the billing period in UTC milliseconds. Example:

"startCal": 1498867200000

total

(Number) The total charges incurred by the user during the billing period, excluding activity for whitel-
isted source IP addresses. Example:

"total": 10.94

userId

(String) ID of the user for whom the bill was generated. Empty if the bill is for a whole group. Example:

"userId": "glad"

whitelistTotal

(Number) The total charges incurred by the user for activity originating from whitelisted source IP
addresses. Example:

"whitelistTotal": 0

758

12.3. bppolicy

12.3. bppolicy
The Admin API methods built around the bppolicy resource are for retrieving certain information about Hyper-
Store storage policies (also known as bucket protection policies).

For an overview of the HyperStore storage policy feature, see "Storage Policies Feature Overview" (page
76). To create or change storage policies use the CMC's Storage Policies page.

12.3.1. GET /bppolicy/bucketsperpolicy

GET /bppolicy/bucketsperpolicy Get list of buckets using each storage policy
The request line syntax for this method is as follows.

GET /bppolicy/bucketsperpolicy

There is no request payload.

Note If you have a storage policy in your system that was created prior to the release of HyperStore ver-
sion 5.2 (when support for multiple storage policies was introduced), the GET /bp-
policy/bucketsperpolicy method does not work for listing buckets that use that storage policy. This is
true even for buckets that were created after HyperStore version 5.2, if the buckets use that legacy stor-
age policy. In the GET /bppolicy/bucketsperpolicyresponse, the policy ID for such a legacy storage
policy will be DEFAULT_<regionName> and the bucket list for the storage policy will be empty.

12.3.1.0.1. Example Using cURL

The example below retrieves the list of buckets using each storage policy.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/bppolicy/bucketsperpolicy | python -mjson.tool

The response payload is a JSON-formatted list of BucketsInPolicy objects, which in this example is as follows.
For description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"BucketsInPolicy Object" (page 762).

[

{

"buckets": [

"qa.tests",

"dev.specs"

],

"policyId": "b06c5f9213ae396de1a80ee264092b56",

"policyName": "Replication-3X"

},

{

"buckets": [

"release.packages.archive",

"techpubs.manuals.archive"

],

"policyId": "af37905a8523d8d403d993c4f2e2c1a1",

"policyName": "EC-4-2"

759

Chapter 12. Admin API

}

]

12.3.1.0.2. Response Format

The response payload is a JSON-formatted list of BucketsInPolicy objects (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746).

12.3.2. GET /bppolicy/listpolicy

GET /bppolicy/listpolicy Get list of storage policy IDs
The request line syntax for this method is as follows.

GET /bppolicy/listpolicy[?region=xxx][&groupId=xxx][&status=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "bppolicy Query Parameters" (page 761).

Note If you use more than one of the three optional filters -- region, groupId, and status -- then the
returned list of storage policy IDs will be for storage policies that match all of your specified filters. For
example if you specify a region and a groupId, then the returned list will consist only of policies that are
both associated with that region and available to that group.

There is no request payload.

Use this method if you want to retrieve the system-generated policy IDs associated with each of your storage
policies.

12.3.2.0.1. Example Using cURL

The example below retrieves the list of all storage policies currently in the system.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/bppolicy/listpolicy | python -mjson.tool

The response payload is a JSON-formatted list of BucketProtectionPolicy objects, with one such object for each
storage policy. Among the attributes for each policy is the "policyName" and "policyId". In the example that fol-
lows there are two storage policies in the system, and the response payload is truncated so as to show only the
policy ID and policy name attributes.

[

{

...

...

"policyId": "b06c5f9213ae396de1a80ee264092b56",

"policyName": "Replication-3X",

...

...

},

{

...

...

760

12.3. bppolicy

"policyId": "af37905a8523d8d403d993c4f2e2c1a1",

"policyName": "EC-4-2",

...

...

}

]

12.3.2.0.2. Response Format

The response payload is a JSON-formatted list of BucketProtectionPolicy objects (see excerpt above). For
response status code this method will return one of the "Common Response Status Codes" (page 746).

12.3.3. bppolicy Query Parameters
region

(Optional, string) If you use this parameter, then only policies associated with the specified service
region will be returned.

groupId

(Optional, string) If you use this parameter, then only policies that are available to the specified group
will be returned. This includes system default storage policies (which are available to all groups) as well
as storage policies that are explicitly made available to the specified group.

status

(Optional, string) If you use this parameter, then only policies that have the specified status will be
returned. The supported statuses are:

l pending— The policy is in the process of being created in the system. In this state the policy is
not yet available to be used.

l active— The policy is currently available to users when they create a new bucket.

l disabled— The policy is no longer available to users when they create a new bucket. However,
the policy still exists in the system and is still being applied to any buckets to which the policy
was assigned during the period when it was active.

l deleted— The policy has been marked for deletion and is no longer available to users.
However, the policy has not yet been purged from the system by the daily cron job.

l failed—During the policy creation, the policy failed to be fully set up in the system. Though a
BucketProtectionPolicy JSON object exists and can be retrieved, the policy is not actually set up
in the system and is not usable.

12.3.4. bppolicy Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the bucket protection policy related Admin API methods.

Note For examples of this object see the API method request and response examples.

l "BucketsInPolicy Object" (page 762)

761

Chapter 12. Admin API

12.3.4.1. BucketsInPolicy Object

The BucketsInPolicy object consists of the following attributes:

buckets

(List<string>) List of buckets that use the storage policy. Example:

"buckets": ["qa.tests","dev.specs"]

policyId

(String) System-generated unique identifier of the storage policy. Example:

"policyId": "b06c5f9213ae396de1a80ee264092b56"

policyName

(String) Storage policy name. Example:

"policyName": "Replication-3X"

12.4. bucketops

12.4.1. GET /bucketops/id

GET /bucketops/id Get a bucket's canonical ID
The request line syntax for this method is as follows.

GET /bucketops/id?bucketName=xxx

For parameter description click on the parameter name or see "bucketops Query Parameters" (page 765).

There is no request payload.

This operation returns a bucket's canonical ID, if one exists. A bucket will have a canonical ID (a system-gen-
erated unique identifier) if either of the following applies:

l The bucket was created in HyperStore 7.0 or later.

l The bucket has been subjected to a successful POST /bucketops/purge operation.

After a successful POST /bucketops/purge operation a bucket will have a different canonical ID than the one it
had before (if it had any) but will have the same bucket name.

12.4.1.0.1. Example Using cURL

The example below retrieves the canonical ID of a bucket named "bucket1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/bucketops/id?bucketName=bucket1

The response payload is the bucket's canonical ID in plain text, which in this example is as follows:

40cc2eba37fd82df4ce04bce2bc35a94

762

12.4. bucketops

12.4.1.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return either one of the "Common Response Status Codes" (page 746) or one of these method-specific
status codes:

Status Code Description

400 Missing required parameter : {bucketName}

12.4.2. GET /bucketops/gettags

GET /bucketops/gettags Get bucket tags for users in a group
The request line syntax for this method is as follows.

GET /bucketops/gettags?groupId=xxx[&limit=xxx][&userId=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "bucketops Query Parameters" (page 765).

There is no request payload.

For each user in the specified group this operation returns the bucket tags associated with the user's buckets
(after such tags have been created by the S3 API method PUT Bucket tagging). Pagination of the response is
supported by use of the optional limit and userId settings. By default a maximum of 10 users is returned per
request.

Note
* The userId parameter is to be used only for pagination. You cannot use this parameter to retrieve
bucket tags for just one user of your choosing.
* Only buckets that have bucket tags are listed in the response. Buckets that do not have bucket
tags are excluded from the response.

12.4.2.0.1. Example Using cURL

The example below returns the bucket tags for the buckets owned by users in the group "Cloudian".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/bucketops/gettags?groupId=Cloudian \

| python -mjson.tool

The response payload is a JSON-formatted BucketTags object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Buck-
etTags" (page 766).

{

"groupId":"Cloudian",

"nextUserId":null,

"userBucket":

{"kthompson":

{"bbucket":{"Project":"Project1","Manager":"jsmith"},

"cbucket":{"security":"public"}},

763

Chapter 12. Admin API

"gwashington":

{"dbucket":{"security":"public"}}

}

Note Only buckets that have bucket tags are listed in the response. Buckets that do not have bucket
tags are excluded from the response.

}

12.4.2.0.2. Response Format

The response payload is a JSON-formatted BucketTags object (see example above). For response status code
this method will return either one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing required parameter : {groupId}

12.4.3. POST /bucketops/purge

POST /bucketops/purge Delete all the objects in a bucket
The request line syntax for this method is as follows.

POST /bucketops/purge?bucketName=xxx

For parameter description click on the parameter name or see "bucketops Query Parameters" (page 765).

There is no request payload.

This operation results in the system marking all the objects in the bucket as having been deleted. However the
actual deletion of object data from disk will not occur until the next automatic running of the object deletion
batch processing job. By default this batch processing of object data deletes runs hourly on each node. (The
frequency with which the batch processing job runs is configurable by the "cloud-
ian.delete.queue.poll.interval" (page 566) property in mts.properties.erb.)

The POST /bucketops/purge operation does not invoke the S3 DELETE Object API and does not create the
Cassandra tombstone issues that can sometimes be caused by mass delete operations that use HyperStore's
S3 interface.

The bucket itself continues to exist after this operation. If you run an S3 GET Bucket (List Objects) call on the
bucket -- or get the bucket in the CMC -- after successfully calling the POST /bucketops/purge operation, the
GET Bucket response will indicate that the bucket is empty even though the actual deletion of objects may not
have been completed by the cron job yet. Any objects that you upload at this point -- after you've successfully
called POST /bucketops/purge -- will not be deleted by the batch processing.

Note that:

l Any S3 multipart upload operations in-progress for the bucket at the time that you execute the POST
/bucketops/purge operation will be aborted.

l If you have versioning configured on the bucket, the POST /bucketops/purge operation will purge all
versions of all objects in the bucket.

764

12.4. bucketops

l If you have auto-tiering configured on the bucket, any objects that have been tiered from the bucket to
the remote tiering destination will also be deleted (at the next running of the hourly system cron job men-
tioned above).

l The POST /bucketops/purge operation is not allowed on buckets that have Object Lock enabled.

l In a multi-region system, the POST /bucketops/purge call should be submitted to the Admin API service
in the default region regardless of which region the target bucket is in.

12.4.3.0.1. Example Using cURL

The example below purges the contents of a bucket named "bucket1".

curl -X POST -k -u sysadmin:public \

https://localhost:19443/bucketops/purge?bucketName=bucket1

The response indicates that the bucket contents have been successfully purged (marked for deletion):

Bucket: bucket1 purged.

12.4.3.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return either one of the "Common Response Status Codes" (page 746) or one of these method-specific
status codes:

Status Code Description

400 Missing required parameter : {bucketName}

403 Can't delete locked bucket

12.4.4. bucketops Query Parameters
bucketName

(Mandatory, string) Name of the bucket.

groupId

(Mandatory, string) For a GET /bucketops/gettags operation, the group for which to retrieve a list of users
and their bucket tags.

limit

(Optional, integer) For a GET /bucketops/gettags operation, the maximum number of users to return
(along with those users' bucket tags) per operation.

Users are retrieved in alphanumeric order. If the number of users in the group exceeds the number spe-
cified by limit, in the response to the firstGET /bucketops/gettags operation the nextUserId attribute will
indicate the user ID of the next available user in the alphanumeric ordering (the alphanumerically first of
the users that has not yet been returned). That user ID can then be used as the userId parameter value
in a subsequentGET /bucketops/gettags operation. That operation will again return up to the number of
users specified by limit; and if there are more remaining users beyond that, the return will again use the
nextUserId attribute to indicate the next available user's ID; and so on.

Admin API client applications can use the limit and userId parameters in combination to support pagin-
ation of results.

765

Chapter 12. Admin API

Defaults to 10. Maximum allowed value for limit is 100.

userId

(Optional, string) For a GET /bucketops/gettags operation, the alphanumerically first user to retrieve.
See the description of limit above for more detail about how the userId and limit parameters can be
used to support pagination.

In the firstGET /bucketops/gettags request for a group the client should omit the userId parameter. If
userId is omitted from the request, the operation's returned list of users starts with the alphanumerically
first user in the group.

Note The userId parameter is to be used only for pagination. You cannot use this parameter to
retrieve bucket tags for just one user of your choosing.

12.4.5. bucketops Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the bucketops related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "BucketTags" (page 766)

12.4.5.1. BucketTags

The BucketTags object consists of the following attributes:

groupId

(String) The group for which users and bucket tags have been retrieved. Example:

"groupId":"Cloudian"

nextUserId

(String) Users are retrieved in alphanumeric order. If the number of users in the group exceeds the number
specified by the query parameter limit (which defaults to 10), in the GET /bucketops/gettags response the nex-
tUserId attribute will indicate the user ID of the next available user in the alphanumeric ordering (the alpha-
numerically first of the users that has not yet been returned). That user ID can then be used as the userId query
parameter value in a subsequentGET /bucketops/gettags operation. That operation will again return up to the
number of users specified by limit; and if there are more remaining users beyond that, the return will again use
the nextUserId attribute to indicate the next available user's ID.

If alphanumerically there are no additional users beyond those returned in the current response, the nex-
tUserId attribute value will be null.

Example:

"nextUserId":null

userBucket

(Map<String, Map<String, Map<String, String>>>) This entity contains the map of users, their owned buckets

766

12.5. group

that have bucket tags, and the bucket tags. The format is as follows:

{"userId": {"bucketName":{"tagName":"tagValue"},{"tagName2":"tagValue2"}...}, {"bucketName2":
{"tagName":"tagValue"},{"tagName2":"tagValue2"}...},... "userId2": {"bucketName"...} }

Example:

"userBucket":

{"kthompson":

{"bbucket":{"Project":"Project1","Manager":"jsmith"},

"cbucket":{"security":"public"}},

"gwashington":

{"dbucket":{"security":"public"}}

}

Note Only buckets that have bucket tags are listed in the response. Buckets that do not have bucket
tags are excluded from the response.

12.5. group
The Admin API methods built around the group resource are for managing HyperStore service user groups.
This includes support for creating, changing, and deleting user groups, and also for assigning rating plans to
groups.

12.5.1. DELETE /group

DELETE /group Delete a group

Note Before you can delete a group you must first delete all users associated with the group, using the
DELETE /user method.

The request line syntax for this method is as follows.

DELETE /group?groupId=xxx

For parameter description click on the parameter name or see "group Query Parameters" (page 776).

There is no request payload.

12.5.1.0.1. Example Using cURL

The example below deletes the "QA" group.

curl -X DELETE -k -u sysadmin:public https://localhost:19443/group?groupId=QA

12.5.1.0.2. Response Format

There is no response payload. For response status code this method will return either one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {groupId}

767

Chapter 12. Admin API

Status Code Description

400 Group does not exist

409 Cannot delete. Group is not empty.

12.5.2. GET /group

GET /group Get a group's profile
The request line syntax for this method is as follows.

GET /group?groupId=xxx

For parameter description click on the parameter name or see "group Query Parameters" (page 776).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 769).

12.5.2.0.1. Example Using cURL

The example below retrieves the "QA" group.

curl -X GET -k -u sysadmin:public https://localhost:19443/group?groupId=QA \

| python -mjson.tool

The response payload is a JSON-formatted GroupInfo object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"GroupInfo Object" (page 777).

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

}

12.5.2.0.2. Response Format

The response payload is a JSON-formatted GroupInfo object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

768

12.5. group

Status Code Description

204 Group does not exist

400 Missing required parameters : {groupId}

12.5.2.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianGroup

l Parameters: Same as for GET /group, except all parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /group except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get any group

o HyperStore group admin user can only get his own group

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianGroup permission by policy,
and subject to the same restriction as the parent HyperStore user

Note The "GetCloudianGroup" action retrieves group profile data for Cloudian Hyper-
Store groups, not for HyperStore users' subsidiary IAM groups.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianGroup&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianGroupResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<GroupInfo>

<active>true</active>

etc...

...

...

</GroupInfo>

</GetCloudianGroupResponse>

769

Chapter 12. Admin API

12.5.3. GET /group/list

GET /group/list Get a list of group profiles
The request line syntax for this method is as follows.

GET /group/list[?prefix=xxx][&limit=xxx][&offset=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "group Query Parameters" (page 776).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 771).

12.5.3.0.1. Example Using cURL

The example below retrieves the profiles of all groups currently in the system.

curl -X GET -k -u sysadmin:public https://localhost:19443/group/list \

| python -mjson.tool

The response payload is a JSON-formatted list ofGroupInfo objects, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"GroupInfo Object" (page 777).

[

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

},

{

"active": "true",

"groupId": "Support",

"groupName": "Technical Support Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

770

12.5. group

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

},

{

"active": "true",

"groupId": "engineering",

"groupName": "Engineering Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

}

]

12.5.3.0.2. Response Format

The response payload is a JSON-formatted list ofGroupInfo objects (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Limit should be greater than zero

12.5.3.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianGroupList

l Parameters: Same as for GET /group/list, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /group/list except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianGroupList permission by policy,
and subject to the same restriction as the parent HyperStore user

771

Chapter 12. Admin API

Note The "GetCloudianGroupList" action retrieves a list of Cloudian HyperStore groups,
not a list of HyperStore users' subsidiary IAM groups.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianGroupList

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianGroupListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<groupInfo>

<active>true</active>

etc...

...

...

</groupInfo>

<groupInfo>

etc...

...

...

</groupInfo>

</ListWrapper>

</GetCloudianGroupListResponse>

12.5.4. GET /group/ratingPlanId

GET /group/ratingPlanId Get a group's rating plan ID
The request line syntax for this method is as follows.

GET /group/ratingPlanId?groupId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "group Query Parameters" (page 776).

There is no request payload.

12.5.4.0.1. Example Using cURL

The example below retrieves the ID of the rating plan assigned to the "QA" group.

772

12.5. group

curl -X GET -k -u sysadmin:public \

https://localhost:19443/group/ratingPlanId?groupId=QA

The response payload is the rating plan identifier in plain text, which in this example is as follows.

Default-RP

12.5.4.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or one of these method-specific status
codes:

Status Code Description

204 Rating Plan does not exist

400 Missing Required parameters : {groupId}

400 Region {region} is not valid

12.5.5. POST /group

POST /group Change a group's profile
The request line syntax for this method is as follows.

POST /group

The required request payload is a JSON-formatted GroupInfo object.

12.5.5.0.1. Example Using cURL

The example below modifies the group profile that was created in the PUT /group example. Again the
GroupInfo object is specified in a text file named group_QA.txt which is then referenced as the data input to the
cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @group_QA.txt https://localhost:19443/group

Note that in editing the GroupInfo object in the group_QA.txt file before doing the POST operation you could
edit any attribute except for the "groupId" attribute. The "groupId" attribute must remain the same, so that you're
modifying an existing group rather than creating a new one. For an example GroupInfo object see PUT /group.

12.5.5.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Group does not exist

400 Missing required attribute : {groupId}

400 Invalid Active Status for Post Group

773

Chapter 12. Admin API

Status Code Description

400 Invalid JSON Object

12.5.5.1. Additional Configuration Step Required for LDAP Authentication of System
Admin Group Users

For LDAP authentication to work for system admin users when they log into the HyperStore Shell, along with
enabling LDAP for the System Admin group by editing the group's profile you must also perform this additional
configuration step:

1. Log in to the Puppet Master node (as root or as a locally authenticated HyperStore Shell user).

2. Set the Distinguished Name for binding to your LDAP service, and the password:

hsctl config set hsh.ldap.bindDN=<bind Distinguished Name>
hsctl config set hsh.ldap.bindPassword=<bind password>
hsctl config apply hsh

12.5.6. POST /group/ratingPlanId

POST /group/ratingPlanId Assign a rating plan to a group
The request line syntax for this method is as follows.

POST /group/ratingPlanId?groupId=xxx&ratingPlanId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "group Query Parameters" (page 776).

There is no request payload.

12.5.6.0.1. Example Using cURL

The example below assigns the "Gold" rating plan to the "QA" group.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/group/ratingPlanId?groupId=QA&ratingPlanId=Gold'

12.5.6.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing Required parameters : {groupId, ratingPlanId}

400 Region {region} is not valid

12.5.7. PUT /group

PUT /group Create a new group
The request line syntax for this method is as follows.

774

12.5. group

PUT /group

The required request payload is a JSON-formatted GroupInfo object. See example below.

12.5.7.0.1. Example Using cURL

The example below creates a new group with "QA" as its unique identifier. In this example the JSON-formatted
GroupInfo object is specified in a text file named group_QA.txt which is then referenced as the data input to the
cURL command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:public \

-d @group_QA.txt https://localhost:19443/group

The group_QA.txt file content in this example is as follows. For description of a particular attribute, click on the
attribute name; or for the full list of attribute descriptions see "GroupInfo Object" (page 777).

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

}

Note If you set the "ldapEnabled" attribute to "false" for a group that you are creating, you do not need
to include the other "ldap*" attributes in the GroupInfo object. However they are shown above for com-
pleteness. The S3 endpoint attributes are also optional.

12.5.7.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required attribute : {groupId}

400 Invalid JSON Object

400 Invalid Group ID

400 Invalid Active Status for Add Group

409 Unique constraint violation : {groupId}

775

Chapter 12. Admin API

12.5.8. groupQuery Parameters
groupId

(Mandatory, string) Unique identifier of the group.

Note The System Admin group's "groupId" is "0".

prefix

(Optional, string) With a GET /group/list request: A group ID prefix to use for filtering. For example, if you
specify "prefix=usa" then only groups whose group ID starts with "usa" would be retrieved.

Defaults to empty string (meaning that no prefix-based filtering is performed).

limit

(Optional, integer) With a GET /group/list request: For purposes of pagination, the maximum number of
groups to return in one response. If more than this many groups meet the filtering criteria, then the
actual number of groups returned will be "limit plus 1". The last group returned — the "plus 1" — is an
indicator that there are more matching groups than could be returned in the current response (given the
specified "limit" value). That group’s ID can be used as the "offset" value in the next request. Note that if
the offset group happens to be the last group in the entire set of matching groups, the subsequent query
using the offset will return no groups.

Defaults to 100.

offset

(Optional, string) With a GET /group/list request: The group ID with which to start the response list of
groups for the current request, sorted alphanumerically. The "offset" parameter can be used for pur-
poses of pagination within a large result set that is being retrieved via multiple sequential requests. See
the description of "limit" above for more information.

If "offset" is not specified, the first group in the response list will be the alphanumerically first group from
the entire result set.

ratingPlanId

(Mandatory, string) With a POST /group/ratingPlanId request: Unique identifier of the rating plan to
assign to the group.

region

(Optional, string) If your service deployment has multiple service regions, rating plan assignment is on a
per-region basis. With the POST /group/ratingPlanId method, use the "region" parameter to indicate the
service region in which to apply the specified rating plan. For example, if groupId-
d=Engineering&ratingPlanId=Gold®ion=East, then the Gold rating plan will be applied to the Engin-
eering group's service activity in the East region.

12.5.9. groupObjects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Group related Admin API methods.

776

12.5. group

Note For examples of these objects see the API method request and response examples.

l "GroupInfo Object" (page 777)

12.5.9.1. GroupInfo Object

The GroupInfo object consists of the following attributes:

active

(Optional, string) Whether the group is enabled ("true") or disabled ("false") in the system. The users
associated with a disabled group will be unable to access HyperStore data storage or to log in to the
Cloudian Management Console. On a PUT of a new group, the "active" attribute defaults to "true" if not
explicitly set. If not specified in a POST update of an existing group, the group retains its existing active
or inactive status.

Example:

"active": "true"

groupId

(Mandatory, string) Group ID. Only letters, numbers, dashes, and underscores are allowed. Length must
be at least 1 character and no more than 64 characters.

Example:

"groupId": "QA"

Note The System Admin group's "groupId" is "0".

Note In the CMC interface the field "Group Name" maps to the "groupId" attribute in the Admin
API.

groupName

(Optional, string) Group name. Maximum length 64 characters. Example:

"groupName": "Quality Assurance Group"

Note In the CMC interface the field "Group Description" maps to the "groupName" attribute in
the Admin API.

ldapEnabled

(Optional, boolean) Whether LDAP authentication is enabled for members of this group, true or false.
Defaults to false. If LDAP authentication is enabled for the group, then by default when users from this
group log into the CMC, the CMC will check against an LDAP system (with details as specified by other
GroupInfo attributes, below) in order to authenticate the users. You can override this behavior on a per-
user basis -- that is, you can configure certain users within the group so that they are authenticated by
reference to a CMC-based password rather than an LDAP system. For more high-level information

777

Chapter 12. Admin API

about HyperStore's support for LDAP-based user authentication, see "LDAP Integration" (page 131).

Example:

"ldapEnabled": false

Note If you enable LDAP Authentication for an existing group to which users have already been
added via the CMC's Add User function, those existing users will continue to be authenticated
by reference to their CMC-based passwords -- not by reference to an LDAP server.

ldapGroup

(Optional, string) The group's name from the LDAP system. This would typically be the group's "ou"
(Organization Unit) value in the LDAP system, but could also be for example the "l" (Location) value or
"memberOf" value -- depending on which LDAP attribute is to be used to identify users' group mem-
bership when the CMC authenticates them against the LDAP system.

If you use the variable {groupId} in any of the other LDAP authentication configuration attributes, when
implementing LDAP authentication HyperStore will automatically replace the variable with the
ldapGroup value.

"ldapGroup": "Quality Assurance (U.S.)"

ldapMatchAttribute

(Optional, string) For background information about the purpose of this attribute, see the description of
the ldapSearch attribute below.

Use the ldapMatchAttribute setting to specify an LDAP attribute value against which LDAP-enabled
users in this group must match in order to be authorized to log into the CMC. Use this format: <attrib-
ute>=<value>.

Example:

"ldapMatchAttribute": "l=California"

Example:

"ldapMatchAttribute": "memberOf=Sales"

ldapSearch

(Optional, string) If this is an LDAP-enabled group, and if you want to establish a LDAP-based user
authorization filter to complement the user authentication template that you set with the ldapUser-
DNTemplate attribute, then use the ldapSearch, ldapSearchUserBase, and ldapMatchAttribute attrib-
utes to configure the filter. If you do so, then LDAP-enabled users from this group when logging in to the
CMC will need to meet the requirements of the authentication template and also the requirements of the
filter.

Use the ldapSearch attribute to specify the user identifier type that you used in the ldapUser-
DNTemplate, in format "(<LDAP_user_identifier_attribute>={userId})". This is used to retrieve a user’s
LDAP record in order to apply the filtering.

Example:

"ldapSearch": "(uid={userId})"

Example:

"ldapSearch": "(userPrincipalName={userId})"

778

12.5. group

ldapSearchUserBase

(Optional, string) For background information about the purpose of this attribute, see the description of
the ldapSearch attribute above.

Use the ldapSearchUserBase attribute to specify the LDAP search base from which the CMC should
start when retrieving the user's LDAP record in order to apply filtering. .

Example:

"ldapSearchUserBase": "dc=my-company,dc=com"

Example:

"ldapSearchUserBase": "uid={userId},ou=engineering,dc=my-company,dc=com"

ldapServerURL

(Optional, string) If this is an LDAP-enabled group, use this attribute to specify the URL that the CMC
should use to access the LDAP Server when authenticating users in this group.

Note that if you use ldaps (LDAP secured by SSL/TLS), the LDAP server must use a CA-verified cer-
tificate not a self-signed certificate. HyperStore does not support connecting to an LDAP server that’s
using a self-signed SSL certificate.

Example:

"ldapServerURL": "ldap://my.ldap.server:389"

Example:

"ldapServerURL": "ldap://my.ldap.server:389/o=MyCompany"

ldapUserDNTemplate

(Optional, string) If this is an LDAP-enabled group, use this attribute to specify how users within this
group will be authenticated against the LDAP system when they log into the CMC. It is a template that
defines how user names supplied during CMC login will be mapped to user-identifying information in
the LDAP system. Two typical ways of configuring this template are:

l Distinguished Name. With this approach the template specification would include the LDAP
attribute "uid" set to equal the CMC token "{userId}" (exactly as shown below), the LDAP attribute
"ou" set to equal the group's organizational unit value from the LDAP system, and the domain
components from LDAP. For example:

"ldapUserDNTemplate": "uid={userId},ou=engineering,dc=my-company,dc=com"

With the DN template above, LDAP-enabled users from this group will log in with their LDAP uid
value as their CMC user ID. During login the CMC will also verify that the ou value in the user's
LDAP record matches against the ou value from the template.

Note If you are configuring LDAP authentication for the System Admin group, use the
Distinguished Name approach for the user DN template.

l userPrincipalName. With this approach the template would simply map the LDAP attribute "user-
PrincipalName" to the CMC variable "{userId}", like this:

"ldapUserDNTemplate": "userPrincipalName={userId}"

779

Chapter 12. Admin API

With the approach above LDAP-enabled users from this group will log in with their LDAP user-
PrincipalName value (such as <user>@<domain>) as their CMC user ID. Optionally, to imple-
ment additional LDAP-based authorization filters such as the users' group or location, you can
use the ldapSearch, ldapSearchUserBase, and ldapMatchAttribute attributes (all described
earlier in this topic) when you create the group in HyperStore.

s3endpointshttp

(Optional, list<string>) The S3 HTTP service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 HTTP endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 HTTP end-
points in the CMC's Security Credentials page)

If the s3endpointshttp attribute is omitted from the GroupInfo object in a PUT /group request, the attribute
defaults to ["ALL"].

Example:

"s3endpointshttp": ["ALL"]

Note This attribute and the other S3 endpoint attributes do not impact a group's users' author-
ization to access S3 endpoints. They only impact what S3 endpoint information is displayed to
users in the CMC's Security Credentials page.

s3endpointshttps

(Optional, list<string>) The S3 HTTPS service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 HTTPS endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 HTTPS end-
points in the CMC's Security Credentials page)

If the s3endpointshttps attribute is omitted from the GroupInfo object in a PUT /group request, the attrib-
ute defaults to ["ALL"].

Example:

"s3endpointshttps": ["ALL"]

s3websiteendpoints

(Optional, list<string>) The S3 website service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

780

12.6. monitor

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 website endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 website end-
points in the CMC's Security Credentials page)

If the s3websiteendpoints attribute is omitted from the GroupInfo object in a PUT /group request, the
attribute defaults to ["ALL"].

Example:

"s3websiteendpoints": ["ALL"]

12.6. monitor
The Admin API methods built around the monitor resource are for monitoring the health and performance of
your HyperStore system. There are methods for retrieving system and node statistics and for implementing sys-
tem alert functionality.

12.6.1. DELETE /monitor/notificationrule

DELETE /monitor/notificationrule Delete a notification rule
The request line syntax for this method is as follows.

DELETE /monitor/notificationrule?ruleId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "monitor Query Parameters" (page 799).

There is no request payload.

12.6.1.0.1. Example Using cURL

The example below deletes a notification rule.

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/monitor/notificationrule?ruleId=8ef63b63-4961-4e17-88c7-d53c966557db

12.6.1.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {ruleId}

400 Notification rule does not exist : {ruleId}

12.6.2. GET /monitor/events

GET /monitor/events Get the event list for a node
The request line syntax for this method is as follows.

781

Chapter 12. Admin API

GET /monitor/events?nodeId=xxx[&showAck=xxx][&limit=xxx][®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "monitor Query Parameters" (page 799).

Note The CMC interface uses the term "alerts" rather than "events". Alert lists in the CMC are retrieved
by this API method.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 783).

12.6.2.0.1. Example Using cURL

The example below retrieves the list of unacknowledged events for the node that has hostname "store1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/monitor/events?nodeId=store1 | python -mjson.tool

The response payload is a JSON-formatted list ofMonitoringEvent objects, which in this example is as follows.
For description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"MonitoringEvent Object" (page 802).

[

{

"ack": false,

"condition": "<",

"conditionVal": "0.15",

"count": 1,

"eventType": "13|/dev/mapper/vg0-root",

"nodeId": "store1",

"severityLevel": 2,

"statId": "diskInfo",

"timestamp": "1502797442785",

"value": "/dev/mapper/vg0-root: 0.11198006761549427"

},

{

"ack": false,

"condition": "",

"conditionVal": "",

"count": 1,

"eventType": "14|",

"nodeId": "store1",

"severityLevel": 0,

"statId": "repairCompletionStatus",

"timestamp": "1502794743351",

"value": "REPAIR cmdno#: 610 status: COMPLETED"

}

]

12.6.2.0.2. Response Format

The response payload is a JSON-formatted list ofMonitoringEvent objects (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these

782

12.6. monitor

method-specific status codes:

Status Code Description

400 Missing required parameters : {nodeId}

400 Invalid region : {region}

400 Invalid limit

12.6.2.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianMonitorEvents

l Parameters: Same as for GET /monitor/events, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /monitor/events except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorEvents permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorEvents&NodeId=store1

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorEventsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<monitoringEvent>

<ack>false</ack>

etc...

...

...

</monitoringEvent>

<monitoringEvent>

etc...

783

Chapter 12. Admin API

...

...

</monitoringEvent>

</ListWrapper>

</GetCloudianMonitorEventsResponse>

12.6.3. GET /monitor/nodelist

GET /monitor/nodelist Get the list of monitored nodes
The request line syntax for this method is as follows.

GET /monitor/nodelist[?region=xxx]

For parameter description click on the parameter name or see "monitor Query Parameters" (page 799).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 784).

12.6.3.0.1. Example Using cURL

The example below retrieves the list of monitored nodes in the default service region.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/monitor/nodelist | python -mjson.tool

The response payload is a JSON-formatted list of hostnames, which in this example is as follows.

[

"store1",

"store2",

"store3"

]

12.6.3.0.2. Response Format

The response payload is a JSON-formatted list of hostnames (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746).

12.6.3.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianMonitorNodeList

l Parameters: Same as for GET /monitor/nodelist, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /monitor/nodelist except the data is formatted in XML
rather than JSON

784

12.6. monitor

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorNodeList permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorNodeList

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorNodeListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<String>

hyperstore1

</String>

</GetCloudianMonitorNodeListResponse>

12.6.4. GET /monitor/host

GET /monitor/host Get current monitoring statistics for a node
The request line syntax for this method is as follows.

GET /monitor/host?nodeId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "monitor Query Parameters" (page 799).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 790).

12.6.4.0.1. Example Using cURL

The example below retrieves current monitoring statistics for the node that has hostname "store1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/monitor/host?nodeId=store1 | python -mjson.tool

785

Chapter 12. Admin API

The response payload is a JSON-formatted MonitorNodeInfo object, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"MonitorNodeInfo Object" (page 803).

{

"adminHeapMax": {

"timestamp": "1502799543355",

"value": "409075712"

},

"adminHeapUsed": {

"timestamp": "1502799543355",

"value": "109849080"

},

"cassCMSGCCount": {

"timestamp": "1502799543355",

"value": "3"

},

"cassCMSGCTime": {

"timestamp": "1502799543355",

"value": "151"

},

"cassCopyGCCount": null,

"cassCopyGCTime": null,

"cassHeapMax": {

"timestamp": "1502799543355",

"value": "2086666240"

},

"cassHeapUsed": {

"timestamp": "1502799543355",

"value": "1233215776"

},

"cassParNewGCCount": {

"timestamp": "1502799543355",

"value": "4882"

},

"cassParNewGCTime": {

"timestamp": "1502799543355",

"value": "87598"

},

"cpu": {

"timestamp": "1502799663530",

"value": "0.06"

},

"diskAvailKb": {

"timestamp": "1502799543355",

"value": "21912316"

},

"diskIORead": {

"timestamp": "1502799663530",

"value": "0"

},

"diskIOWrite": {

"timestamp": "1502799663530",

786

12.6. monitor

"value": "93811"

},

"diskTotalKb": {

"timestamp": "1502799543355",

"value": "36056096"

},

"diskUsedKb": {

"timestamp": "1502799543355",

"value": "13330724"

},

"disksInfo": {

"disks": [

{

"deviceName": "/dev/mapper/vg0-root",

"diskAvailKb": "1776316",

"diskIORead": "724419584",

"diskIOWrite": "471087837184",

"diskTotalKb": "15874468",

"diskUsedKb": "13285096",

"mountPoint": "/",

"status": "OK",

"storageUse": [

"CASSANDRA",

"REDIS",

"LOG"

]

},

{

"deviceName": "/dev/vdb1",

"diskAvailKb": "20135940",

"diskIORead": "3163136",

"diskIOWrite": "50221056",

"diskTotalKb": "20181628",

"diskUsedKb": "45688",

"mountPoint": "/cloudian1",

"status": "OK",

"storageUse": [

"HS"

]

}

],

"timestamp": "1502799663530"

},

"hyperStoreHeapMax": {

"timestamp": "1502799543355",

"value": "1635909632"

},

"hyperStoreHeapUsed": {

"timestamp": "1502799543355",

"value": "139187600"

},

"ioRx": {

"timestamp": "1502799663530",

787

Chapter 12. Admin API

"value": "17216"

},

"ioTx": {

"timestamp": "1502799663530",

"value": "28179"

},

"s3GetLatency": null,

"s3GetTPS": null,

"s3GetThruput": {

"timestamp": "1502799543355",

"value": "0"

},

"s3HeapMax": {

"timestamp": "1502799543355",

"value": "818020352"

},

"s3HeapUsed": {

"timestamp": "1502799543355",

"value": "164786136"

},

"s3PutLatency": {

"timestamp": "1502799543355",

"value": "18.4"

},

"s3PutTPS": {

"timestamp": "1502799543355",

"value": "0.0"

},

"s3PutThruput": {

"timestamp": "1502799543355",

"value": "0"

},

"status": {

"ipaddr": "",

"status": [

"LOG_WARN"

],

"timestamp": "1502799663530",

"value": "[LOG_WARN]"

},

"svcAdmin": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcCassandra": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

788

12.6. monitor

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcHyperstore": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisCred": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisMon": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisQos": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcS3": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

}

}

12.6.4.0.2. Response Format

The response payload is a JSON-formatted MonitorNodeInfo object (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing required parameters : {nodeId}

789

Chapter 12. Admin API

12.6.4.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianMonitorHost

l Parameters: Same as for GET /monitor/host, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /monitor/host except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorHost permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorHost

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorHostResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<MonitorNodeInfo>

<adminHeapMax>

<timestamp>1534534923619</timestamp>

<value>1538260992</value>

</adminHeapMax>

etc...

...

...

</MonitorNodeInfo>

</GetCloudianMonitorHostResponse>

12.6.5. GET /monitor

GET /monitor Get current monitoring statistics for a service region

790

12.6. monitor

The request line syntax for this method is as follows.

GET /monitor?[region=xxx]

For parameter description click on the parameter name or see "monitor Query Parameters" (page 799).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 792).

12.6.5.0.1. Example Using cURL

The example below retrieves current monitoring statistics for the default service region.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/monitor | python -mjson.tool

The response payload is a JSON-formatted MonitorSystemInfo object, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"MonitorSystemInfo Object" (page 810).

{

"diskAvailKb": {

"timestamp": "1502799843254",

"value": "61855592"

},

"diskTotalKb": {

"timestamp": "1502799843254",

"value": "88115680"

},

"diskUsedKb": {

"timestamp": "1502799843254",

"value": "23814368"

},

"nodeStatuses": [

{

"hostname": "store1",

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

},

{

"hostname": "store2",

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

},

{

791

Chapter 12. Admin API

"hostname": "store3",

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

}

],

"s3GetLatency": null,

"s3GetTPS": null,

"s3GetThruput": {

"timestamp": "1502799843254",

"value": "0"

},

"s3PutLatency": {

"timestamp": "1502799843254",

"value": "130.1"

},

"s3PutTPS": {

"timestamp": "1502799843254",

"value": "0.0"

},

"s3PutThruput": {

"timestamp": "1502799843254",

"value": "0"

},

"status": {

"ipaddr": "",

"status": [

"OK"

],

"timestamp": "1502799843254",

"value": "[OK]"

}

}

12.6.5.0.2. Response Format

The response payload is a JSON-formatted MonitorSystemInfo object (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Invalid region : {region}

12.6.5.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

792

12.6. monitor

l Action name:GetCloudianMonitorRegion

l Parameters: Same as for GET /monitor, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /monitor except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorRegion permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorRegion

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorRegionResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<MonitorSystemInfo>

<status>

<timestamp>1534535223489</timestamp>

etc...

...

...

</MonitorSystemInfo>

</GetCloudianMonitorRegionResponse>

12.6.6. GET /monitor/history

GET /monitor/history Get historical monitoring statistics for a node
The request line syntax for this method is as follows.

GET /monitor?nodeId=xxx[®ion=xxx]&statId=xxx&startTime=xxx&endTime=xxx

For parameter description click on the parameter name or see "monitor Query Parameters" (page 799).

There is no request payload.

793

Chapter 12. Admin API

12.6.6.0.1. Example Using cURL

The example below retrieves history for the "cpu" statistic, for a one hour period (2019 July 20th, midnight to
1AM). Note that the system interprets the start and end times as GMT times.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/monitor/history?nodeId=

hs1&statId=cpu&startTime=201907201200&endTime=201907201300' \

| python -mjson.tool

The response payload is a JSON-formatted list of timestamp/value pairs (with the timestamps as
UTC milliseconds). Note that the response body does not include the statistic ID. Depending on the statistic,
there will be either one timestamp/value pair per minute or one timestamp/value pair per five minutes, through-
out the requested startTime / endTime interval (see statId for detail). In this truncated example, it's one per five
minutes.

[

{

"timestamp": "1563624003885",

"value": "0.21"

},

{

"timestamp": "1563624303754",

"value": "0.21"

},

{

"timestamp": "1563624603451",

"value": "0.21"

},

...

}

]

12.6.6.0.2. Response Format

The response payload is a JSON-formatted list of timestamp/value pairs (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing parameter : {parameter}

400 Both regionId and nodeId are empty

400 Invalid region : {region}

400 Invalid parameter : {parameter}

12.6.7. GET /monitor/notificationrules

GET /monitor/notificationrules Get the list of notification rules
The request line syntax for this method is as follows.

794

12.6. monitor

GET /monitor/notificationrules[?region=xxx]

For parameter description click on the parameter name or see "monitor Query Parameters" (page 799).

There is no request payload.

12.6.7.0.1. Example Using cURL

The example below retrieves the current list of notification rules for the default service region.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/monitor/notificationrules | python -mjson.tool

The response payload is a JSON-formatted list of NotificationRule objects, which in this example is as follows.
The example is truncated so that only a few rules are shown. For description of a particular attribute, click on
the attribute name; or for the full list of attribute descriptions see "NotificationRule Object" (page 813).

[

{

"condition": ">",

"conditionVal": "0.9",

"email": "default",

"enabled": true,

"region": "",

"ruleId": "12",

"severityLevel": 1,

"snmpTrap": false,

"statId": "cpu"

},

{

"condition": "",

"conditionVal": "",

"email": "default",

"enabled": true,

"region": "",

"ruleId": "19",

"severityLevel": 3,

"snmpTrap": false,

"statId": "currentFailDiskInfo"

},

{

"condition": "<",

"conditionVal": "0.1",

"email": "default",

"enabled": true,

"region": "",

"ruleId": "11",

"severityLevel": 2,

"snmpTrap": false,

"statId": "diskAvail"

},

...

...

]

795

Chapter 12. Admin API

12.6.7.0.2. Response Format

The response payload is a JSON-formatted list of NotificationRule objects (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746).

12.6.8. POST /monitor/acknowledgeevents

POST /monitor/acknowledgeevents Acknowledge monitoring events
The request line syntax for this method is as follows.

POST /monitor/acknowledgeevents?nodeId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "monitor Query Parameters" (page 799).

The required request payload is a JSON-formatted EventsAck object. See example below.

12.6.8.0.1. Example Using cURL

The example below acknowledges two monitoring events from the node with hostname "store1" (the same two
events that were retrieved in the GET /monitor/events example). In this example the JSON-formatted Event-
sAck object is specified in a text file named event_acknowledge.txt which is then referenced as the data input
to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @event_acknowledge.txt \

https://localhost:19443/monitor/acknowledgeevents?nodeId=store1

The event_acknowledge.txt file content in this example is as follows. For description of a particular attribute,
click on the attribute name; or for the full list of attribute descriptions see "EventsAck Object" (page 801).

{

"eventTypes":["13|/dev/mapper/vg0-root","14|"],

"nodeId":"store1"

}

12.6.8.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameter : {nodeId, events}

400 Invalid region : {region}

400 Invalid JSON object

12.6.9. POST /monitor/notificationruleenable

POST /monitor/notificationruleenable Enable or disable notification rules

796

12.6. monitor

The request line syntax for this method is as follows.

POST /monitor/notificationruleenable

The required request payload is a JSON-formatted NotificationRulesEnable object. See example below.

You can use this method to disable notification rules or to re-enable rules that you've previously disabled.
When a notification rule is disabled the rule will not trigger system event notifications.

Note To disable or re-enable just one notification rule, you can use either the POST /mon-
itor/notificationruleenable method or the POST /monitor/notificationrule method. To disable or re-
enable multiple notification rules in one operation use the POST /monitor/notificationruleenable
method.

12.6.9.0.1. Example Using cURL

The example below disables two notification rules. In this example the JSON-formatted Noti-
ficationRulesEnable object is specified in a text file named rule_disable.txt which is then referenced as the
data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @rule_disable.txt https://localhost:19443/monitor/notificationruleenable

The rule_disable.txt file content in this example is as follows. For description of a particular attribute, click on
the attribute name; or for the full list of attribute descriptions see "NotificationRulesEnable Object" (page 818).

{

"enable":false,

"regionId":"",

"ruleList":["836da4bf-c6cc-4f73-afa3-9854ce407ca6","8ef63b63-4961-4e17-88c7-d53c966557db"]

}

12.6.9.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {ruleId}

400 Notification rule does not exist : {ruleId}

12.6.10. POST /monitor/notificationrule

POST /monitor/notificationrule Change a notification rule
The request line syntax for this method is as follows.

POST /monitor/notificationrule

The required request payload is a JSON-formatted NotificationRule object. See example below.

797

Chapter 12. Admin API

12.6.10.0.1. Example Using cURL

The example below changes an existing notification rule (the rule that was created in the PUT /mon-
itor/notificationrule description). In this example the JSON-formatted NotificationRule object is specified in a
text file named rule_s3GetLatency.txt which is then referenced as the data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @rule_s3GetLatency.txt https://localhost:19443/monitor/notificationrule

The rule_s3GetLatency.txt file content in this example is as follows. For description of a particular attribute, click
on the attribute name; or for the full list of attribute descriptions see "NotificationRule Object" (page 813).

{

"condition":">",

"conditionVal":"150",

"email":"default",

"enabled":true,

"region":"",

"ruleId":"836da4bf-c6cc-4f73-afa3-9854ce407ca6",

"severityLevel": 2,

"snmpTrap":false,

"statId":"s3GetLatency"

}

Note Unlike when you create a new notification rule, when you change an existing rule you must spe-
cify the rule's "ruleId" value in the NotificationRule object. If you're not sure of a rule's ID you can
retrieve it using the GET /monitor/notificationrules method.

12.6.10.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Invalid JSON object

400 Notification rule Id does not exist : {ruleId}

12.6.11. PUT /monitor/notificationrule

PUT /monitor/notificationrule Create a new notification rule
The request line syntax for this method is as follows.

PUT /monitor/notificationrule

The required request payload is a JSON-formatted NotificationRule object. See example below.

Note The HyperStore system comes with many pre-configured notification rules. To see the existing
set of rules go to the CMC's Alert Rules page. The CMC interface uses the term "alert rules" rather than
"notification rules".

798

12.6. monitor

12.6.11.0.1. Example Using cURL

The example below creates a new notification rule. In this example the JSON-formatted NotificationRule object
is specified in a text file named rule_s3GetLatency.txt which is then referenced as the data input to the cURL
command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:public \

-d @rule_s3GetLatency.txt https://localhost:19443/monitor/notificationrule

The rule_s3GetLatency.txt file content in this example is as follows. For description of a particular attribute, click
on the attribute name; or for the full list of attribute descriptions see "NotificationRule Object" (page 813).

{

"condition":">",

"conditionVal":"150",

"email":"default",

"enabled":true,

"region":"",

"ruleId":"",

"severityLevel": 1,

"snmpTrap":false,

"statId":"s3GetLatency"

}

12.6.11.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Invalid JSON object

12.6.12. monitor Query Parameters
ruleId

(Mandatory, string) For a DELETE /monitor/notificationrule request: The system-generated unique ID for
the notification rule. For the default notification rules that come packaged with the HyperStore system
this will be a simple integer like "1", "2", or "14". For rules that you create yourself the system will gen-
erate a ruleId in the form of a UUID string like "8e4cc533-360a-4dd5-bfe4-6b5f5b6c40da".

If you do not know the ruleId, you can retrieve it by using the GET /monitor/notificationrules method. That
method returns a list of notification rules which includes each rule’s ruleId.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

nodeId

(Mandatory, string) For a GET /monitor/events or GET /monitor/host or GET /monitor/history or POST
/monitor/acknowledgeevents request: The hostname of the target node.

showAck

(Optional, boolean) For a GET /monitor/events request: Whether to return acknowledged events as well

799

Chapter 12. Admin API

as unacknowledged events, true or false.

If not specified in the request, defaults to false (only unacknowledged events are returned).

limit

(Optional, integer) For a GET /monitor/events request: The maximum number of events to return in the
response.

If not specified in the request, the default limit is 100 events.

statId

(Mandatory, string) For a GET /monitor/history request: the statistic for which to retrieve a history. The
supported statistic IDs are listed in the table below. Depending on the statistic, the returned history will
include either one data point (one instance of the statistic value) per minute or one data point per five
minutes, across the time interval bounded by the startTime and endTime specified in the request.

The GET /monitor/history call only supports one statistic ID per request. You cannot request multiple or
all statistics IDs in a single request.

For more information about a particular statistic, see "MonitorNodeInfo Object" (page 803).

StatId Data Point Frequency

diskIORead

Every minute
diskIOWrite

ioTx

ioRx

cpu

Every five minutes

s3GetTPS

s3PutTPS

s3GetThruput

s3PutThruput

s3GetLatency

s3PutLatency

adminHeapUsed

cassHeapUsed

hyperStoreHeapUsed

s3HeapUsed

startTime

(Mandatory, string) For a GET /monitor/history request: the start time of the interval for which to retrieve
the statistic history, in format yyyyMMddHHmm (for example 201907200000). The system interprets this
as a GMT time, so when specifying your desired start time do it in terms of the GMT time zone -- not the
local time.

endTime

(Mandatory, string) For a GET /monitor/history request: the end time of the interval for which to retrieve

800

12.6. monitor

the statistic history, in format yyyyMMddHHmm (for example 201907201200). The system interprets this
as a GMT time, so when specifying your desired end time do it in terms of the GMT time zone -- not the
local time.

12.6.13. monitor Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Monitor related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "EventsAck Object" (page 801)

l "MonitoringEvent Object" (page 802)

l "MonitorNodeInfo Object" (page 803)

l "MonitorSystemInfo Object" (page 810)

l "NotificationRule Object" (page 813)

l "NotificationRulesEnable Object" (page 818)

12.6.13.1. EventsAck Object

The EventsAck object consists of the following attributes:

delete

(Optional, boolean) If this attribute is included and set to true then the events specified by the
"eventTypes" attribute will be immediately deleted from the system.

If this attribute is omitted or set to false then the events specified by the "eventTypes" attribute will be
marked as acknowledged but will not yet be deleted from system. Such acknowledged events will
instead be deleted automatically after a time period configured by the events.acknowledged.ttl property
in the mts.properties.erb configuration file. By default this period is 86400 seconds (one day).

Example:

"delete": true

eventTypes

(Mandatory, list<string>) List of the eventTypes being acknowledged. For non-log events (such as a ser-
vice down event or a threshold crossing event), the eventType is the integer ruleId value from the noti-
fication rule that triggered the event. For log events (events triggered by the writing of an application log
message), the eventType is formatted as "<ruleId>|<logCategory>". The specific eventTypes currently
present on a node can be retrieved with the GET /monitor/events method.

Example:

"eventTypes": ["13|/dev/mapper/vg0-root","14|"]

nodeId

(Mandatory, string) Hostname of the node on which the event(s) occurred. Example:

"nodeId": "store1"

801

Chapter 12. Admin API

regionId

(Optional, string) Name of service region in which the event(s) occurred. Defaults to the default service
region. Example:

"regionId": "southwest"

12.6.13.2. MonitoringEvent Object

The MonitoringEvent object consists of the following attributes:

ack

(Boolean) Whether the event has been acknowledged, true or false. This will be false unless you expli-
citly retrieved acknowledged events when you executed the GET /monitor/events method. Example:

"ack": false

condition

(String) From the notification rule that triggered this event, the condition comparison type in the rule
definition. This will be "=", "<", or ">". Example:

"condition": "<"

conditionVal

(String) From the notification rule that triggered this event, the condition value against which to compare.
For example, this may be a numerical threshold value, or a service status such as "SVC_DOWN", or a
log message level such as "LOG_ERR". Example:

"conditionVal": "0.15"

count

(Integer) Number of times that the event has occurred without being acknowledged. Example:

"count": 1

eventType

(String) From the notification rule that triggered this event, the integer <ruleId> value . (Or, for log events,
a concatenation of "<ruleId>|<logCategory>". The logCategory is derived from the line of code that gen-
erates the specific log message.) Example:

"eventType": "13|/dev/mapper/vg0-root"

nodeId

(String) Hostname of the node on which the event occurred. Example:

"nodeId": "store1"

severityLevel

(Integer) Severity level of the event, as configured in the notification rule for the event. This is an integer
with meaning as follows:

l 0 = Low

l 1 = Medium

802

12.6. monitor

l 2 = High

l 3 = Critical

Example:

"severityLevel": 2

statId

(String) From the notification rule that triggered this event, the statId. See "NotificationRule Object"
(page 813) for a list of supported statIds.

Example:

"statId": "diskInfo"

Note The "svcS3" statId encompasses events pertaining to auto-tiering and cross-region rep-
lication, as well as events pertaining to providing S3 service to clients.

timestamp

(String) Timestamp of latest event occurrence in UTC milliseconds. Example:

"timestamp": "1502797442785"

value

(String) On the node, the statistic value that triggered this event. For example, if the event was triggered
by a statistic rising to a threshold-exceeding value, this attribute would indicate that value. In the case of
a log event, the "value" is the log message.

Example:

"value": "/dev/mapper/vg0-root: 0.11198006761549427"

12.6.13.3. MonitorNodeInfo Object

The MonitorNodeInfo object consists of the following attributes and nested objects:

Note Within the MonitorNodeInfo object, all statistics for which the data type (in the descriptions below)
is MonitorStat are formatted as "<statName>": {"timestamp": "<UTCMilliseconds>","value":
"<statValue>"}.

adminHeapMax

(MonitorStat) The maximum JVM heap size allocated to the Admin Service, in bytes. Example:

"adminHeapMax": {"timestamp": "1502799543355","value": "409075712"}

adminHeapUsed

(MonitorStat) The Admin Service’s current JVM heap memory usage on the node, in bytes. This is
measured each five minutes. Example:

"adminHeapUsed": {"timestamp": "1502799543355","value": "109849080"}

cassCMSGCCount

803

Chapter 12. Admin API

(MonitorStat) The number of concurrent mark-sweep (CMS) garbage collections executed since the
last start-up of the Cassandra service on this node. This collection type targets old-generation objects.
Example:

"cassCMSGCCount": {"timestamp": "1502799543355","value": "3"}

cassCMSGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing CMC garbage collections since
the last start-up of the Cassandra service on this node. Example:

"cassCMSGCTime": {"timestamp": "1502799543355","value": "151"}

cassCopyGCCount

(MonitorStat) The number of Copy garbage collections executed since the last start-up of the Cas-
sandra service on this node. Example:

"cassCopyGCCount": null

cassCopyGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing Copy garbage collections since
the last start-up of the Cassandra service on this node. Example:

"cassCopyGCTime": null

cassHeapMax

(MonitorStat) The maximum JVM heap size allocated to the Cassandra Service, in bytes. Example:

"cassHeapMax": {"timestamp": "1502799543355","value": "2086666240"}

cassHeapUsed

(MonitorStat) The Cassandra Service’s current JVM heap memory usage on the node, in bytes. This is
measured each five minutes. Example:

"cassHeapUsed": {"timestamp": "1502799543355","value": "1233215776"}

cassParNewGCCount

(MonitorStat) The number of parallel new-generation (ParNew) garbage collections executed since the
last start-up of the Cassandra service on this node. Example:

"cassParNewGCCount": {"timestamp": "1502799543355","value": "4882"}

cassParNewGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing ParNew garbage collections
since the last start-up of the Cassandra service on this node. Example:

"cassParNewGCTime": {"timestamp": "1502799543355","value": "87598"}

cpu

(MonitorStat) Current CPU utilization percentage on the node. This is measured once per every five
minutes. Example:

"cpu": {"timestamp": "1502799663530","value": "0.06"}

diskAvailKb

(MonitorStat) On the node, the total mounted disk space that's still available for S3 object storage

804

12.6. monitor

(HyperStore data directories) or Cassandra metadata storage (Cassandra data directory). Reported as
a number of kilobytes.

The following are deducted from the total amount of unused disk space to arrive at the "available" disk
space amount that is reported by the diskAvailKb statistic:

l Each disk’s "reserved-blocks-percentage" (the portion of the disk that’s reserved for privileged
processes)

l Each HyperStore data disk's "stop-write" buffer (10% of capacity by default). For more inform-
ation on the stop-write feature see "Automatic Stop of Writes to a Disk at 90% Usage" (page
157).

Example:

"diskAvailKb": {"timestamp": "1502799543355","value": "21912316"}

Note Because the reserved-blocks-percentage and the stop-write buffer percentage are not
counted as available space, the diskUsedKb and diskAvailKb will add up to less than the
diskTotalKb.

diskIORead

(MonitorStat) Across all the node’s disks that are being used for S3 object storage or Cassandra
metadata storage, the average disk read throughput in bytes per second. This stat is recalculated each
minute, based on the most recent minute of activity. Example:

"diskIORead": {"timestamp": "1502799663530","value": "0"}

diskIOWrite

(MonitorStat) Across all the node’s disks that are being used for S3 object storage or Cassandra
metadata storage, the average disk write throughput in bytes per second. This stat is recalculated each
minute, based on the most recent minute of activity. Example:

"diskIOWrite": {"timestamp": "1502799663530","value": "93811"}

diskTotalKb

(MonitorStat) On the node, the total size of the disks mounted for S3 object storage (HyperStore data dir-
ectories) or Cassandra metadata storage (Cassandra data directory). Reported as a number of kilo-
bytes. Example:

"diskTotalKb": {"timestamp": "1502799543355","value": "36056096"}

diskUsedKb

(MonitorStat) On the node, the total disk space that's been consumed for S3 object storage (HyperStore
data directories) or Cassandra metadata storage (Cassandra data directory) Reported as a number of
kilobytes. Example:

"diskUsedKb": {"timestamp": "1502799543355","value": "13330724"}

disksInfo

(DiskMonitorStat) Current information about each disk on the node. Formatted as {"disks":
List<DiskInfo>,"timestamp": "<UTCMilliseconds>"}. There is one nested DiskInfo object for each disk on
the node. Each DiskInfo object consists of the following attributes:

805

Chapter 12. Admin API

deviceName

(String) Disk drive device name. Example:

"deviceName": "/dev/mapper/vg0-root"

diskAvailKb

(String) Total remaining free space on the disk in number of KBs. In calculating the available
space, a disk’s "reserved-blocks-percentage" (the portion of the disk space that’s reserved for
privileged processes) is considered to be unavailable. By default in Linux systems the con-
figurable "reserved-blocks-percentage" for a file system is 5% of disk capacity. If this is a Hyper-
Store data disk, then the "stop-write" buffer (10% of disk capacity by default) is also considered to
be unavailable.

Example:

"diskAvailKb": "1776316"

diskIORead

(String) The average disk read throughput for this disk, in bytes per second. This stat is recal-
culated each minute, based on the most recent minute of data. Example:

"diskIORead": "724419584"

diskIOWrite

(String) The average disk write throughput for this disk, in bytes per second. This stat is recal-
culated each minute, based on the most recent minute of data. Example:

"diskIOWrite": "471087837184"

diskTotalKb

(String) Total capacity of the disk in number of KBs. Example:

"diskTotalKb": "15874468"

diskUsedKb

(String) Amount of used space on the disk in number of KBs. Example:

"diskUsedKb": "13285096"

mountPoint

(String) File system mount point for the disk. Example:

"mountPoint": "/

status

(EDiskStatus) Disk status string. One of "OK", "ERROR", or "DISABLED". For description of these
disk statuses, see "View a Node's Disk Detail" (page 317).

Example:

"status": "OK"

storageUse

(EStorageType) List of storage type strings, indicating what type of data is being stored on the

806

12.6. monitor

disk. One or more of:

l "CASSANDRA" — System metadata and S3 object metadata in Cassandra.

l "REDIS" — System metadata in Redis.

l "LOG" — Application logs

l "HS" — Replicated S3 object data.

l "EC" — Erasure coded S3 object data.

l "NOTAVAIL" — Storage usage information cannot be retrieved for this disk.

Example:

"storageUse": ["CASSANDRA","REDIS","LOG"]

hyperStoreHeapMax

(MonitorStat) The maximum JVM heap size allocated to the HyperStore Service, in bytes. Example:

"hyperStoreHeapMax": {"timestamp": "1502799543355","value": "1635909632"}

hyperStoreHeapUsed

(MonitorStat) The HyperStore Service’s current JVM heap memory usage on the node, in bytes. This is
measured each five minutes. Example:

"hyperStoreHeapUsed": {"timestamp": "1502799543355","value": "139187600"}

ioRx

(MonitorStat) The aggregate network bytes per second received by the node, for all types of network
traffic including but not limited to S3 request traffic. This stat is recalculated each minute, based on the
most recent minute of activity. Example:

"ioRx": {"timestamp": "1502799663530","value": "17216"}

ioTx

(MonitorStat) The aggregate network bytes per second transmitted by the node, for all types of network
traffic including but not limited to S3 request traffic. This stat is recalculated each minute, based on the
most recent minute of activity. Example:

"ioTx": {"timestamp": "1502799663530","value": "28179"}

s3GetLatency

(MonitorStat) On the node, the 95th percentile request latency value for S3 GET transactions, in mil-
liseconds. New statistic values are calculated each five minutes, based on the most recent approx-
imately 1000 GET transactions. The s3GetLatency value indicates that of the last 1000 GET
transactions, 95% completed in that many milliseconds or less.

Example:

"s3GetLatency": null

Note HEAD transactions are counted toward this stat also.

s3GetTPS

(MonitorStat) On the node, the number of S3 GET transactions processed per second. This stat is

807

Chapter 12. Admin API

recalculated each five minutes, based on the most recent five minutes of activity. HEAD transactions are
counted toward this stat also. Example:

"s3GetTPS": null

s3GetThruput

(MonitorStat) On the node, the data throughput for S3 GET transactions, expressed as MB per second.
This stat is recalculated each five minutes, based on the most recent five minutes of transaction data.
HEAD transactions are counted toward this stat also. Example:

"s3GetThruput": {"timestamp": "1502799543355","value": "0"}

s3HeapMax

(MonitorStat) The maximum JVM heap size allocated to the S3 Service, in bytes. Example:

"s3HeapMax": {"timestamp": "1502799543355","value": "818020352"}

s3HeapUsed

(MonitorStat) The S3 Service’s current JVM heap memory usage on the node, in bytes. This is meas-
ured each five minutes. Example:

"s3HeapUsed": {"timestamp": "1502799543355","value": "164786136"}

s3PutLatency

(MonitorStat) On the node, the 95th percentile request latency value for S3 PUT transactions, in mil-
liseconds. New statistic values are calculated each five minutes, based on the most recent approx-
imately 1000 PUT transactions. The s3PutLatency value indicates that of the last 1000 PUT
transactions, 95% completed in that many milliseconds or less.

Example:

"s3PutLatency": {"timestamp": "1502799543355","value": "18.4"}

Note POST transactions are counted toward this stat also.

s3PutTPS

(MonitorStat) On the node, the number of S3 PUT transactions processed per second. This stat is recal-
culated each five minutes, based on the most recent five minutes of transaction data. POST transactions
are counted toward this stat also. Example:

"s3PutTPS": {"timestamp": "1502799543355","value": "0.0"}

s3PutThruput

(MonitorStat) On the node, the data throughput for S3 PUT transactions, expressed as MB per second.
This stat is recalculated each five minutes, based on the most recent five minutes of transaction data.
POST transactions are counted toward this stat also. Example:

"s3PutThruput": {"timestamp": "1502799543355","value": "0"}

status

(ServiceStatus) Overall status of the node.

808

12.6. monitor

Formatted as {"ipaddr": "<empty>", "status": [<list of one or more of "OK","SVC_DOWN","LOG_WARN", or
"LOG_ERR">], "timestamp": "<UTCMilliseconds>","value": "<statusValueFormattedAsString>",}.

The "ipaddr" value will be empty or null here; an IP address is specified only in the service-specific
status attributes (such as "svcCassandra") described below.

Possible values within the "status" list are:

l "OK" — All HyperStore services are up and running on the node, and the node has no unac-
knowledged events.

l "SVC_DOWN"— One or more HyperStore services (Admin, Cassandra, HyperStore, Redis QoS,
Redis Credentials, Redis Monitor, or S3) is down on the node

l "LOG_WARN"— There are unacknowledged warnings in an application log on the node (such
as the S3 Service application log or the Cassandra application log).

l "LOG_ERR" — There are unacknowledged errors in an application service log.

The "value" attribute will be identical to the "status" attribute, except formatted as a single string rather
than a list of strings.

Example:

"status": {"ipaddr": "","status": ["SVC_DOWN","LOG_WARN"],"timestamp":

"1502799663530","value": "[SVC_DOWN, LOG_WARN]"}

svcAdmin

(ServiceStatus) Admin service status on the node.

Formatted as {"ipaddr": "<nodeIPAdress>","status": [<list of one or more of "OK","SVC_DOWN", "LOG_
WARN", or "LOG_ERR">],"timestamp": "<UTCMilliseconds>","value": "<statusValueFor-
mattedAsString>"}.

Example:

"svcAdmin": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

The other service status attributes that follow below (svcCassandra and so on) are formatted in the
same way.

svcCassandra

(ServiceStatus) Cassandra service status on the node. Example:

"svcCassandra": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

svcHyperstore

(ServiceStatus) HyperStore service status on the node. Example:

"svcHyperstore": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

svcRedisCred

(ServiceStatus) Redis Credentials service status on the node. Example:

"svcRedisCred": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

809

Chapter 12. Admin API

svcRedisMon

(ServiceStatus) Redis Monitor service status on the node. Example:

"svcRedisMon": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

svcRedisQos

(ServiceStatus) Redis QoS service status on the node. Example:

"svcRedisQos": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

svcS3

(ServiceStatus) S3 service status on the node. Example:

"svcS3": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":
"1502799663530","value": "[OK]"}

12.6.13.4. MonitorSystemInfo Object

The MonitorSystemInfo object consists of the following attributes:

Note Within the MonitorSystemInfo object, all statistics for which the data type (in the descriptions
below) is MonitorStat are formatted as "<statName>":{"timestamp":"<UTCMil-
liseconds>","value":"<statValue>"}.

diskAvailKb

(MonitorStat) Across the whole service region, the total mounted disk space that's still available for S3
object storage (HyperStore data directories) or Cassandra metadata storage (Cassandra data dir-
ectory). Reported as a number of kilobytes.

The following are deducted from the total amount of unused disk space to arrive at the "available" disk
space amount that is reported by the diskAvailKb statistic:

l Each disk’s "reserved-blocks-percentage" (the portion of the disk that’s reserved for privileged
processes)

l Each HyperStore data disk's "stop-write" buffer (10% of capacity by default). For more inform-
ation on the stop-write feature see "Automatic Stop of Writes to a Disk at 90% Usage" (page
157).

Example:

"diskAvailKb": {"timestamp": "1502799843254","value": "61855592"}

Note Because the reserved-blocks-percentage and the stop-write buffer percentage are not
counted as available space, the diskUsedKb and diskAvailKb will add up to less than the
diskTotalKb.

Note The diskAvailKbvalue can potentially be larger than a 64 bit integer can hold.

810

12.6. monitor

diskTotalKb

(MonitorStat) Across the whole service region, the total size of the disks mounted for S3 object storage
(HyperStore data directories) or Cassandra metadata storage (Cassandra data directory). Reported as
a number of kilobytes.

Example:

"diskTotalKb": {"timestamp": "1502799843254","value": "88115680"}

Note This value can potentially be larger than a 64 bit integer can hold.

diskUsedKb

(MonitorStat) Across the whole service region, on disks that are mounted for S3 object storage (Hyper-
Store data directories) or Cassandra metadata storage (Cassandra data directory), the total disk space
that's used. Reported as a number of kilobytes.

Example:

"diskUsedKb": {"timestamp": "1502799843254","value": "23814368"}

Note This value can potentially be larger than a 64 bit integer can hold.

nodeStatuses

(List<NodeStatus>) List of NodeStatus objects, one for each node in the service region. Each nested
NodeStatus object consists of the following attributes:

hostname

(String) Hostname of the node. Example:

"hostname": "store1"

ipaddr

(String) This attribute will have value null. Example:

"ipaddr": null

status

(List<string>) Status of the node. A list of one or more of the following strings: "OK","SVC_
DOWN","LOG_WARN", or "LOG_ERR". The meanings are:

l "OK" — All HyperStore services are up and running on the node, and the node has no
unacknowledged events.

l "SVC_DOWN"— One or more HyperStore services (Admin, Cassandra, HyperStore,
Redis QoS, Redis Credentials, Redis Monitor, or S3) is down on the node

l "LOG_WARN"— There are unacknowledged warnings in an application log on the node
(such as the S3 Service application log or the Cassandra application log).

l "LOG_ERR" — There are unacknowledged errors in an application service log.

Example:

"status": ["SVC_DOWN","LOG_WARN"]

811

Chapter 12. Admin API

timestamp

(String) Status timestamp in UTC milliseconds. Example:

"timestamp": "1502799843254"

value

(String) The "value" attribute will be the same as the "status" attribute, except formatted as a
single string rather than a list of strings. Example:

"value":"[SVC_DOWN, LOG_WARN]"

s3GetLatency

(MonitorStat) Across the whole service region, the 95th percentile request latency value for S3 GET
transactions, in milliseconds. New statistic values are calculated each five minutes, based on the most
recent approximately 1000 GET transactions. The s3GetLatency value indicates that of the last 1000
GET transactions, 95% completed in that many milliseconds or less.

Example:

"s3GetLatency": null

Note HEAD transactions are counted toward this stat also.

s3GetTPS

(MonitorStat) Across the whole service region, the number of S3 GET transactions processed per
second. This stat is recalculated each five minutes, based on the most recent five minutes of transaction
data. HEAD transactions are counted toward this stat also.

Example:

"s3GetTPS": null

s3GetThruput

(MonitorStat) Across the whole service region, the data throughput for S3 GET transactions, expressed
as MB per second. This stat is recalculated each five minutes, based on the most recent five minutes of
transaction data. HEAD transactions are counted toward this stat also.

Example:

"s3GetThruput": {"timestamp": "1502799843254","value": "0"}

s3PutLatency

(MonitorStat) Across the whole service region, the 95th percentile request latency value for S3 PUT
transactions, in milliseconds. New statistic values are calculated each five minutes, based on the most
recent approximately 1000 PUT transactions. The s3PutLatency value indicates that of the last 1000
PUT transactions, 95% completed in that many milliseconds or less.

Example:

"s3PutLatency": {"timestamp": "1502799843254","value": "130.1"}

Note POST transactions are counted toward this stat also.

812

12.6. monitor

s3PutTPS

(MonitorStat) Across the whole service region, the number of S3 PUT transactions processed per
second. This stat is recalculated each five minutes, based on the most recent five minutes of transaction
data. POST transactions are counted toward this stat also.

Example:

"s3PutTPS": {"timestamp": "1502799843254","value": "0.0"}

s3PutThruput

(MonitorStat) Across the whole service region, the data throughput for S3 PUT transactions, expressed
as MB per second. This stat is recalculated each five minutes, based on the most recent five minutes of
transaction data. POST transactions are counted toward this stat also.

Example:

"s3PutThruput": {"timestamp": "1502799843254","value": "0"}

status

(ServiceStatus) High-level service status for the system as a whole. Formatted as {"ipaddr":
"<empty>","status": [<one of "OK" or "SVC_DOWN">],"timestamp": "<UTCMilliseconds>","value":
"<statusValueFormattedAsString>"}.

The "ipaddr" value will be empty or null.

The "status" will be formatted as a list but with just one member string. Status string meanings are:

l "OK" — All HyperStore services are up and running on all nodes in the service region.

l "SVC_DOWN"— A HyperStore service (Admin, Cassandra, HyperStore, Redis QoS, Redis Cre-
dentials, Redis Monitor, or S3) is down on one or more nodes in the service region.

The "value" attribute will be identical to the "status" attribute, except formatted as a string rather than as
a list.

Example:

"status": {"ipaddr": "","status": ["OK"],"timestamp": "1502799843254",
"value": "[OK]"}

12.6.13.5. NotificationRule Object

The NotificationRule object consists of the following attributes:

condition (mandatory)

(String) Comparator used in defining this rule: can be ">", "<", or "=". Example:

"condition": ">"

conditionVal (mandatory)

(String) Value against which to compare. The value of the statistic specified by statId will be compared
to the conditionVal to determine whether a notification is called for. This statistic monitoring occurs on
each node.

For example for a rule that triggers notifications if CPU utilization on any individual node exceeds 90%,
the "statId" would be "cpu", the "condition" would be ">", and the "conditionVal" would be ".9".

813

Chapter 12. Admin API

Example:

"conditionVal": "0.9"

email (optional)

(String) Comma-separated list of email addresses to receive notifications. Or to use the default email
address list (as configured on the CMC's "Configuration Settings" (page 337) page), set this to the
string "default".

To not have email notifications as part of the rule (for instance, if the rule is only meant to trigger SNMP
traps), set the "email" attribute to empty ("").

This defaults to empty ("") if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"email": "default"

enabled (mandatory)

(Boolean) Whether the rule is enabled, true or false.

This attribute defaults to false if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"enabled": true

region (optional)

(String) In a PUT /monitor/notificationrule request, use this attribute to specify the service region in which
to create the notification rule. To create the rule in the default region set this attribute to the default
region name or to empty (""). If you omit the "region" attribute in a PUT, then by default the notification
rule is created in the default region.

In a GET /monitor/notificationrules response, the "region" attribute will be present but set to empty. The
client application will be aware of what region the retrieved rules are from because the desired region is
specified in the GET request line.

Example:

"region": ""

ruleId (mandatory)

(String) System-generated unique ID for this rule. For the default notification rules that come packaged
with the HyperStore system this will be a simple integer like "1", "2", or "14". For rules that you create
yourself the system will generate a ruleId in the form of a UUID string like "8e4cc533-360a-4dd5-bfe4-
6b5f5b6c40da".

In a PUT (when you are creating a new rule), include the "ruleId" attribute and set it to empty (""). The
system will subsequently generate a ruleId upon rule creation.

In a POST (when you are updating an existing rule), set the "ruleId" attribute to the ruleId of the rule you
want to update. To find out what the ruleId is for a particular rule, use the GET /monitor/notificationrules
method.

Example:

"ruleId": "12"

814

12.6. monitor

severityLevel (mandatory)

(Integer) Severity level to assign to the event. This is an integer with meaning as follows:

l 0 = Low

l 1 = Medium

l 2 = High

l 3 = Critical

Example:

"severityLevel": 1

snmpTrap (optional)

(Boolean) Whether to transmit an SNMP trap as part of the notification when this rule is triggered, true or
false. If a trap is sent it is sent to the destination configured on the CMC's "Configuration Settings"
(page 337) page.

This defaults to false if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"snmpTrap": false

statId (mandatory)

(String) ID of the node statistic being checked for this rule. The table below lists statistics for which noti-
fication rules can be defined. These statistics are monitored on each node. Note that the sample "con-
ditionVal" column is not intended to suggest suitable values upon which to base notification rules but
simply to illustrate the applicable data format. The right-most column indicates whether a rule for that
statId already exists, as part of the default set of notification rules that come pre-packaged with the
HyperStore system.

Example:

"statId": "cpu"

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

s3GetTPS
Number of S3 GET trans-
actions per second on the
node.

">" "100" No

s3PutTPS
Number of S3 PUT trans-
actions per second on the
node.

">" "100" No

s3PutThruput
Number of bytes of through-
put per second for S3 PUT
operations on the node.

">" "100000" No

s3GetThruput
Number of bytes of through-
put per second for S3 GET
operations on the node.

">" "100000" No

s3PutLatency
Recent average latency for
S3 PUT operations on the

">" "100" No

815

Chapter 12. Admin API

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

node, in number of mil-
liseconds.

s3GetLatency

Recent average latency for
S3 GET operations on the
node, in number of mil-
liseconds.

">" "100" No

diskAvail

Of the node’s total disk space
allocated to HyperStore data
storage, the portion of disk
space that’s still free.
Expressed as a decimal
value.

"<" ".1"
Yes, for <
.1

diskInfo

On each individual disk that is
allocated to HyperStore data
storage, the portion of disk
space that’s still free.
Expressed as a decimal. This
rule triggers a notification if
any individual disk on the
node crosses the defined
threshold.

"<" ".15"
Yes, for <
.15

repairCompletionStatus

When this type of rule is set, a
notification is triggered any
time that an auto-repair com-
pletes. The notification
includes the auto-repair’s
final status: COMPLETED,
FAILED, or TERMINATED.

Set to empty
("")

Set to empty
("")

Yes

cpu
Current CPU utilization level
as a decimal value.

">" ".9"
Yes, for >
.9

ioRx

Total network bytes per
second received by the node
(S3 traffic plus any other net-
work traffic to the node).

">" "100000000" No

ioTx

Total network bytes per
second transmitted by the
node (S3 traffic plus any other
network traffic from the node).

">" "100000000" No

diskIORead
Bytes per second for disk
reads on the node.

">" "1000000" No

diskIOWrite
Bytes per second for disk
writes on the node.

">" "1000000" No

svcAdmin Admin service status. One of "=" "SVC_DOWN" Yes, one

816

12.6. monitor

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

{SVC_DOWN, LOG_WARN,
LOG_ERR}. Note that for this
and the other "svc<Ser-
viceType>" statIds, you have
the option of creating multiple
rules — for example, one rule
for status "SVC_DOWN" and
a second separate rule for
status "LOG_ERR". Do not
specify multiple service val-
ues in a single notification
rule.

rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

svcCassandra
Cassandra service status.
One of {SVC_DOWN, LOG_
WARN, LOG_ERR}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

svcHyperStore
HyperStore service status.
One of {SVC_DOWN, LOG_
WARN, LOG_ERR}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

svcRedisCred
Redis Credentials service
status. One of {SVC_DOWN,
LOG_WARN}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
WARN

svcRedisQos
Redis QoS service status.
One of {SVC_DOWN, LOG_
WARN}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
WARN

svcRedisMon Redis Monitor service status. "=" "SVC_DOWN" Yes, for

817

Chapter 12. Admin API

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

Only supported value is
"SVC_DOWN".

SVC_
DOWN

svcS3

S3 service status. One of
{SVC_DOWN, LOG_WARN,
LOG_ERR}.

Note Along with log
warnings and errors
pertaining to provid-
ing S3 service to cli-
ents, the S3 service
alerts category
includes log warnings
and errors pertaining
to auto-tiering and
cross-region rep-
lication.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

12.6.13.6. NotificationRulesEnable Object

The NotificationRulesEnable object consists of the following attributes:

enable

(Mandatory, boolean) Set to true to enable the rule(s). Set to false to disable the rule(s). Example:

"enable":false

regionId

(Optional, string) Service region in which the rules are configured. If you do not specify a region, the
default region is assumed. Example:

"regionId":""

ruleList

(Mandatory, list<string>) List of ruleId(s) of the notification rule(s) to enable or disable.

If you do not know the ruleIds of the rules that you want to enable/disable, you can retrieve them by
using the GET /monitor/notificationrules method. That method returns a list of rules, which includes
each rule’s ruleId.

Example:

"ruleList":["836da4bf-c6cc-4f73-afa3-9854ce407ca6",
"8ef63b63-4961-4e17-88c7-d53c966557db"]

12.6.13.7. MonitorStat

Data type with the following format:

818

12.7. permissions

"<statName>": {"timestamp": "<UTCMilliseconds>","value": "<statValue>"}

12.6.13.8. ServiceStatus

Data type with the following format:

{"ipaddr": "<nodeIPAdress>","status": [<list of one or more of "OK","SVC_DOWN", "LOG_WARN", or "LOG_
ERR">],"timestamp": "<UTCMilliseconds>","value": "<statusValueFormattedAsString>"}

The meanings of the possible "status" values are:

l "OK" — The service is up and running on the node, and there are no unacknowledged events asso-
ciated with the service.

l "SVC_DOWN"— The service is down on the node.

l "LOG_WARN"— There are unacknowledged warnings in the service application log on the node.

l "LOG_ERR" — There are unacknowledged errors in the service application log on the node.

The "value" attribute will be identical to the "status" attribute, except formatted as a single string rather than a
list of strings. For example:

"status": ["SVC_DOWN","LOG_WARN"],"value": "[SVC_DOWN, LOG_WARN]"

12.7. permissions
The Admin API methods built around the permissions resource are for creating, changing, or retrieving public
URL permissions for an object that's stored in the HyperStore system. When you create a public URL for an
object, the object can then be accessed at that URL by a regular web browser.

12.7.1. GET /permissions/publicUrl

GET /permissions/publicUrl Get public URL permissions for an object
The request line syntax for this method is as follows.

POST /permissions/publicUrl?userId=xxx&groupId=xxx&bucketName=xxx&objectName=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "permissions Query Parameters" (page 821).

There is no request payload.

Use this method to retrieve existing public URL permissions for an object (public URL permissions that have
already been created with the POST /permissions/publicUrlmethod).

12.7.1.0.1. Example Using cURL

The example below retrieves an existing public URL for an object named Cloudian.pdf.

curl -X GET -k -u sysadmin:public \

'https://
localhost
:19443/permissions/publicUrl?userId=
jim&groupId=Pubs&bucketName=bkt1&objectName=Cloudian.pdf' \

| python -mjson.tool

819

Chapter 12. Admin API

The response payload is a JSON-formatted PublicUrlAccess object, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"PublicUrlAccess Object" (page 822).

{

"allowRead": true,

"currentDownloads": 0,

"expiryTime": "1517385600000",

"maxDownloadNum": 1000,

"secure": true,

"url": "https://s3-region1.mycloudianhyperstore.com/bkt1/Cloudian.pdf?

AWSAccessKeyId=00b3ec480eb5c844fb88&Expires=1517385600&Signature=

rxxJnEWoUusrj1kQ02A9PMcFQ4U%3D&x-amz-pt=MDAzMTE1NjIxNTE2MTE4NzIxMDc1"

}

12.7.1.0.2. Response Format

The response payload is a JSON-formatted PublicUrlAccess object (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing required parameter : {userId, groupId, bucketName, objectName}

400 User does not exist

12.7.2. POST /permissions/publicUrl

POST /permissions/publicUrl Create or change public URL permissions for an
object
The request line syntax for this method is as follows.

POST /permissions/publicUrl?userId=xxx&groupId=xxx&bucketName=xxx&objectName=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "permissions Query Parameters" (page 821).

The required request payload is a JSON-formatted PublicUrlAccess object. See example below.

Use this method to create or update public URL permissions for an object that’s stored in the HyperStore sys-
tem. See the Example section below for the distinction between creating a new public URL and updating an
existing one.

For this method to work, the object owner must also be the bucket owner. Also, the method will not work if the
object has been encrypted using a user-managed encryption key (SSE-C).

The public URL for an object will have the following format:

http[s]://<bucketName>.<S3Domain>/<objectName>?AWSAccesKeyId=<accessKeyOfObjectOwner>

&Expires=<expiryTime>&Signature=<SignatureString>&x-amz-pt=<>

This format follows the AWS specification for signed URLs.

820

12.7. permissions

12.7.2.0.1. Example Using cURL

The example below creates a public URL for an object named Cloudian.pdf. In this example the JSON-format-
ted PublicUrlAccess object is specified in a text file named postPublicUrlAccess.txt which is then referenced as
the data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @postPublicUrlAccess.txt \

'https://
localhost
:19443/permissions/publicUrl?userId=
jim&groupId=Pubs&bucketName=bkt1&objectName=Cloudian.pdf'

The postPublicUrlAccess.txt file content in this example is as follows. For description of a particular attribute,
click on the attribute name; or for the full list of attribute descriptions see "PublicUrlAccess Object" (page
822).

{

"allowRead": true,

"expiryTime": "1517385600000",

"maxDownloadNum": 1000,

"secure": true

}

Note If the PublicUrlAccess JSON object supplied in the POST request body does not include a "url"
attribute -- as it does not in the example above -- the POST request is processed as a request to gen-
erate a new public URL. If a "url" attribute value is included in the PublicUrlAccess object and set to
equal an existing public URL, the POST request is processed as an update to the permissions asso-
ciated with the existing public URL (such as an update of the expiration date-time or the maximum
allowed downloads limit).

To retrieve a public URL that you've just created or that you've created previously, use the GET /per-
missions/publicUrl method.

12.7.2.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameter : {userId, groupId, bucketName, objectName}

400 User does not exist

400 Invalid JSON object

12.7.3. permissions Query Parameters
userId

(Mandatory, string) User ID for user who owns the object for which a public URL is being generated.

821

Chapter 12. Admin API

groupId

(Mandatory, string) Group ID for user who owns the object.

bucketName

(Mandatory, bucketname) S3 bucket that contains the object. Note that the bucket’s owner must be the
same as the object owner or the request will be rejected with a 400 error response.

objectName

(Mandatory, string) Name of the object for which a public URL is being generated.

12.7.4. permissions Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Permissions related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "PublicUrlAccess Object" (page 822)

12.7.4.1. PublicUrlAccess Object

allowRead

(Optional, boolean) Whether a public URL is enabled for the associated object, true or false. Defaults to
true. Example:

"allowRead": true

currentDownloads

(Optional, number) Current total number of times that the object has been downloaded via public URL.
This value is set by the system, not by the client. Starts at 0 for a new public URL. Example:

"currentDownloads": 0

expiryTime

(Mandatory, string) Expiration date-time of the public URL in UTC milliseconds. After this date-time the
public URL will no longer work. Example:

"expiryTime": "1517385600000"

maxDownloadNum

(Optional, number) Maximum number of times that the system will allow the object to be downloaded via
public URL, by all users in total. To allow unlimited downloads, set this to "-1". Defaults to 1000.
Example:

"maxDownloadNum": 1000

secure

(Optional, boolean) Whether the object’s public URL should use HTTPS rather than HTTP, true or false.
Defaults to true. Example:

"secure": true

822

12.8. qos

url

(Optional, string) System-generated public URL for accessing the object.

With a POST request:

l To create a new public URL for an object do not include the "url" attribute in the request body.

l To change permission attributes for an existing public URL, use the "url" attribute in the request
body to specify the existing public URL.

The public URL for an object will have the following format:

http[s]://<bucketName>.<S3Domain>/<objectName>?AWSAccesKeyId=

<accessKeyOfObjectOwner>&Expires=<expiryTime>&Signature=<signatureString>&

x-amz-pt=<internalTrackingCode>

This format follows the AWS specification for signed URLs.

Example:

"url": "https://s3-region1.mycloudianhyperstore.com/bkt1/Cloudian.pdf?

AWSAccessKeyId=00b3ec480eb5c844fb88&Expires=1517385600&Signature=

rxxJnEWoUusrj1kQ02A9PMcFQ4U%3D&x-amz-pt=MDAzMTE1NjIxNTE2MTE4NzIxMDc1"

12.8. qos
The Admin API methods built around the qos resource are for managing HyperStore quality of service (QoS)
controls. These controls set limits on service usage by user groups and by individual users. There are API meth-
ods for assigning, retrieving, or deleting QoS settings for specified users or groups.

For an overview of the HyperStore quality of service feature, see "Quality of Service (QoS) Feature Over-
view" (page 135).

12.8.1. DELETE /qos/limits

DELETE /qos/limits Delete QoS settings for a user or group
The request line syntax for this method is as follows.

DELETE /qos/limits?userId=xxx&groupId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "qos Query Parameters" (page 827).

There is no request payload.

Use this method to:

l Delete QoS limits that have been assigned to a specific user. If you delete user-specific QoS limits, the
system will automatically assign the user the default user-level QoS limits associated with the group to
which the user belongs.

l Delete QoS limits that have been assigned to a specific group. If you delete group-specific QoS limits,
the system will automatically assign the group the regional default QoS limits.

Essentially, this method allows you to clear user-specific or group-specific QoS overrides so that default QoS
settings are used instead.

823

Chapter 12. Admin API

12.8.1.0.1. Example Using cURL

The example below deletes QoS settings for the "Dev" group. With these group-specific settings deleted, the
default group QoS settings for the service region will be applied to the Dev group.

curl -X DELETE -k -u sysadmin:public \

'https://localhost:19443/qos/limits?userId=*&groupId=Dev'

12.8.1.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {userId, groupId}

400 Region {region} is invalid

12.8.2. GET /qos/limits

GET /qos/limits Get QoS settings for a user or group
The request line syntax for this method is as follows.

GET /qos/limits?userId=xxx&groupId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "qos Query Parameters" (page 827).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 825).

12.8.2.0.1. Example Using cURL

The example below retrieves current QoS settings for the user "cody" in the "Dev" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/qos/limits?userId=cody&groupId=Dev' \

| python -mjson.tool

The response payload is a JSON-formatted QosLimitSettings object, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"QosLimitSettings Object" (page 829).

{

"groupId": "Dev",

"labelId": "qos.userQosOverrides.title",

"qosLimitList": [

{

"type": "STORAGE_QUOTA_KBYTES",

"value": 5000000

824

12.8. qos

},

{

"type": "REQUEST_RATE_LW",

"value": -1

},

{

"type": "REQUEST_RATE_LH",

"value": -1

},

{

"type": "DATAKBYTES_IN_LW",

"value": -1

},

{

"type": "DATAKBYTES_IN_LH",

"value": -1

},

{

"type": "DATAKBYTES_OUT_LW",

"value": -1

},

{

"type": "DATAKBYTES_OUT_LH",

"value": -1

},

{

"type": "STORAGE_QUOTA_COUNT",

"value": -1

}

],

"userId": "cody"

}

12.8.2.0.2. Response Format

The response payload is a JSON-formatted QosLimitSettings object (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 User does not exist

400 Missing required parameter : {userId, groupId}

400 Region {region} is invalid

12.8.2.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

825

Chapter 12. Admin API

l Action name:GetCloudianQosLimits

l Parameters: Same as for GET /qos/limits, except parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /qos/limits except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get QoS limits for any group or user

o HyperStore group admin user can only get QoS limits for own group or users within own group

o HyperStore regular user can only get own QoS limits

o IAM user can only use this method if granted admin:GetCloudianQosLimits permission by an
IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianQosLimits" action retrieves QoS limit information for Cloudian
HyperStore user accounts, not for subsidiary IAM users. The system does not maintain
QoS limits per IAM user. For example, if a HyperStore group administrator grants
admin:GetCloudianQosLimits permission to an IAM user, the IAM user will be able to
retrieve QoS limits for any HyperStore user in the group administrator's group. And if a
HyperStore regular user grants admin:GetCloudianQosLimits permission to an IAM user,
the IAM user will be able to retrieve QoS limits for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianQosLimits&UserId=cody&GroupId=Dev

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianQosLimitsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<UserQosOverrides>

<groupId>Pubs</groupId>

etc...

...

...

</UserQosOverrides>

<GetCloudianQosLimitsResponse>

12.8.3. POST /qos/limits

POST /qos/limits Create QoS settings for a user or group

826

12.8. qos

The request line syntax for this method is as follows.

POST /qos/limits?userId=xxx&groupId=xxx&storageQuotaKBytes=xxx&storageQuotaCount=xxx
&wlRequestRate=xxx&hlRequestRate=xxx&wlDataKBytesIn=xxx&hlDataKBytesIn=xxx
&wlDataKBytesOut=xxx&hlDataKBytesOut=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "qos Query Parameters" (page 827).

You must include each of the QoS type query parameters, even those types for which you do not want to set a
limit. To disable a type set it to "-1". There is no request body payload.

This method creates user-level or group-level QoS settings. User-level QoS settings place an upper limit on the
storage utilization and transaction activities of individual users, while group-level QoS settings place such lim-
its on entire user groups.

In a multi-region HyperStore deployment, you must establish QoS limits separately for each region. The QoS
limits that you establish for a region will be applied only to activity in that region.

Note For the system to enforce QoS limits that you have assigned to users or groups, the QoS feature
must be enabled in your system configuration. By default it is disabled. You can enable it in the CMC's
Configuration Settings page. Note that you can enable QoS enforcement just for storage utilization lim-
its, or for storage utilization limits and also request traffic limits.

12.8.3.0.1. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400
Missing required parameters : {userId, groupId, storageQuotaBytes, storageQuotaCount,
wlRequestRate, hlRequestRate, wlDataBytesIn, hlDataBytesIn, wlDataBytesOut,
hlDataBytesOut}

400 Invalid parameter

400 Region {region} is invalid

12.8.4. qos Query Parameters
userId

(Mandatory, string) User ID of the user to whom the QoS settings apply. Supported options are a specific
user ID, "ALL", or "*".

See the groupId description below for information about how to use the "userId" and "groupId" para-
meters in combination to designate different levels of QoS settings.

groupId

(Mandatory, string) Group ID of the group to which the QoS settings apply. Supported options are a spe-
cific group ID, "ALL", or "*".

827

Chapter 12. Admin API

You can use the "userId" and "groupId" parameters in combination to designate different levels of QoS
settings:

l User-level QoS for a specific user (userId=<userId>&groupId=<groupId>)

l Default user-level QoS for a specific group (userId=ALL&groupId=<groupId>)

l Default user-level QoS for the whole region (userId=ALL&groupId=*)

l Group-level QoS for a specific group (userId=*&groupId=<groupId>)

l Default group-level QoS for the whole region (userId=*&groupId=ALL)

region

(Optional, string) Service region to which the QoS settings apply. If not specified, the default region is
assumed.

storageQuotaKBytes

(Mandatory, number) With a POST /qos/limits request: Maximum allowed storage, in number of kilo-
bytes.

Storage overhead associated with replication or erasure coding does not count toward this limit. For
example a 100KB object that's replicated three times (in accordance with a 3X replication storage
policy) would count as 100KB toward this limit, not 300KB.

storageQuotaCount

(Mandatory, number) With a POST /qos/limits request: Maximum allowed storage, in number of objects.

wlRequestRate

(Mandatory, number) With a POST /qos/limits request: Warning level for number of HTTP requests per
minute. Exceeding this level triggers the writing of a message to the S3 Service application log (it does
not return a warning to the S3 client).

hlRequestRate

(Mandatory, number) With a POST /qos/limits request: Maximum allowed number of HTTP requests per
minute.

wlDataKBytesIn

(Mandatory, number) With a POST /qos/limits request: Warning level for number of uploaded kilobytes
per minute. Exceeding this level triggers the writing of a message to the S3 Service application log (it
does not return a warning to the S3 client).

hlDataKBytesIn

(Mandatory, number) With a POST /qos/limits request: Maximum allowed number of uploaded kilobytes
per minute.

wlDataKBytesOut

(Mandatory, number) With a POST /qos/limits request: Warning level for number of downloaded kilo-
bytes per minute. Exceeding this level triggers the writing of a message to the S3 Service application
log (it does not return a warning to the S3 client).

hlDataKBytesOut

(Mandatory, number) With a POST /qos/limits request: Maximum allowed number of downloaded

828

12.8. qos

kilobytes per minute.

12.8.5. qos Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the QoS related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "QosLimitSettings Object" (page 829)

12.8.5.1. QosLimitSettings Object

The QosLimitSettings object consists of the following attributes and nested objects:

groupId

(String) Group ID. This will be either a specific group ID, or "ALL", or "*". For details of how this is used,
see "qos Query Parameters" (page 827).

Example:

"groupId": "Dev"

labelId

(String) This attribute is used by the CMC to display the correct title on a group or user QoS con-
figuration screen. Example:

"labelId": "qos.userQosOverrides.title"

qosLimitList

(List<QosLimit>) List ofQosLimit objects. There will be one QosLimit object for each of the eight QoS
limit types. Each QosLimit object consists of the following attributes:

type

(String) One of the following QoS limit types:

l STORAGE_QUOTA_KBYTES

l STORAGE_QUOTA_COUNT

l REQUEST_RATE_LW

l REQUEST_RATE_LH

l DATAKBYTES_IN_LW

l DATAKBYTES_IN_LH

l DATAKBYTES_OUT_LW

l DATAKBYTES_OUT_LH

For descriptions of these types see "QoS Limit Type Descriptions" (page 830).

Example:

"type": "STORAGE_QUOTA_KBYTES"

value

829

Chapter 12. Admin API

(Number) The value assigned to this QoS limit type. A value of -1 indicates that the limit is dis-
abled. Example:

"value": 5000000

userId

(String) User ID. This will be either a specific user ID, or "ALL", or "*". For details of how this is used, see
"qos Query Parameters" (page 827). Example:

"userId": "cody"

12.8.5.1.1. QoS Limit Type Descriptions

The table below describes each QoS limit type, as it applies to the individual user level and to the group level.

Note When the system rejects a user request because of a storage quota, it returns an HTTP 403
reponse to the client application. When the system rejects a user request due to rate controls, it returns
an HTTP 503 response to the client application.

Note Requests rejected due to QoS limits are counted toward usage tracking, for purposes of request
volume based billing. For example, if a user has reached her storage quota and tries to do a PUT of
more data, the system rejects the PUT request but counts the request toward the user’s bill (specifically,
toward the part of her rating plan that charges per volume of HTTP PUT requests).

QoS Limit Type Description Implementation

STORAGE_QUOTA_KBYTES
Storage quota limit, in
number of KBs

l For user QoS — If a user’s total
stored data reaches this limit, the
user will be blocked from upload-
ing additional data until she
deletes some of her currently
stored data.

l For group QoS — If a group’s
total stored data reaches this
limit, all of the group’s users will
be blocked from uploading addi-
tional data until some of their cur-
rently stored data is deleted.

STORAGE_QUOTA_COUNT

Storage quota limit, in
total number of objects.
Note that folders count
as objects, as well as
files

l For user QoS — If a user’s total
stored data reaches this limit, the
user will be blocked from upload-
ing additional data until she
deletes some of her currently
stored data.

l For group QoS — If a group’s
total stored data reaches this
limit, all of the group’s users will
be blocked from uploading addi-
tional data until some of their cur-
rently stored data is deleted.

830

12.8. qos

QoS Limit Type Description Implementation

REQUEST_RATE_LW

Request rate warning
limit, in total number of
HTTP requests per
minute.

l For user QoS — On receipt of a
first HTTP request from a user, a
60 second timer is started for that
user. If during the 60 seconds
the total number of requests
reaches the Request Rate Warn-
ing Limit, an informational mes-
sage is written to the S3 Server’s
application log. At the end of the
60 seconds, the request counter
for the user is reset. Sub-
sequently, the next request that
comes in from the user triggers
the start of a new 60 second inter-
val, and the process repeats.

l For group QoS — The imple-
mentation is the same as for user
QoS, except that it applies to
requests from all users in the
group. For example, a request
from any user in the group trig-
gers the start of the 60 second
timer, and subsequent requests
from any user in the group are
counted toward the per-minute
total.

Note that HTTP DELETE requests are
not counted toward Request Rate con-
trols.

REQUEST_RATE_LH
Request rate maximum,
in total number of HTTP
requests per minute.

l For user QoS — On receipt of a
first request from a user, a 60
second timer is started for that
user (the same timer described
in Request Rate Warning Limit).
If during the 60 seconds the num-
ber of requests reaches Request
Rate High Limit, the system tem-
porarily blocks all requests from
the user. At the end of the 60
seconds the block on requests is
released and the request
counter is reset. Subsequently,
the next request that comes in
from the user triggers the start of
a new 60 second interval, and
the process repeats.

l For group QoS — The imple-

831

Chapter 12. Admin API

QoS Limit Type Description Implementation

mentation is the same as for user
QoS, except that it applies to
requests from all users in the
group. For example, a request
from any user in the group trig-
gers the start of the 60 second
timer, and subsequent requests
from any user in the group are
counted toward the per-minute
total. If a block is triggered by the
high limit being reached, the
block applies to all users in the
group.

DATAKBYTES_IN_LW
Inbound data rate warn-
ing limit, in KBs per
minute.

This works the same as described for
the Request Rate Warning Limit, except
what’s counted during each timed 60
second interval is inbound kilobytes of
data.

DATAKBYTES_IN_LH
Inbound data rate high
limit, in KBs per minute.

This works the same as described for
the Request Rate High Limit, except
what’s counted during each timed 60
second interval is inbound kilobytes of
data. Note that if a block is triggered by
the Data Bytes IN (KB) High Limit being
reached, the block applies to all HTTP
request types (not just PUTs.)

DATAKBYTES_OUT_LW
Outbound data rate
warning limit, in KBs per
minute.

This works the same as described for
the Request Rate Warning Limit, except
what’s counted during each timed 60
second interval is outbound kilobytes of
data.

DATAKBYTES_OUT_LH
Outbound data rate high
limit, in KBs per minute.

This works the same as described for
the Request Rate High Limit, except
what’s counted during each timed 60
second interval is outbound kilobytes of
data. Note that if a block is triggered by
the Data Bytes OUT (KB) High Limit
being reached, the block applies to all
HTTP request types (not just GETs.)

12.9. ratingPlan
The Admin API methods built around the ratingPlan resource are for managing HyperStore rating plans. Rat-
ing plans assigning pricing to various types and levels of service usage, in support of billing users or charging
back to an organization’s business units. There are methods for creating, changing, and deleting rating plans.

832

12.9. ratingPlan

For an overview of the HyperStore billing feature, see "Usage Reporting and Billing Feature Overview"
(page 138).

Note By default the system only supports billing based on number of stored bytes. If you want your rat-
ing plans to include billing based on request rates or data transfer rates you must enable the "Track-
/Report Usage for Request Rates and Data Transfer Rates" setting in the CMC’s Configuration
Settings page.

12.9.1. DELETE /ratingPlan

DELETE /ratingPlan Delete a rating plan
The request line syntax for this method is as follows.

DELETE /ratingPlan?ratingPlanId=xxx

For parameter description click on the parameter name or see "ratingPlan Query Parameters" (page 839).

There is no request payload.

12.9.1.0.1. Example Using cURL

The example below deletes a rating plan with ID "Plan-6".

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/ratingPlan?ratingPlanId=Plan-6

12.9.1.0.2. Response Format

There is no response payload. For response status code this method will return either one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Rating Plan does not exist

400 Missing required parameter : {ratingPlanId}

12.9.2. GET /ratingPlan

GET /ratingPlan Get a rating plan
The request line syntax is as follows.

GET /ratingPlan?ratingPlanId=xxx

For parameter description click on the parameter name or see "ratingPlan Query Parameters" (page 839).

There is no request payload.

12.9.2.0.1. Example Using cURL

The example below retrieves the system default rating plan, which has ID "Default-RP".

833

Chapter 12. Admin API

curl -X GET -k -u sysadmin:public \

https://localhost:19443/ratingPlan?ratingPlanId=Default-RP python -mjson.tool

The response payload is a JSON-formatted RatingPlan object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Rat-
ingPlan Object" (page 839).

{

"currency": "USD",

"id": "Default-RP",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "1",

"second": "0.20"

},

{

"first": "0",

"second": "0.10"

}

]

},

"BO": {

"ruleclassType": "BYTES_OUT",

"rules": [

{

"first": "1",

"second": "0.20"

},

{

"first": "0",

"second": "0.10"

}

]

},

"HD": {

"ruleclassType": "HTTP_DELETE",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "10",

"second": "0.02"

},

{

834

12.9. ratingPlan

"first": "0",

"second": "0.01"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0.02"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "1",

"second": "0.14"

},

{

"first": "5",

"second": "0.12"

},

{

"first": "0",

"second": "0.10"

}

]

}

},

"name": "Default Rating Plan"

}

12.9.2.0.2. Response Format

The response payload is a JSON-formatted RatingPlan object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

400 Missing required parameter: {ratingPlanId}

12.9.3. GET /ratingPlan/list

GET /ratingPlan/list Get the list of rating plans in the system
The request line syntax for this method is as follows.

835

Chapter 12. Admin API

GET /ratingPlan/list

There is no request payload.

12.9.3.0.1. Example Using cURL

The example below retrieves the list of rating plans that are in the system. Note that this method does not
return the full content of the rating plans -- just the ID, name, and currency for each plan.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/ratingPlan/list | python -mjson.tool

The response payload in this example is as follows.

[

{

"currency": "USD",

"encodedId": "Default-RP",

"id": "Default-RP",

"name": "Default Rating Plan"

},

{

"currency": "USD",

"encodedId": "Whitelist-RP",

"id": "Whitelist-RP",

"name": "Whitelist Rating Plan"

}

]

12.9.3.0.2. Response Format

The response payload is in format List<Map<string,string,string,string>> (see example above). Strings are: {id,-
name,encodedid,currency}. "encodedId" value is a URL-encoding of the "id" value. For response status code
this method will return one of the "Common Response Status Codes" (page 746).

12.9.4. POST /ratingPlan

POST /ratingPlan Change a rating plan
The request line syntax for this method is as follows.

POST /ratingPlan

The required request payload is a JSON-formatted RatingPlan object.

12.9.4.0.1. Example Using cURL

The example below modifies the rating plan that was created in the PUT /ratingPlan example. Again the Rat-
ingPlan object is specified in a text file named ratingStorageOnly.txt which is then referenced as the data input
to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @ratingStorageOnly.txt https://localhost:19443/ratingPlan

836

12.9. ratingPlan

Note that in editing the RatingPlan object in the ratingStorageOnly.txt file before doing the POST operation you
could edit any attribute except for the "id" attribute. The "id" attribute must remain the same, so that you're modi-
fying an existing rating plan rather than creating a new one. For an example RatingPlan object see PUT /rat-
ingPlan.

12.9.4.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Rating Plan does not exist

400 Missing required parameter : {id, name}

400 Invalid JSON Object

12.9.5. PUT /ratingPlan

PUT /ratingPlan Create a new rating plan
The request line syntax for this method is as follows.

PUT /ratingPlan

The required request payload is a JSON-formatted RatingPlan object. See example below.

12.9.5.0.1. Example Using cURL

The example below creates a new rating plan that charges users based only on storage level, with no charges
for traffic. In this example the JSON-formatted RatingPlan object is specified in a text file named rat-
ingStorageOnly.txt which is then referenced as the data input to the cURL command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:public \

-d @ratingStorageOnly.txt https://localhost:19443/ratingPlan

The ratingStorageOnly.txt file content in this example is as follows. For description of a particular attribute, click
on the attribute name; or for the full list of attribute descriptions see "RatingPlan Object" (page 839).

{

"currency": "USD",

"id": "Storage-Only",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"BO": {

"ruleclassType": "BYTES_OUT",

837

Chapter 12. Admin API

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HD": {

"ruleclassType": "HTTP_DELETE",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "100",

"second": "0.2"

},

{

"first": "0",

"second": "0.15"

}

]

}

},

"name": "Storage Bytes Only"

}

838

12.9. ratingPlan

12.9.5.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameter: {id, name}

400 Invalid JSON Object

409 Unique Constraint Violation : {id}

12.9.6. ratingPlanQuery Parameters
ratingPlanId

(Mandatory, string) Unique identifier of the rating plan.

12.9.7. ratingPlanObjects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Rating Plan related Admin API methods.

Note For examples of this object see the API method request and response examples.

l "RatingPlan Object" (page 839)

12.9.7.1. RatingPlan Object

The RatingPlan object consists of the following attributes and nested objects:

currency

(Optional, string) An international currency code (such as "USD", "JPY", or "EUR"). Defaults to "USD".
Example:

"currency": "USD"

id

(Mandatory, string) Unique identifier that you assign to the rating plan. Example:

"id": "Default-RP"

mapRules

(Optional, map<string,RuleClass>) Map of rating rules per service dimension. The string is the service
dimension acronym. For each <string,RuleClass> combination the string is one of "BI" (bytes in), "BO"
(bytes out), "HG" (HTTP GETs), "HP" (HTTP PUTs), "HD" (HTTP DELETEs), or "SB" (storage bytes). For
each service dimension there is a corresponding RuleClassobject that expresses the rating rules for
that service dimension.

Example:

"BI": {RuleClass}

839

Chapter 12. Admin API

Note You can omit the mapRules entirely in the unlikely event that you want to create a rating
plan that does not charge for anything. But if you do include a mapRules map you must set a
<string,RuleClass> combination for each of the six service dimensions, including dimensions for
which you do not want to charge.

The RuleClass object consists of the following attributes and nested objects:

ruleclassType

(String) Type of rating rule: one of {STORAGE_BYTE, BYTES_IN, BYTES_OUT, HTTP_GET,
HTTP_PUT, HTTP_DELETE}. These are the service usage dimensions for which pricing can be
set. Example:

"ruleclassType": "BYTES_IN"

rules

(List<Pair>) List of rating rules to apply to the rule class type. There is one rule (one Pairobject)
per pricing tier.

Each Pair object consists of the following attributes:

first

(String) Rating tier size, as a number of units. In the first Pair within a list of Pair objects,
the "first" attribute specifies the N in the rating rule "The first N units are to be priced at X
per unit". (The specific units follow from the service usage type. See "Service Usage
Units" (page 841) below). In the next Pair object in the list, the "first" attribute specifies the
N in "The next N units are to be priced at X per unit"; and so on. For your final tier — for pri-
cing additional units above and beyond the already defined tiers — use "0" as the value
for the "first" attribute. For an example see the description of "second" below.

second

(String) For the rating tier specified by the "first" attribute, the rate per unit. The rate is spe-
cified as an integer or decimal. (The currency is as specified in the parent
RatingPlanobject.) For example, suppose the currency is set as dollars in the
RatingPlanobject, and you want the first 10 units to be charged at $2 per unit, the next 10
units to be priced at $1.50 per unit, and any additional units to be charged at $1 per unit.
Your first Pair would be:

{"first":"10","second":"2.00"}

Your next Pair would be:

{"first":"10","second":"1.50"}

Your third and final Pair would be:

{"first":"0","second":"1.00"}

Note For each service dimension that you do not want to charge for, specify just
one Pair object with both "first" and "second" set to "0".

840

12.10. system

12.9.7.1.1. Service Usage Units

In a Pair object, the "first" attribute indicates a number of units constituting a pricing tier, and the
"second" attribute indicates the price per unit within that pricing tier. What constitutes a unit
depends on the service usage type that the rating rule is being applied to. For illustration sup-
pose that in the examples below, the currency (as specified in the parent RatingPlan object) is
dollars.

l For storage bytes (SB), the unit is GB-month— the average number of GBs of data
stored for the month (which is calculated by summing the month’s hourly readings of
stored bytes, converting to GB, then dividing by the number of hours in the month). So if in
a Pair object the "first" attribute is set to "5" and the "second" attribute is set to "2", this
means that within this pricing tier which spans 5 GB-month, the charge is $2 per GB-
month.

l For data transfer bytes in or out (BI or BO), the unit is number of GBs. So if in a Pair
object the "first" attribute is set to "5" and the "second" attribute is set to "2", this means
that within this pricing tier which spans 5 GBs, the charge is $2 per GB.

l For HTTP GETs, PUTs, or DELETEs (HG, HP, or HD), the unit is blocks of 10,000
requests. So if in a Pair object the "first" attribute is set to "5" and the "second" attribute is
set to "2", this means that within this pricing tier which spans 50,000 requests, the charge
is $2 per 10,000 requests.

name

(Mandatory, string) Name of rating plan. Example:

"name": "Default Rating Plan"

12.10. system
The Admin API methods built around the system resource are for retrieving system information or performing
certain system maintenance tasks.

12.10.1. GET /system/audit

GET /system/audit Get summary counts for system
The request line syntax for this method is as follows.

GET /system/audit?[region=xxx]

There is no request payload.

Note Audit data is automatically updated within the system at the top of each hour. When you call the
GET /system/auditmethod you are retrieving the audit data from the most recent hourly update. If you
want up-to-the-minute counts -- rather than the counts as of the top of the last hour -- first call the
method POST /system/audit, with no request body. This updates the counts. Then, you can retrieve the
freshly updated counts using the GET /system/auditmethod. If you have a multi-region system and
want to update each region's audit data, you would need to submit a separate POST /system/audit
request to one Admin host in each region. Again, this is necessary only if you want audit data that is
fresher than the automatic update done (in every region) at the top of each hour.

841

Chapter 12. Admin API

12.10.1.0.1. Example Using cURL

The example below retrieves the summary counts for the system.

curl -X GET -k -u sysadmin:public https://localhost:19443/system/audit \

| python -mjson.tool

The response payload is a JSON-formatted AuditData object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"AuditData Object" (page 855).

{

"byteCount": 647687490,

"bytesInCount": 0,

"bytesOutCount": 0,

"licenseExpiration": 1590094491952,

"nodes": [

{

"name": "10.50.50.201"

},

{

"name": "10.50.50.202"

},

{

"name": "10.50.50.203"

}

],

"objectCount": 13,

"os": "Linux 3.10.0-957.1.3.el7.x86_64 amd64",

"tieredBytesCount": 0,

"timestamp": 1563724800000,

"userCount": 3

}

12.10.1.0.2. Response Format

The response payload is a JSON-formatted AuditData object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or this method-specific
status code:

Status Code Description

400 Region {region} is not valid

12.10.2. GET /system/bucketcount

GET /system/bucketcount Get count of buckets owned by a group's members
The request line syntax for this method is as follows.

GET /system/bucketcount?groupId=xxx

There is no request payload.

842

12.10. system

12.10.2.0.1. Example Using cURL

The example below retrieves the count of buckets owned by users within the group "testgroup1".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bucketcount?groupId=testgroup1'

The response payload is a text string, which in this example is as follows:

5

12.10.2.0.2. Response Format

The response payload is as shown in the example above. For response status code this method will return one
of the "Common Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

204 No content

12.10.3. GET /system/bucketlist

GET /system/bucketlist Get list of buckets owned by a group's members
The request line syntax for this method is as follows.

GET /system/bucketlist?groupId=xxx

There is no request payload.

12.10.3.0.1. Example Using cURL

The example below retrieves the list of buckets owned by users within the group "testgroup1".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bucketlist?groupId=testgroup1'

| python -mjson.tool

The response payload in this example is as follows:

[

{

"userId":"testuser1",

"buckets":[

{

"bucketName":"bucket1",

"createTime":"1554755537223"

},

{

"bucketName":"bucket2",

"createTime":"1554755542554"

},

{

"bucketName":"bucket3",

"createTime":"1554755548227"

}

843

Chapter 12. Admin API

]

},

{

"userId":"testuser2",

"buckets":[

{

"bucketName":"testbucket4",

"createTime":"1554755580759"

},

{

"bucketName":"testbucket5",

"createTime":"1554755587516"

}

]

}

]

12.10.3.0.2. Response Format

The response payload is as shown in the example above. For response status code this method will return one
of the "Common Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

204 No content

12.10.4. GET /system/bytecount

GET /system/bytecount Get stored byte count for the system, a group, or a user
The request line syntax for this method is as follows.

GET /system/bytecount?groupId=xxx&userId=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "system Query Parameters" (page 854).

There is no request payload.

Note The byte count is for "net" bytes. Overhead due to replication or erasure coding does not count
toward this figure. For example, if a 1MB object is replicated three times in the system (as part of a rep-
lication storage policy), this counts as 1MB toward the total byte count -- not as 3MB.

Note If you want to retrieve the current byte count for a particular bucket, use the POST /us-
age/repair/bucket method.

12.10.4.0.1. Examples Using cURL

The example below retrieves the byte count for the system as a whole (all users in all groups).

844

12.10. system

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bytecount?groupId=ALL&userId=*'

The response payload is the byte count in plain text, which in this example is as follows:

73836232

This next example retrieves the byte count for the "Pubs" group as a whole (all users in the Pubs group).

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bytecount?groupId=Pubs&userId=*'

The response payload is:

542348

This next example retrieves the byte count for the user "PubsUser1".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bytecount?groupId=Pubs&userId=PubsUser1'

The response payload is:

66712

12.10.4.0.2. Response Format

The response payload is plain text (see examples above). For response status code this method will return one
of the "Common Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

12.10.5. GET /system/bytestiered

GET /system/bytestiered Get tiered byte count for the system, a group, or a user
The request line syntax for this method is as follows.

GET /system/bytestiered?groupId=xxx&userId=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "system Query Parameters" (page 854).

There is no request payload.

Note The response is the total current volume of tiered storage in destination systems other than
HyperStore. Data auto-tiered from one region to another within a HyperStore system, or from one
HyperStore system to another HyperStore system, does not count toward this figure.

12.10.5.0.1. Example Using cURL

The example below retrieves the tiered volume for the system as a whole (all users in all groups).

845

Chapter 12. Admin API

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/bytestiered?groupId=ALL&userId=*'

The response payload is the tiered volume as a plain text string, which in this example is as follows:

"62G"

The tiered volume is expressed as "<n>G" (for number of GBs) or "<n>T" (for number of TBs) or "<n>P" (for num-
ber of PBs). If the tiered volume is currently less than 1GB then "0" is returned. If the tiered volume is

12.10.5.0.2. Response Format

The response payload is a plain text string. For response status code this method will return one of the "Com-
mon Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

12.10.6. GET /system/groupbytecount

GET /system/groupbytecount Get stored byte counts for all of a group's users
The request line syntax for this method is as follows.

GET /system/groupbytecount?groupId=xxx[&limit=xxx][&offset=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "system Query Parameters" (page 854).

There is no request payload.

Note The byte counts are for "net" bytes. Overhead due to replication or erasure coding does not count
toward these figures. For example, if a 1MB object is replicated three times in the system (as part of a
replication storage policy), this counts as 1MB toward the byte count -- not as 3MB.

12.10.6.0.1. Example Using cURL

The example below retrieves the stored byte counts for each of the users in the "Pubs" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/groupbytecount?groupId=Pubs' | python -mjson.tool

The response payload is a JSON-formatted UserUsage object, which in this example is as follows. The group
has three users in it. If a user has multiple buckets, the user's byte count value is the sum total across all of the
user's buckets. For example the user "brady" has a total of 220508 stored bytes. For description of a particular
attribute, click on the attribute name; or for the full list of attribute descriptions see "UserUsage Object" (page
860).

[

{

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a",

"groupId": "Pubs",

"usageVal": 220508,

"userId": "brady"

846

12.10. system

},

{

"canonicalUserId": "9bdcdd44ce1f9266adb9f22a8313feb4",

"groupId": "Pubs",

"usageVal": 225365,

"userId": "gilmore"

},

{

"canonicalUserId": "9a00529cdfb6496a09c5105913b486ac",

"groupId": "Pubs",

"usageVal": 76744,

"userId": "gronk"

}

]

Response Format

The response payload is a JSON-formatted UserUsage object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or this method-specific
status code:

Status Code Description

400 Missing required parameter: {groupId}

400 Limit should be greater than zero.

12.10.7. GET /system/groupobjectcount

GET /system/groupobjectcount Get stored object counts for all of a group's users
The request line syntax for this method is as follows.

GET /system/groupobjectcount?groupId=xxx[&limit=xxx][&offset=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "system Query Parameters" (page 854).

There is no request payload.

12.10.7.0.1. Example Using cURL

The example below retrieves the stored object counts for each of the users in the "Pubs" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/groupobjectcount?groupId=Pubs' | python -mjson.tool

The response payload is a JSON-formatted UserUsage object, which in this example is as follows. The group
has three users in it. If a user has multiple buckets, the user's object count value is the sum total across all of
the user's buckets. For example the user "brady" has a total of 5 stored objects. For description of a particular
attribute, click on the attribute name; or for the full list of attribute descriptions see "UserUsage Object" (page
860).

847

Chapter 12. Admin API

[

{

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a",

"groupId": "Pubs",

"usageVal": 5,

"userId": "brady"

},

{

"canonicalUserId": "9bdcdd44ce1f9266adb9f22a8313feb4",

"groupId": "Pubs",

"usageVal": 5,

"userId": "gilmore"

},

{

"canonicalUserId": "9a00529cdfb6496a09c5105913b486ac",

"groupId": "Pubs",

"usageVal": 2,

"userId": "gronk"

}

]

12.10.7.0.2. Response Format

The response payload is a JSON-formatted UserUsage object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or this method-specific
status code:

Status Code Description

400 Missing required parameter: {groupId}

400 Limit should be greater than zero.

12.10.8. GET /system/license

GET /system/license Get HyperStore license terms
The request line syntax for this method is as follows.

GET /system/license

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 849).

Note For background information about HyperStore licensing, see "Licensing and Auditing" (page
15).

848

12.10. system

12.10.8.0.1. Example Using cURL

The example below retrieves license data for the HyperStore system in which the call is submitted.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/system/license | python -mjson.tool

The response payload is a JSON-formatted LicenseData object, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"LicenseData Object" (page 857).

{

"appliances": null,

"enforcing": true,

"expiration": 1621915200000,

"gracePeriod": 0,

"hyperIQ": "90",

"issued": 1586751232344,

"maxNetStorage": "100T",

"maxRawStorage": null,

"maxTieredStorage": "-1"

"objectLockMode": "DISABLED",

"storageExceeded": false,

"storageMode": "NET",

"tieringExceeded": false,

"warnPeriod": 30

}

12.10.8.0.2. Response Format

The response payload is a JSON-formatted LicenseData object (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746).

12.10.8.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianSystemLicense

l Parameters: Same as for GET /system/license (no parameters)

l Response body: Same response data as for GET /system/license except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianSystemLicense permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

849

Chapter 12. Admin API

http://localhost:16080/?Action=GetCloudianSystemLicense

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianSystemLicenseResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<LicenseData>

<expiration>2020-05-21T13:54:51.952-07:00</expiration>

etc...

...

...

</LicenseData>

</GetCloudianSystemLicenseResponse>

12.10.9. GET system/objectcount

GET system/objectcount Get stored object count for the system, a group, or a user
The request line syntax for this method is as follows.

GET /system/objectcount?groupId=xxx&userId=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "system Query Parameters" (page 854).

There is no request payload.

Note If you want to retrieve the current object count for a particular bucket, use the POST /us-
age/repair/bucket method.

12.10.9.0.1. Examples Using cURL

The example below retrieves the object count for the system as a whole (all users in all groups).

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/objectcount?groupId=ALL&userId=*'

The response payload is the object count in plain text, which in this example is as follows:

1023

This next example retrieves the object count for the "Pubs" group as a whole (all users in the Pubs group).

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/objectcount?groupId=Pubs&userId=*'

The response payload is:

850

12.10. system

215

This next example retrieves the object count for the user "PubsUser1".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/system/objectcount?groupId=Pubs&userId=PubsUser1'

The response payload is:

54

12.10.9.0.2. Response Format

The response payload is plain text (see examples above). For response status code this method will return one
of the "Common Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

12.10.10. GET /system/objectlockenabled

GET /system/objectlockenabled Get Object Lock feature status
The request line syntax for this method is as follows.

GET /system/objectlockenabled

There is no request payload.

The response will be:

l true if the Object Lock feature is enabled in the system -- which means that all of the following criteria for
enabling Object Lock have been met:

l Your HyperStore license supports the Object Lock feature

l You have enabled the HyperStore Shell

l You have disabled root password access to HyperStore nodes

l false if the Object Lock feature is not enabled in the system -- which means that one or more of the three
criteria above have not been met

12.10.10.0.1. Example Using cURL

The example below retrieves the Object Lock feature status.

curl -X GET -k -u sysadmin:public https://localhost:19443/system/objectlockenabled

The response payload is the Object Lock feature status in plain text, which in this example is as follows.

false

851

Chapter 12. Admin API

12.10.11. GET /system/version

GET /system/version Get HyperStore system version
The request line syntax for this method is as follows.

GET /system/version

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 852).

12.10.11.0.1. Example Using cURL

The example below retrieves the HyperStore system version.

curl -X GET -k -u sysadmin:public https://localhost:19443/system/version

The response payload is the system version information in plain text, which in this example is as follows.

7.2.3 Compiled: 2020-09-04 12:24

12.10.11.0.2. Response Format

The response payload is plain text (see example above). For response status code this method will return one
of the "Common Response Status Codes" (page 746).

12.10.11.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianSystemVersion

l Parameters: Same as for GET /system/version (no parameters)

l Response body: Same response data as for GET /system/version except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user, group admin user, and regular user can all use this method

o IAM user can only use this method if granted admin:GetCloudianSystemVersion permission by
policy

l Sample request and response:

REQUEST

http://localhost:16080/?Action=GetCloudianSystemVersion

<request headers including authorization info>

RESPONSE

200 OK

852

12.10. system

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianSystemVersionResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<String>

7.1 Compiled: 2018-08-16 16:32

</String>

</GetSystemVersionResponse>

12.10.12. POST /system/processProtectionPolicy

POST /system/processProtectionPolicy Process pending storage policy deletion
or creation jobs
The request line syntax for this method is as follows.

POST /system/processProtectionPolicy

There is no request payload.

This method processes any pending storage policy deletion jobs. System operators can initiate the deletion of
an unused storage policy (a storage policy that is not assigned to any buckets) through the CMC. This operator
action marks the policy with a "DELETED" flag and makes it immediately unavailable to service users.
However, the full process of deleting the storage policy from the system is not completed until the POST /sys-
tem/processProtectionPolicy method is run.

This method also processes any pending storage policy creation jobs, in the event that multiple storage policy
creation requests have been initiated in a short amount of time -- which can result in queueing of storage policy
creation jobs. More typically, storage policy creation completes shortly after the creation is initiated through the
CMC.

Note This method is invoked once a day by a HyperStore "Storage Policy Deletion or Creation Pro-
cessing" (page 476) cron job.

12.10.12.0.1. Example Using cURL

The example below triggers the processing of any pending storage policy deletion or creation jobs.

curl -X POST -k -u sysadmin:public \

https://localhost:19443/system/processProtectionPolicy

12.10.12.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

853

Chapter 12. Admin API

12.10.13. POST /system/repairusercount

POST /system/repairusercount Reconcile user counts in Redis and Cassandra
The request line syntax for this method is as follows.

POST /system/repairusercount

Use this method if you have reason to suspect that user counts in your audit data are inaccurate. This method
will synchronize the user counts in Redis (which are used in audit data) to the metadata in the Cassandra User-
Info table.

There is no request payload.

12.10.13.0.1. Example Using cURL

The example below syncs the user counts in Redis with the Cassandra metadata.

curl -X POST -k -u sysadmin:public https://localhost:19443/system/repairusercount

12.10.13.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.10.14. system Query Parameters
groupId, userId

(Mandatory, string) For the GET /system/bytecount,GET /system/bytestiered, and
GET system/objectcountmethods: Use the groupId and userId parameters to specify whether you want
to retrieve a count for the whole system, for one whole group, or for one particular user:

l Whole system: groupId=ALL&userId=*

l One whole group: groupId=<groupId>&userId=* (example: groupId=Dev&userId=*)

l One particular user : groupId=<groupId>&userId=<userId> (example: groupId-
d=Dev&userId=Cody)

groupId

(Mandatory, string) For the GET /system/groupbytecount and GET /system/groupobjectcount
methods: Use the groupId parameter to specify the group for which you want to retrieve counts for all
users in the group.

limit

(Optional, integer) For the GET /system/groupbytecount and GET /system/groupobjectcountmethods:
For purposes of pagination, the optional limit parameter specifies the maximum number of users to
return in one response. In the response the users are sorted alphanumerically and if there are more
than "limit" users in the group, then the number of users returned will be "limit plus 1" (for example, 101
users if the limit is 100). The last, extra returned user — the "plus 1" — is an indicator that there are more
users than could be returned in the current response (given the specified "limit" value). That last user’s
ID can then be used as the "offset" value in a subsequent request that retrieves additional users.

854

12.10. system

Note If the offset user happens to be the last user in the entire set of users, the subsequent
query using the offset will return no users.

Defaults to 100.

offset

(Optional, string) For the GET /system/groupbytecount and GET /system/groupobjectcountmethods:
The user ID with which to start the response list of users for the current request, sorted alpha-
numerically. The optional "offset" parameter can be used for purposes of pagination within a large result
set that is being retrieved via multiple sequential requests. See the description of "limit" above for more
information.

If "offset" is not specified, the first user in the response list will be the alphanumerically first user from the
entire set of users in the group.

region

(Optional, string) For the GET /system/auditmethod: The service region for which to retrieve audit data. If
the region is not specified in the request, then the returned audit data will be for the whole system (all
regions), combined.

12.10.15. system Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the System related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "AuditData Object" (page 855)

l "LicenseData Object" (page 857)

l "UserUsage Object" (page 860)

12.10.15.1. AuditData Object

The AuditData object consists of the following attributes.

byteCount

(number) Net bytes of object data stored in the system. This measure excludes overhead from rep-
lication and erasure coding.

Example:

"byteCount": 647687490

bytesInCount

(number) This measure is not implemented currently and its value will always be "0".

Example:

"bytesInCount": 0

855

Chapter 12. Admin API

bytesOutCount

(number) This measure is not implemented currently and its value will always be "0".

Example:

"bytesOutCount": 0

licenseExpiration

(number) License expiration date-time, in UTC milliseconds.

Example:

"licenseExpiration": 1590094491952

nodes

(set) The list of nodes that comprise the HyperStore system, identified by IP address.

Example:

"nodes": [

{

"name": "10.50.50.201"

},

{

"name": "10.50.50.202"

},

{

"name": "10.50.50.203"

}

],

objectCount

(number) Number of objects currently stored in the system.

Example:

"objectCount": 13

os

(string) Operating system version being used by HyperStore hosts.

Example:

"os": "Linux 3.10.0-957.1.3.el7.x86_64 amd64"

tieredBytesCount

(number) Number of bytes of object data that has been auto-tiered to a remote destination or des-
tinations.

Example:

"tieredBytesCount": 0

timestamp

(number) Date-time when audit data was automatically updated at the top of the most recently

856

12.10. system

completed hour. In UTC milliseconds. Note that this timestamp is not affected by calling the POST /sys-
tem/auditmethod (this method updates the counts, but not the timestamp).

Example:

"timestamp": 1563724800000

userCount

(number) Number of active users in the system. This includes administrators as well as regular users.

Example:

"userCount": 3

12.10.15.2. LicenseData Object

The LicenseData object consists of the following attributes.

appliances

(JSON object) Information about each HyperStore appliance in the cluster, if any. Information for each
appliance consists of:

l nodeId

l maxStorage -- This is the amount of raw storage capacity usage licensed for this individual appli-
ance machine.

l productName

If there are no HyperStore appliances in the cluster, the appliances attribute is set to 0.

Example:

"appliances": null

enforcing

(Boolean) If true, then the system will enforce the licensed storage maximum by rejecting S3 PUTs and
POSTs if the cluster stored volume reaches 110% of the licensed maximum. If this happens, then sup-
port for S3 PUTs and POSTs will resume again after the cluster stored volume is less than 100% of the
licensed maximum (either because data has been deleted, or because a new license with higher max-
imum cluster stored volume has been installed).

Also, if this attribute is set to true, then the system will enforce the licensed tiering maximum by no
longer auto-tiering data if the tiered volume reaches 110% of the licensed tiering maximum. If this hap-
pens, then support for auto-tiering will resume again after the tiered volume is less than 100% of the
licensed tiering maximum (either because tiered data has been deleted through HyperStore interfaces,
or because a new license with higher maximum tiered volume has been installed).

For more information on license enforcement see "Licensing and Auditing" (page 15).

Example:

"enforcing": true

expiration

(Number) License expiration date-time in UTC milliseconds. Example:

"expiration": 1621915200000

857

Chapter 12. Admin API

gracePeriod

(Number) After the license expiration date passes, the number of days until the HyperStore system is
automatically disabled. Example:

"gracePeriod": 0

hyperIQ

(String) Your HyperStore license's level of support for Cloudian HyperIQ. Cloudian HyperIQ is a solution
for dynamic visualization and analysis of HyperStore monitoring data. HyperIQ is a separate product
available from Cloudian that deploys as virtual appliance on VMware or VirtualBox and integrates with
your existing HyperStore system. For more information about HyperIQ contact your Cloudian rep-
resentative.

The hyperIQ attribute in the LicenseData object indicates what level of HyperIQ functionality will be avail-
able to you if you acquire and set up HyperIQ.

l basic -- HyperIQ dashboards for OS and service status monitoring are supported indefinitely.

l <number of days> -- HyperIQ dashboards for OS and service status monitoring are supported
indefinitely, and also an S3 analytics dashboard is supported for <number of days> duration
from the HyperStore license issuance. This HyperStore license type has "Enterprise HyperIQ"
support, with the distinction (as versus only the "basic" support level) being the availability of the
S3 analytics dashboard in HyperIQ.

Example

"hyperIQ": "90"

issued

(Number) License issuance date-time in UTC milliseconds. Example:

"issued": 1586751232344

maxNetStorage

(String) Applicable only if "storageMode" is "NET". If "storageMode" is "RAW" then this attribute will be
null.

Maximum allowed Net storage volume for your entire HyperStore system. This is expressed as "<n>G"
(for number of GiBs) or "<n>T" (for number of TiBs), or so on. For example, "100T" for one hundred TiBs.
This value does not use decimals and will be expressed in GiBs unless it's exact number of TiBs (that is,
an exact multiple of 1024 GiBs). For example, 1024 GiBs would be expressed as "1T" but 1030 GiBs
would be expressed as "1030G".

"Net" storage volume usage excludes overhead from replication or erasure coding. For example a
1GiB object protected by 3X replication counts as 1GiB toward the "maxNetStorage" limit — not as 3GiB.

Example:

"maxNetStorage": "100T"

maxRawStorage

(String) Applicable only if "storageMode" is "RAW". If "storageMode" is "NET" then this attribute will be
null.

If "storageMode" is "RAW", the "maxRawStorage" attribute indicates any additional raw storage licensed
for your cluster above and beyond the raw storage licensed to each of your appliance nodes (as

858

12.10. system

indicated by the "maxStorage" child attributes within the "appliances" attribute). Typically the
"maxRawStorage" attribute would have a non-zero value only if your cluster has a mix of appliance
nodes and software-only nodes. In such an environment, total licensed raw storage for the cluster is the
sum of each of the individual appliance machine raw storage licenses plus the "maxRawStorage".

In a cluster consisting purely of appliance nodes, the "maxRawStorage" value would typically be 0. In
such an environment, total licensed raw storage for the cluster is the sum of each of the individual appli-
ance machine raw storage licenses.

When non-zero, "maxRawStorage" is expressed as "<n>G" (for number of GiBs) or "<n>T" (for number
of TiBs), or so on. For example, "100T" for one hundred TiBs. This value does not use decimals and will
be expressed in GiBs unless it's exact number of TiBs (that is, an exact multiple of 1024 GiBs). For
example, 1024 GiBs would be expressed as "1T" but 1030 GiBs would be expressed as "1030G".

Raw storage volume usage counts all stored data, including overhead from replication or erasure cod-
ing. For example a 1GB object protected by 3X replication counts as 3GB toward a raw storage license
limit. Also, stored metadata counts toward the limit as well.

Example:

"maxRawStorage": null

maxTieredStorage

(String) Maximum allowed volume of auto-tiered data stored in external systems other than HyperStore,
after having been transitioned to those systems from HyperStore. This is expressed as "<n>G" (for num-
ber of GiBs) or "<n>T" (for number of TiBs), or so on. For example, "100T" for one hundred TiBs. This
value does not use decimals and will be expressed in GiBs unless it's exact number of TiBs (that is, an
exact multiple of 1024 GiBs). For example, 1024 GiBs would be expressed as "1T" but 1030 GiBs would
be expressed as "1030G".

All auto-tiered data stored in any destination system other than HyperStore counts toward this limit.
Data auto-tiered from one of your HyperStore regions to another region, or from your HyperStore system
to an external HyperStore system, does not count toward this limit.

This attribute may have the value "-1" to indicate "unlimited" (i.e. the license places no limit on tiered
data volume).

Example:

"maxTieredStorage": "-1"

objectLockMode

(String) The license's support or non-support of the HyperStore WORM (Object Lock) feature:

l DISABLED -- Object Lock is not supported.

l ENABLED -- Object Lock is supported.

Note To use the Object Lock feature, along with having a license that supports this fea-
ture you must enable the HyperStore Shell (HSH) and disable the root password on your
HyperStore nodes. For more information see "Enabling the HSH and Managing HSH
Users" (page 90) and "WORM (Object Lock)" (page 121).

Example:

"objectLockMode": "DISABLED"

859

Chapter 12. Admin API

storageExceeded

(Boolean) This flag sets to true if the cluster storage volume reaches 110% of licensed maximum stor-
age. It sets back to false when the cluster storage volume is less than 100% of licensed maximum stor-
age (either because data has been deleted, or because a new license with higher maximum storage
volume has been installed).

Example:

"storageExceeded": false

storageMode

(String) The type of storage volume licensing applied by this license: either "NET" or "RAW". See
"maxNetStorage" and "maxRawStorage" for more detail. Example:

"storageMode": "NET"

tieringExceeded

(Boolean) This flag sets to true if the tiered storage volume reaches 110% of the licensed maximum
tiered volume. It sets back to false when the tiered storage volume is less than 100% of the licensed
maximum tiered volume (either because tiered data has been deleted through HyperStore interfaces, or
because a new license with higher maximum tiered volume has been installed).

Example:

"tieringExceeded": false

warnPeriod

(Number) Starting this many days before the license expiration date, an expiration warning message
will display at the top of the Cloudian Management Console. Example:

"warnPeriod": 30

12.10.15.3. UserUsage Object

The UserUsage object consists of the following attributes.

canonicaUserld

(Number) The user's system-generated canonical user ID. Example:

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a"

groupId

(Number) The ID of the group to which the user belongs. Example:

"groupId": "Pubs"

usageVal

(Number) Either the user's current stored byte count (in response to a GET /system/groupbytecount
request) or the user's current stored object count (in response to a GET /system/groupobjectcount
request). If the user has multiple buckets, the count is a combined total across all of the user's buckets.

Example:

"usageVal": 220508

860

12.11. tiering

userId

(String) The user's user ID. Example:

"userId": "brady"

12.11. tiering
The Admin API methods built around the tiering resource are for managing account credentials to use for
accessing auto-tiering destination systems. You can post tiering credentials to associate with specific Hyper-
Store source buckets, and the system will securely store the credentials and use them when implementing
auto-tiering for those buckets. For S3-compliant tiering destinations you also have the option of posting a sys-
tem default tiering credential, which can be made available for all bucket owners to use for auto-tiering to a sys-
tem default tiering destination.

Note Having a system default tiering credential is only supported for S3-compliant tiering destinations
-- not for Azure or Spectra.

12.11.1. DELETE /tiering/credentials

DELETE /tiering/credentials Delete a tiering credential for Amazon, Google, or
other S3-compliant destination
The request line syntax for this method is as follows.

DELETE /tiering/credentials[?bucketName=xxx]

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.1.0.1. Example Using cURL

The example below deletes the S3 auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/tiering/credentials?bucketName=bucket1

12.11.1.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.11.2. DELETE /tiering/azure/credentials

DELETE /tiering/azure/credentials Delete a tiering credential for Azure
The request line syntax for this method is as follows.

DELETE /tiering/azure/credentials?bucketName=xxx

861

Chapter 12. Admin API

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.2.0.1. Example Using cURL

The example below deletes the Azure auto-tiering credential currently associated with a HyperStore source
bucket named "bucket2".

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/tiering/azure/credentials?bucketName=bucket2

12.11.2.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.11.3. DELETE /tiering/spectra/credentials

DELETE /tiering/spectra/credentials Delete a tiering credential for Spectra
The request line syntax for this method is as follows.

DELETE /tiering/spectra/credentials?bucketName=xxx

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.3.0.1. Example Using cURL

The example below deletes the Spectra auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/tiering/spectra/credentials?bucketName=bucket1

12.11.3.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.11.4. GET /tiering/credentials

GET /tiering/credentials Get a tiering credential for Amazon, Google, or other S3-
compliant destination
The request line syntax for this method is as follows.

GET /tiering/credentials[?bucketName=xxx]

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

862

12.11. tiering

12.11.4.0.1. Example Using cURL

The example below retrieves the S3 auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/tiering/credentials?bucketName=bucket1

The response payload is the S3 access key in plain text, which in this example is as follows. The secret key is
not returned.

00cc33c4b1ef9f50282a

12.11.4.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or one of these method-specific status
codes:

Status Code Description

204 No Tiering Credentials found.

12.11.5. GET /tiering/credentials/src

GET /tiering/credentials/src Check whether a bucket uses a bucket-specific or sys-
tem default tiering credential
The request line syntax for this method is as follows.

GET /tiering/credentials/src[?bucketName=xxx]

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

For buckets that auto-tier to Amazon, Google, or other S3-compliant destinations, you can use this method to
check whether the bucket is using a bucket-specific tiering credential or the system default tiering credential (or
no credential, if the bucket has not yet been configured for auto-tiering). You can omit the "bucketName" para-
meter if you want to check whether or not the system default tiering credential has been created for the system.
The method responds with a plain text string -- either "BUCKET" (bucket-specific credential), "SYSTEM" (sys-
tem default credential), or NONE (no credential has been set).

There is no request payload.

Note This method is not supported for buckets that tier to Azure or Specta.

12.11.5.0.1. Example Using cURL

The example below checks the S3 auto-tiering credential type for a HyperStore source bucket named "buck-
et1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/tiering/credentials/src?bucketName=bucket1

In this example the response payload is BUCKET, indicating that "bucket1" uses a bucket-specific tiering cre-
dential in its S3 auto-tiering configuration.

863

Chapter 12. Admin API

BUCKET

12.11.5.0.2. Response Format

The response payload is plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746).

12.11.6. GET /tiering/azure/credentials

GET /tiering/azure/credentials Get a tiering credential for Azure
The request line syntax for this method is as follows.

GET /tiering/azure/credentials?bucketName=xxx

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.6.0.1. Example Using cURL

The example below retrieves the Azure auto-tiering credential currently associated with a HyperStore source
bucket named "bucket2".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/tiering/azure/credentials?bucketName=bucket1

The response payload is the Azure account name and account key in plain text with comma-separation, which
in this example is as follows.

123456,Oy1wMUklsF8l331LIGY5RlVqa8Rg+iWT6zEFt6I1

12.11.6.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or one of these method-specific status
codes:

Status Code Description

204 No Tiering Credentials found.

12.11.7. GET /tiering/spectra/credentials

GET /tiering/spectra/credentials Get a tiering credential for Spectra
The request line syntax for this method is as follows.

GET /tiering/spectra/credentials?bucketName=xxx

For parameter description click on the parameter name or see "tiering Query Parameters" (page 868).

There is no request payload.

864

12.11. tiering

12.11.7.0.1. Example Using cURL

The example below retrieves the Spectra auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/tiering/spectra/credentials?bucketName=bucket1

The response payload is the access key in plain text, which in this example is as follows. The secret key is not
returned.

00d5dc27224f9d529257

12.11.7.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or one of these method-specific status
codes:

Status Code Description

204 No Tiering Credentials found.

12.11.8. POST /tiering/credentials

POST /tiering/credentials Post a tiering credential for Amazon, Google, or other
S3-compliant destination
The request line syntax for this method is as follows.

POST /tiering/credentials?accessKey=urlencode(xxx)&secretKey=urlencode(xxx)
[&bucketName=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.8.0.1. Example Using cURL

The example below posts S3 auto-tiering credentials for a HyperStore source bucket named "bucket1".

curl -X POST -k -u sysadmin:public \

'https://

localhost:19443/tiering/credentials?accessKey=00cc33c4b1e&secretKey=YuaOJ7lOFqc&bucketName=bucket1'

When implementing auto-tiering from this source bucket to an S3-compatible destination system (as configured
by the bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the access key and secret key are truncated so that the 'https://...' segment
can be shown on one line.

865

Chapter 12. Admin API

Note If an access key or secret key includes a non-alphanumeric character and you do not URL-
encode the key, the API server will return a 403 error.

12.11.8.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accessKey, secretKey}

12.11.9. POST /tiering/azure/credentials

POST /tiering/azure/credentials Post a tiering credential for Azure
The request line syntax for this method is as follows.

POST /tiering/azure/credentials?accountName=urlencode(xxx)
&accountKey=urlencode(xxx)&bucketName=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.9.0.1. Example Using cURL

The example below posts Azure auto-tiering credentials for a HyperStore source bucket named "bucket2".

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/tiering/azure/credentials?accountName=

123&accountKey=Oy1wMU&bucketName=bucket2'

When implementing auto-tiering from this source bucket to an Azure destination system (as configured by the
bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the account name and key are truncated so that the 'https://...' segment can
be shown on one line.

Note If an account name or account key includes a non-alphanumeric character and you do not URL-
encode the key, the API server will return a 403 error.

12.11.9.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

866

12.11. tiering

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accountName, accountKey}

12.11.10. POST /tiering/spectra/credentials

POST /tiering/spectra/credentials Post a tiering credential for Spectra
The request line syntax for this method is as follows.

POST /tiering/spectra/credentials?accessKey=urlencode(xxx)
&secretKey=urlencode(xxx)&bucketName=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "tiering Query Parameters" (page 868).

There is no request payload.

12.11.10.0.1. Example Using cURL

The example below posts Spectra auto-tiering credentials for a HyperStore source bucket named "bucket1".

curl -X POST -k -u sysadmin:public \

'https://

localhost:19443/tiering/spectra/credentials?accessKey=00d5d&secretKey=PxvAH6Ks&bucketName=bucket1'

When implementing auto-tiering from this source bucket to a Spectra destination system (as configured by the
bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the access key and secret key are truncated so that the 'https://...' segment
can be shown on one line.

Note If an access key or secret key includes a non-alphanumeric character and you do not URL-
encode the key, the API server will return a 403 error.

12.11.10.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accessKey, secretKey}

867

Chapter 12. Admin API

12.11.11. tiering Query Parameters
bucketName

(Optional for S3-compliant tiering, mandatory for Azure or Spectra tiering. String) Name of the Hyper-
Store source bucket that uses the credential for auto-tiering to a destination system.

For tiering to Amazon, Google, or other S3-compliant destinations, if the bucketName parameter is omit-
ted then the request applies to the system default auto-tiering credential. For example, with the POST
method for S3 tiering credentials, if you omit the bucket name then you are POSTing a system default
credential for tiering to an S3 destination. With GET or DELETE methods if you omit the bucket name
then you are retrieving or deleting the system default S3 tiering credential.

Note Having a system default tiering credential is only supported for S3-compliant tiering des-
tinations -- not for Azure or Spectra.

accessKey

(Mandatory, string) Access key for the tiering destination account.

secretKey

(Mandatory, string) Secret key for the tiering destination account.

accountName

(Mandatory, string) Name of the Azure tiering destination account.

accountKey

(Mandatory, string) Account key for the Azure tiering destination account.

12.12. usage
The Admin API methods built around the usage resource are for managing HyperStore usage reporting. This
includes support for retrieving service usage data for specified users, groups, or buckets. There are also meth-
ods for aggregating usage data and ensuring its accuracy — many of these methods are invoked regularly by
HyperStore system cron jobs.

For an overview of the HyperStore usage reporting feature, see "Usage Reporting and Billing Feature Over-
view" (page 138).

12.12.1. DELETE /usage

DELETE /usage Delete usage data
The request line syntax for this method is as follows.

DELETE /usage?granularity=xxx&startTime=xxx[&unitCount=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "usage Query Parameters" (page 880).

868

12.12. usage

There is no request payload.

This method deletes service usage data from the Reports keyspace in Cassandra. Separate data exists for the
raw, hourly roll-up, daily roll-up, and monthly roll-up levels. Note that when you delete usage data, usage data
for all groups and users will be deleted for your specified granularity and time period.

Apart from using this API method, usage data deletion is also managed by configurable retention periods after
which the system automatically deletes the data. See "Setting Usage Data Retention Periods" (page 144).

IMPORTANT ! The HyperStore system calculates monthly bills for service users by aggregating hourly
roll-up data. Once hourly data is deleted, you will not be able to generate bills for the service period
covered by that data.

Note If you have enabled the per-bucket usage data feature, this API method does not delete per-
bucket usage data. It deletes only per-group and per-user usage data. Deletion of per-bucket usage
data is managed exclusively by the configuration retention periods.

12.12.1.0.1. Example Using cURL

The example below deletes daily roll-up usage data from the day of May 1st, 2017.

curl -X DELETE -k -u sysadmin:public \

'https://localhost:19443/usage?granularity=day&startTime=20170501&unitCount=1'

12.12.1.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing or invalid parameters

12.12.2. GET /usage

GET /usage Get usage data for group, user, or bucket
The request line syntax for this method is as follows.

GET /usage?[id=xxx|canonicalUserId=xxx|bucket=xxx]&operation=xxx&startTime=xxx
&endTime=xxx&granularity=xxx&reversed=xxx[&limit=xxx][&pageSize=xxx]
[&offset=xxx][®ion=xxx][®ionOffset=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "usage Query Parameters" (page 880).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 872).

869

Chapter 12. Admin API

Note The GET /usage?bucket=xxx... option is supported only if bucket usage statistics are enabled in
the system. Bucket usage statistics are disabled by default. For information on enabling this feature see
"Enabling Advanced Usage Reporting Features" (page 142).

12.12.2.0.1. Examples Using cURL

The first example below retrieves the monthly stored bytes usage data for the "QA" group, from July 2017.

curl -X GET -k -u sysadmin:public \

'https://
localhost
:19443/usage?id=
QA|*&operation=SB&startTime=201707010000&endTime=201708010000&granularity=month' \
| python -mjson.tool

The response payload is a JSON-formatted list of UsageData objects, which in this example is as follows. Note
that in this case we are retrieving monthly roll-up data from a time interval that spans just one month, so here
there is just one UsageData object in the list. For description of a particular attribute, click on the attribute
name; or for the full list of attribute descriptions see "UsageData Object" (page 886).

[

{

"averageValue": "107956",

"bucket": null,

"count": "744",

"groupId": "QA",

"ip": "",

"maxValue": "305443",

"operation": "SB",

"region": "taoyuan",

"timestamp": "1498867200000",

"uri": "",

"userId": "*",

"value": "80319535",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

}

]

The next example below retrieves the total bytes count for a bucket named "bucket1" as of the specified hour
interval. Note that to support retrieving the total bytes (TB) count or total objects (TO) count for a bucket as of a
specified time interval, the POST /usage/repair/bucket method must have been executed for that bucket some-
time during that time interval (since that method generates the TB and TO counts). If that method has not been
executed for a bucket during a given time interval -- such as a particular hour or day -- then you cannot sub-
sequently retrieve a TB or TO count for that bucket from that interval.

curl -X GET -k -u sysadmin:public \

'

https://
localhost

870

12.12. usage

:19443/usage?bucket=
bucket1&operation=TB&startTime=201712201400&endTime=201712201500&granularity=raw' \
| python -mjson.tool

The response payload is a JSON-formatted list of UsageData objects, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"UsageData Object" (page 886).

[

{

"averageValue": "4242572",

"bucket": "bucket1",

"count": "0",

"groupId": null,

"ip": null,

"maxValue": "0",

"operation": "TB",

"policyId": "880e7d065225009b481ff24ae8d893ce",

"region": null,

"timestamp": "1513781460000",

"uri": null,

"userId": null,

"value": "4242572",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

}

]

Note If the POST /usage/repair/bucketmethod had been called multiple times during the time period
specified in the GET /usage?bucket request, and the requested granularity is "raw", then multiple
UsageData objects would be returned in the response, each with a TB value and each with a
timestamp indicating when the POST /usage/repair/bucket call had generated that TB value. By con-
trast, if the requested granularity is a roll-up period such as "hour", then only most recent TB value gen-
erated during that roll-up period would be returned.

For example, suppose that you have been executing the POST /usage/repair/bucket call on a particular
bucket at 11AM and 11PM every day. Subsequently, if the start and end times in a GET /usage?bucket
request span one week and the requested granularity is "day", the response will return one UsageData
object for each day of the week, and the TB count shown for each day will be the one generated by the
POST /usage/repair/bucket call executed at 11PM on each day.

12.12.2.0.2. Response Format

The response payload is a JSON-formatted list of UsageData objects (see examples above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing or invalid parameters

871

Chapter 12. Admin API

Status Code Description

400 Invalid parameter: region = {region}

400 Invalid parameter: regionOffset = {region}

400 Conflicting parameters: {canonicalUserId, id}

12.12.2.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUsage

l Parameters: Same as for GET /usage, except all parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /usage except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get usage for any group, user, or bucket

o HyperStore group admin user can only get usage for her own group, for users within her own
group, or for buckets owned by users within her own group

o HyperStore regular user can only get his own usage or usage for a bucket that he owns

o IAM user can only use this method if granted admin:GetCloudianUsage permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUsage" action retrieves usage data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. The system does not maintain usage data per
IAM user. For example, if a HyperStore group administrator grants admin:GetCloud-
ianUsage permission to an IAM user, the IAM user will be able to retrieve usage inform-
ation for any HyperStore user in the group administrator's group. And if a HyperStore
regular user grants admin:GetCloudianUsage permission to an IAM user, the IAM user
will be able to retrieve usage information for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUsage&Id=QA|*&Operation=SB&StartTime=201807010000

&EndTime=201808010000&Granularity=month

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUsageResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

872

12.12. usage

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<UsageData>

etc...

...

...

</UsageData>

<UsageData>

etc...

...

...

</UsageData>

</ListWrapper>

</GetCloudianUsageResponse>

12.12.3. POST /usage/bucket

POST /usage/bucket Get raw usage data for multiple buckets
The request line syntax for this method is as follows.

POST /usage/bucket

The required request payload is a JSON-formatted UsageBucketReq object. See example below.

This method retrieves complete raw usage data for one or multiple specified buckets, from during a specified
time period. This method does not support retrieving rolled up hourly, daily, or monthly usage data and it does
not support filtering by the service operation type.

Note If you want to retrieve rolled up usage data for a bucket, or bucket usage data for just a particular
service operation type, use the GET /usage method instead. Note however that with the GET /usage
method you can only get usage data for one bucket at a time.

Note The POST /usage/bucketmethod is supported only if bucket usage statistics are enabled in the
system. Bucket usage statistics are disabled by default. For information on enabling this feature see
"Enabling Advanced Usage Reporting Features" (page 142).

12.12.3.0.1. Example Using cURL

The example below retrieves raw usage data for two buckets named "b123" and "mybucket", for a one hour
period. In this example the JSON-formatted UsageBucketReq object is specified in a text file named buckets_
usage.txt which is then referenced as the data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @buckets_usage.txt https://localhost:19443/usage/bucket | python -mjson.tool

The buckets_usage.txt file content in this example is as follows. For description of a particular attribute, click on
the attribute name; or for the full list of attribute descriptions see "UsageBucketReq Object" (page 885).

873

Chapter 12. Admin API

{

"buckets": [

"b123",

"mybucket"

],

"endTime": "201611291900",

"startTime": "201611291800"

}

The response payload is a JSON-formatted list of UsageBucketRes objects (with one such object for each
bucket), which in this example is as follows. The response payload is truncated here. For description of a par-
ticular attribute, click on the attribute name; or for the full list of attribute descriptions see "UsageBucketRes
Object" (page 885).

Note If during your specified start and end time interval there were no operations of a particular type in
the bucket, then no data will be returned for that operation type. For example, if there were no deletes
during the interval then no "HD" operation usage data will be returned.

[

{

"bucket": "b123",

"data": [

{

"averageValue": "3222",

"bucket": "b123",

"count": "0",

"groupId": null,

"ip": "10.10.0.1",

"maxValue": "0",

"operation": "BO",

"region": null,

"timestamp": "1480442520000",

"uri": null,

"userId": null,

"value": "3222",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

},

...

...

12.12.3.0.2. Response Format

The response payload is a JSON-formatted list of UsageBucketRes objects (see example above). For
response status code this method will return one of the "Common Response Status Codes" (page 746) or
one of these method-specific status codes:

Status Code Description

400 Missing required attributes : {buckets, startTime, endTime}

400 Invalid JSON Object

874

12.12. usage

12.12.4. POST /usage/repair

POST /usage/repair Repair storage usage data for group or system
The request line syntax for this method is as follows.

POST /usage/repair?groupId=xxx[&summarizeCountsOnly=xxx][®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "usage Query Parameters" (page 880).

There is no request payload.

This method checks and repairs storage usage data for specified user groups or for all groups in the system.
For each repaired group the operation repairs the storage usage counts for individual users within the group
as well as the aggregate counts for the group as a whole.

For background information on storage usage data repair, see "Validating Storage Usage Data" (page 143).

Note This is a resource-intensive operation if you have a large number of users in your system. Note
that a more focused type of storage usage repair is run as a recurring HyperStore cron job -- see POST
/usage/repair/dirtyusers.

Note In a multi-region HyperStore system, this method can be applied to usage data in all regions by
submitting the request to the Admin Service in the default region and omitting the "region" query para-
meter. You cannot directly run this method against Admin Service nodes in non-default regions.

12.12.4.0.1. Example Using cURL

The example below checks and repairs storage usage data for the "engineering" group.

curl -X POST -k -u sysadmin:public \

https://localhost:19443/usage/repair?groupId=engineering

12.12.4.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.12.5. POST /usage/repair/bucket

POST /usage/repair/bucket Retrieve total bytes and total objects for a bucket
The request line syntax for this method is as follows.

POST /usage/repair/bucket?bucket=xxx

For parameter description click on the parameter name or see "usage Query Parameters" (page 880).

There is no request payload.

875

Chapter 12. Admin API

This method calculates and returns the current counts for total bytes stored and number of objects stored in a
specified bucket. The calculation entails reading Cassandra metadata for objects in the bucket.

Note This is potentially a resource-intensive operation, depending on how many objects are in the
bucket.

Note This API method is supported even if bucket usage statistics are disabled in the system. Bucket
usage statistics are disabled in the system by default. For more information on bucket statistics see
"Bucket Usage Statistics" (page 139).

12.12.5.0.1. Example Using cURL

The example below calculates and returns the current total bytes stored (TB) and total objects stored (TO) for a
bucket named "testbucket1".

curl -X POST -k -u sysadmin:public \

https://localhost:19443/usage/repair/bucket?bucket=testbucket1 | python -mjson.tool

The response payload is the JSON-formatted TB and TO values.

{

"TB": 305360,

"TO": 9

}

12.12.5.0.2. Response Format

The response payload is the TB and TO values in JSON (see example above). For response status code this
method will return one of the "Common Response Status Codes" (page 746).

12.12.6. POST /usage/repair/dirtyusers

POST /usage/repair/dirtyusers Repair storage usage data for users with recent
activity
The request line syntax for this method is as follows.

POST /usage/repair/dirtyusers[?summarizeCounts=xxx]

For parameter description click on the parameter name or see "usage Query Parameters" (page 880).

There is no request payload.

This method checks and repairs storage usage data for users whose storage bytes and/or storage object
counts in the Redis QoS database have changed since the last time those users' counts were subjected to a
usage repair. This method selects users at random from among this set of "dirty" users, and performs usage
repair for a configurable maximum number of those users per method execution (mts.properties.erb: usage.re-
pair.maxdirtyusers; default = 1000).

For background information on storage usage data repair, see "Validating Storage Usage Data" (page 143).

876

12.12. usage

Note This method is invoked once every 12 hours by a HyperStore "Usage Data Processing" (page
474) cron job. In a multi-region system, a separate cron job is run from within each region.

Note At the conclusion of this method's run, in cloudian-admin.log there will be an INFO level message
from the CassandraUsageAccess::repairDirtyUsers component that indicates "1000 users processed.
N remaining", where N is the number of remaining dirty users for whom usage repair was not per-
formed.

Also in cloudian-admin.log, the CassandraUsageAccess::repairDirtyUsers component writes two INFO
messages for each user processed — one message indicating the start of processing the user and one
message indicating the completion of processing the user. If a correction was made to the user’s Redis
QoS counts for stored bytes and/or stored objects, a third INFOmessage is sandwiched between the
other two, indicating "Processed storage update: " and the correct counts.

12.12.6.0.1. Example Using cURL

The example below checks and repairs storage usage data for "dirty" users. It will also update group-level and
system-level storage usage counts based on the repaired user-level counts.

curl -X POST -k -u sysadmin:public https://localhost:19443/usage/repair/dirtyusers

12.12.6.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing or invalid parameters

12.12.7. POST /usage/repair/user

POST /usage/repair/user Repair storage usage data for a user
The request line syntax for this method is as follows.

POST /usage/repair/user?groupId=xxx&userId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "usage Query Parameters" (page 880).

There is no request payload.

This method checks and repairs storage usage data for a single specified user. For background information on
storage usage data repair, see "Validating Storage Usage Data" (page 143).

Note This operation does not update the group-level usage counters for the group to which the user
belongs. For information about doing the latter, see POST /usage/repair— particularly the "sum-
marizeCountsOnly" option. This is relevant especially when you are repairing multiple individual users

877

Chapter 12. Admin API

within a group, one at a time, using the POST /usage/repair/user method. In that case you should sub-
sequently update the group-level usage counters for the group, using the POST /usage/repair method
with the "summarizeCountsOnly" option.

12.12.7.0.1. Example Using cURL

The example below checks and repair storage usage data for the user "gladdes" in the "engineering" group.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/usage/repair/user?groupId=engineering&userId=gladdes'

12.12.7.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing or invalid parameters

12.12.8. POST /usage/rollup

POST /usage/rollup Roll up usage data
The request line syntax for this method is as follows.

POST /usage/rollup?granularity=xxx&startTime=xxx&unitCount=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "usage Query Parameters" (page 880).

There is no request payload.

This method triggers the generation of "rollup" (aggregated across a time interval) service usage data from
more granular data. Hourly rollup data is derived from "raw" transactional data. Daily rollup data and monthly
rollup data are derived from hourly rollup data.

This method does not return the rolled up service usage data in the response, it only generates the rollup data
and stores it in the system. To retrieve raw or rolled-up service usage data use the GET /usage method.

Note The POST /usage/rollup method is called regularly by HyperStore "Usage Data Processing"
(page 474) cron jobs. The cron job to create hourly rollup data runs each hour; the cron job to create
daily rollup data runs once per day; and the cron job to create monthly rollup data runs once per month.

In a multi-region system the rollup operations act only on usage data in the local service region. Con-
sequently, cron jobs that trigger these operations are configured in each region.

12.12.8.0.1. Example Using cURL

The example below creates hour roll-up usage data for the hour from midnight to 1AM on August 15, 2017.

878

12.12. usage

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/usage/rollup?granularity=hour&startTime=2017081500&unitCount=1'

12.12.8.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing or invalid parameters

12.12.9. POST /usage/storage

POST /usage/storage Post raw storage usage data for users with recent activity
The request line syntax for this method is as follows.

POST /usage/storage

There is no request payload.

The Redis QoS database maintains per-user and per-group counters for stored bytes and number of stored
objects, based on transaction data that it receives from the S3 Service. This Admin API method writes these
Redis-based stored bytes and stored object counts to the "Raw" column family in the Cassandra "Reports" key-
space. Subsequently the POST /usage/rollupmethod can be used to roll up this "Raw" data into hourly, daily,
and monthly aggregate data in Cassandra.

This API method applies only to users who have uploaded or deleted objects since the last time this method
was executed.

Note This API method is triggered every 5 minutes by a HyperStore "Usage Data Processing" (page
474) cron job. The method acts only on usage data in the local service region. Consequently, in a
multi-region system, cron jobs that trigger this method are automatically configured in each region.

12.12.9.0.1. Example Using cURL

The example below triggers the writing of raw stored bytes and stored objects counts into Cassandra, for users
who have been active since the last running of this API method.

curl -X POST -k -u sysadmin:public https://localhost:19443/usage/storage

12.12.9.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

879

Chapter 12. Admin API

12.12.10. POST /usage/storageall

POST /usage/storageall Post raw storage usage data for all users
The request line syntax for this method is as follows.

POST /usage/storageall

There is no request payload.

This method performs the same operation as described for POST /usage/storage except it applies to all users,
not just recently active users.

Note This API method is triggered once each day by a HyperStore "Usage Data Processing" (page
474) cron job. The method acts only on usage data in the local service region. Consequently, in a
multi-region system, cron jobs that trigger this method are automatically configured in each region.

12.12.10.0.1. Example Using cURL

The example below triggers the writing of raw stored bytes and stored objects counts into Cassandra, for all
users.

curl -X POST -k -u sysadmin:public https://localhost:19443/usage/storageall

12.12.10.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746).

12.12.11. usageQuery Parameters
granularity

(Mandatory, string) With a GET /usage or POST /usage/rollup or DELETE /usage request: The time
period granularity of the usage data to retrieve or generate or delete. Supported values are:

l hour—Hourly rollup data

l day—Daily rollup data

l month—Monthly rollup data

l raw—Raw transactional data (not rolled up). This is supported only for a GET or DELETE.

Note For a GET with granularity "raw", the interval between "startTime" and "endTime"
must not exceed 24 hours. If the interval is larger than this, a 400 Bad Request response
will be returned.

startTime

(Mandatory, string)

The start time in GMT.

880

12.12. usage

With a GET /usage request this is the start time of the interval for which to retrieve usage data. Format is
yyyyMMddHHmm.

Note For retrieving bucket usage data, the start time's "mm" -- the minutes -- must be 00.

With a POST /usage/rollup or DELETE /usage request the format depends on the granularity of the
usage data that you are generating or deleting:

l For hourly rollup data use format yyyyMMddHH. The start time will be the start of the hour that
you specify.

l For daily rollup data use format yyyyMMdd. The start time will be the start of the day that you spe-
cify.

l For monthly rollup data use format yyyyMM. The start time will be the start of the month that you
specify.

l For raw data use format yyyyMMddHHmm. The start time will be the start of the minute that you
specify. This level of granularity is not supported for POST /usage/rollup.

unitCount

(Optional, integer) With a POST /usage/rollup or DELETE /usage request: The number of units of the
specified "granularity" to generate or delete. Supported range is [1,100].

For example, with "granularity" = hour and "unitCount" = 24, a DELETE /usage operation will delete 24
hours worth of hourly rollup data, starting from your specified "startTime". In the case of "granularity" =
raw, a DELETE /usage operation will delete "unitCount" minutes worth of raw transactional data -- for
example 10 minutes worth of raw transactional data if "unitCount" = 10.

Defaults to 1 unit if not specified.

endTime

(Mandatory, string) With a GET /usage request: The end time in GMT of the interval for which to retrieve
usage data. Format is yyyyMMddHHmm.

Note For retrieving bucket usage data, the end time's "mm" -- the minutes -- must be 00.

id

(Optional, string) With a GET /usage request: The identifier of a user or group for which to retrieve usage
data, in format "<groupId>|<userId>" (for example "Dev|dstone", where Dev is the group ID and dstone
is the user ID). To retrieve usage data for a whole group rather than a single user, use "<groupId>|*" (for
example "Dev|*").

Do not use the "id" parameter for users who have been deleted from the system. For deleted users, use
the "canonicalUserId" parameter described below.

With a GET /usage request you must use either "id" or "canonicalUserId" or "bucket". Do not use more
than one of these query parameters.

canonicalUserId

(Optional, string) With a GET /usage request: The system-generated canonical ID of a user for which to
retrieve usage data. Use this parameter if you want to retrieve usage data for a user who has been

881

Chapter 12. Admin API

deleted from the system. If you don’t know the user’s canonical ID, you can obtain it by using the GET
/user/listmethod (this method can retrieve user profile information — including canonical ID — for all
deleted users within a specified group).

With a GET /usage request you must use either "id" or "canonicalUserId" or "bucket". Do not use more
than one of these query parameters.

bucket

With a GET /usage request (Optional, string): The bucket name. Use this parameter if you want to
retrieve usage data for a specific bucket (rather than for a user or group). With a GET /usage request
you must use either "id" or "canonicalUserId" or "bucket". Do not use more than one of these query para-
meters. Note that bucket names are globally unique within a HyperStore system, so specifying a bucket
name is sufficient to uniquely identify a bucket.

With POST /usage/repair/bucket (Mandatory, string): The bucket name.

Note With the exception of the POST /usage/repair/bucketmethod, bucket usage statistics are
disabled by default. For information on enabling this feature see "Enabling Advanced Usage
Reporting Features" (page 142).

operation

(Mandatory, string) With a GET /usage request: The type of service usage data to retrieve. Supported val-
ues are:

l SB—Number of stored bytes

l SO—Number of stored objects

l HG—Number of S3 HTTP GET requests (includes HEADs also). The returned usage data also
includes information about bytes downloaded.

l HP—Number of S3 HTTP PUT requests (includes POSTs also). The returned usage data also
includes information about bytes uploaded.

l HD—Number of S3 HTTP DELETE requests

Note Usage tracking and reporting for the HG, HP, and HD metrics is disabled by default.
For information on enabling these metrics see "Enabling Advanced Usage Reporting
Features" (page 142).

l BI— For bucket usage only, the number of data transfer bytes IN (bytes of data uploaded).

l BO— For bucket usage only, the number of data transfer bytes OUT (bytes of data downloaded).

Note The BI and BO operation types are supported only for GET /usage?bucket requests.
For user and group level usage statistics, the inbound and outbound data transfer size
information is included within the HP and HG operation type usage data.

l TB— For bucket usage only, the total bytes count for the bucket.

l TO— For bucket usage only, the total objects count for the bucket.

882

12.12. usage

Note The TB and TO operation types are supported only for GET /usage?bucket
requests. The TB and TO counts for a bucket for a specified time period (from startTime to
endTime) will exist only if you previously executed the POST /usage/repair/bucket
method during that time period. That method generates the TB and TO counts for the
bucket which the system then stores along with a timestamp indicating when the count
was generated.

For GET /usage?bucket requests the SB and SO operation types are also supported, but
these will return the change in the stored bytes and stored object counts during the spe-
cified time interval -- for example, the total increase in a bucket's stored bytes total during
a specified day, rather than the total number of bytes in the bucket on that day. For the lat-
ter you would use the TB operation type.

reversed

(Optional, boolean) With a GET /usage request: If this is set to "false", the retrieved usage data results
will be listed in chronological order. If this is set to "true", results will be listed in reverse chronological
order. Defaults to "false" if not specified.

Note This parameter is not supported if you are retrieving bucket usage data.

limit

(Optional, integer) With a GET /usage request: The maximum number of results to return — that is, the
maximum number of <UsageData> objects to return in the response body — if pagination is not used (if
no "pageSize" value is specified).

Defaults to 10,000 if not specified.

pageSize

(Optional, integer) With a GET /usage request: For pagination, the maximum number of results to return
per request. If a "pageSize" is specified, this supersedes the "limit" value.

Defaults to 0 if not specified.

Note This parameter is not supported if you are retrieving bucket usage data.

offset

(Optional, integer) With a GET /usage request: If you use the "pageSize" parameter in support of pagin-
ating a large result set, in the response the system will return one additional result beyond your spe-
cified "pageSize" value (for example, if you specify "pageSize=25", the system will return 26 results).
From the extra result (listed last in the response body), use the result’s timestamp as the "offset" para-
meter value in your next request. That result will then be the first of the results returned for that request.

For each request you submit, the last of the returned results will be an extra result from which you can
use the timestamp as the "offset" value for the next request. If there is no extra result in the response,
that indicates that the result set has been exhausted.

Defaults to 0 if not specified.

883

Chapter 12. Admin API

Note This parameter is not supported if you are retrieving bucket usage data.

region

(Optional, string)

With a GET /usage request: The region for which to retrieve usage data. To retrieve usage data for all
regions, specify the string "ALL". If no "region" value is specified, the default region is assumed. This
parameter is not supported if the "bucket" parameter is used (for retrieving data for a specified bucket).

With a POST /usage/repair or POST /usage/repair/user request: The region for which to perform the
usage data repair. If the region parameter is not specified, the repair is performed for all service regions.

Note GET /usage requests for user or group level statistics should be submitted only to the
Admin Service in the default region. Use the "region" query parameter to specify the region for
which you want to retrieve usage data.

GET /usage requests for bucket usage data can be submitted to the Admin Service any region,
and the results will be from that region. Do not specify the "region" parameter for bucket usage
data requests.

regionOffset

(Optional, string) With a GET /usage request: If you use a "region" value of "ALL", use the "regionOffset"
parameter to specify the region name of your local region. This helps with pagination of the result set.

Note This parameter is not supported if you are retrieving bucket usage data.

groupId

(Mandatory, string)

With a POST /usage/repair request: The group for which to repair user-level and group-level storage
usage counts. If groupId is "ALL", repair is performed for all groups.

With a POST /usage/repair/user request: The ID of the group to which the target user belongs.

summarizeCountsOnly

(Optional, boolean) With a POST /usage/repair request: If set to "true" while "groupId" = a specific group,
then the operation will not validate or repair usage data counters for individual users within the spe-
cified group. Instead, it will presume the user-level counters to be correct, and will only sum up the user-
level counters in order to update the counters for the group as a whole. This option is useful after you
have been running POST /usage/repair/user operations (which validate and repair usage counters
for individual users without updating the group-level counters for the groups that those users belong to).

If set to "true" while "groupId" = ALL, then the operation will only sum up the existing group-level usage
counters to update the counters for the system as a whole.

If set to "false", then the operation runs in the normal manner, by first validating and repairing user-level
usage counters within the specified group and then using that repaired data to update the group-level
counters for the group.

Defaults to "false" if the "summarizeCountsOnly" parameter is omitted.

884

12.12. usage

summarizeCounts

(Optional, boolean) With a POST /usage/repair/dirtyusers request: If set to "true", then the POST /us-
age/repair/dirtyusers operation, after repairing usage counters for individual users, will update the
group-level usage counters for the groups to which those repaired users belong. It will then also update
system-level usage counts, based on the updated group counters.

If set to "false", then the operation will repair only user-level counters, and will not update the group or
whole-system counters.

Defaults to "true".

userId

(Mandatory, string) With a POST /usage/repair/user request: The ID of the user for whom usage data
repair is to be performed.

12.12.12. usageObjects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Usage related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "UsageBucketReq Object" (page 885)

l "UsageBucketRes Object" (page 885)

l "UsageData Object" (page 886)

12.12.12.1. UsageBucketReq Object

The UsageBucketReq object consists of the following attributes:

buckets

(Mandatory, list<string>) List of the buckets for which to retrieve raw usage data. Example:

"buckets": ["b123","mybucket"]

endTime

(Mandatory, string) End time (in GMT) of the interval for which to retrieve raw usage data. Format is
yyyyMMddHHmm. Example:

"endTime": "201611291900"

startTime

(Mandatory, string) Start time (in GMT) of the interval for which to retrieve raw usage data. Format is
yyyyMMddHHmm. Example:

"startTime": "201611291800

12.12.12.2. UsageBucketRes Object

The UsageBucketRes object consists of the following attributes:

885

Chapter 12. Admin API

bucket

(String) Bucket with which the usage data is associated. Example:

"bucket": "b123"

data

(List<UsageData>) List of UsageData objects. Note that in the context of a UsageBucketRes object, the
UsageData objects will always be for "raw" granularity. Example:

"data": [
{
"averageValue": "3222",
"bucket": "b123",
"count": "0",
"groupId": null,
"ip": "10.10.0.1",
"maxValue": "0",
"operation": "BO",
"region": null,
"timestamp": "1480442520000",
"uri": null,
"userId": null,
"value": "3222",
"whitelistAverageValue": "0",
"whitelistCount": "0",
"whitelistMaxValue": "0",
"whitelistValue": "0"

}

12.12.12.3. UsageData Object

The UsageData object consists of the following attributes:

averageValue

(String) Average value of the usage statistic during the granularity interval.

For user level or group level statistics, when usage report granularity = hour, day, ormonth, the "aver-
ageValue" will equal the "value" divided by the "count".

When usage report granularity = raw or for bucket usage statistics of any granularity, the "aver-
ageValue" will equal the "value".

Example:

"averageValue": "107956"

bucket

(String) Name of the bucket with which the usage data is associated. This attribute will have a value
only for bucket usage data. For user level or group level usage data this attribute will have null value.

Example:

"bucket": null

count

886

12.12. usage

(String) Data count. The specific meaning of this attribute depends on the usage reporting granularity
and operation type.

When usage report granularity = raw or for bucket usage statistics of any granularity, "count" is not rel-
evant and always returns a "0".

For user level or group level statistics, when usage report granularity = hour, day, ormonth:

l For operation type SB or SO:

o For granularity hour, the "count" will always be "1".

o For granularity day, the "count" will be the number of hourly data points recorded by the
system within the day. For a past day, this will be "24"; for the current day, this will be the
number of hours that have completed so far within the day.

o For granularitymonth, the "count" will be the number of hourly data points recorded by
the system within the month. For a past month, this will be the total number of days in that
month X 24 hours-per-day; for the current month, this will be the number of hours that
have completed so far in the month.

Note For SB and SO, the "count" is relevant only insofar as it is used as the denominator
in the calculation of an average storage value for the granularity interval (the numerator
in the calculation is the "value" attribute).

l For operation type HG, HP, or HD, the "count" is the count of requests within the granularity inter-
val (within the hour, day, or month). For example, if the operation type is HD and the granularity
is hour, this is the count of HTTP Delete requests during the hour. Requests from whitelisted
source IP addresses are excluded from HG, HP, or HD counts (unless the usage data is for a
specific bucket, in which case the whitelist feature does not apply and whitelisted source
addresses are not treated any differently than other source addresses in regard to usage track-
ing.)

Example:

"count": "744"

groupId

(String) Group ID with which the usage data is associated.

For bucket usage this attribute will have null value.

Example:

"groupId": "QA"

ip

(String) IP address of the client that submitted an S3 request. Applicable only if the usage reporting gran-
ularity is raw and the operation type is HG, HP, HD, BI, or BO. Otherwise this attribute will have null
value.

Example:

"ip": ""

maxValue

(string) Maximum value recorded during the granularity interval. For example, for operation type SB this

887

Chapter 12. Admin API

would be the largest storage byte level reached during the granularity interval. The "maxValue" is repor-
ted only for rollup granularities (hour, day, month). For raw granularity and for bucket usage data of any
granularity it will have a value of "0".

Requests from whitelisted source addresses are excluded from HG, HP, HD "maxValue".

Example:

"maxValue": "305443"

operation

(String) Operation type for which the usage statistics are reported:

l SB = Storage Bytes

l SO = Storage Objects

l HG = S3 HTTP GETs (and HEADs)

l HP = S3 HTTP PUTs (and POSTs)

l HD = S3 HTTP DELETEs

l BI = For bucket usage only, the data transfer IN bytes

l BO = For bucket usage only, the data transfer OUT bytes

l TB = For bucket usage only, the total bytes count for the bucket.

l TO = For bucket usage only, the total objects count for the bucket.

Note The TB and TO operation types are supported only for bucket usage statistics. The
TB and TO counts for a bucket for a specified time period (from startTime to endTime) will
exist only if you previously executed the POST /usage/repair/bucketmethod one or more
times during that time period. That method generates the TB and TO counts for the
bucket, which the system then stores along with a timestamp indicating when the counts
were generated. It's these saved TB and TO counts that are returned by GET /usage for
the bucket. In the case of rolled-up usage data, the most recent TB and TO counts from
within the roll-up period are used.

The SB and SO operation types are also supported for bucket usage statistics, but these
will return the change in the stored bytes and stored object counts during the specified
time interval -- for example, the total increase in a bucket's stored bytes total during each
day in the interval (if you are using granularity "day"), rather than the total number of
bytes in the bucket on each day. The latter is captured by the TB operation type.

Example:

"operation": "SB"

policyId

(String) System-generated unique ID of the storage policy used by the bucket.

This attribute is relevant only to bucket usage data and will be null for group or user-level usage data.

Example:

"policyId": "880e7d065225009b481ff24ae8d893ce"

region

888

12.12. usage

(String) Service region in which the usage occurred.

For bucket usage this attribute will have null value.

Example:

"region": "taoyuan"

timestamp

(String) Timestamp for creation of this usage data, in UTC milliseconds. The specific meaning of the
timestamp depends on the usage reporting granularity and operation type.

When usage report granularity = raw:

l For operation type SB or SO, the "timestamp" is the time when the storage level was recorded by
the /usage/storage API call (which is run by cron job every five minutes)

l For operation type HG, HP, HD, BI, or BO, the "timestamp" is the time when the transaction
occurred.

l For operation type TB or TO (supported for bucket usage only), the "timestamp" is the time when
the POST /usage/repair/bucket call that calculated the TB and TO counts was executed.

When usage report granularity = hour, day, ormonth:

l The "timestamp" is the time that the granularity interval started (the start of the hour, day, or
month for which data is encapsulated in the UsageData object).

Example:

"timestamp": "1498867200000"

uri

(String) URI of the data object. Applicable only for user and group level usage data and only if the
usage reporting granularity is "raw". For user and group level usage data with granularity other than
"raw", this attribute will have an empty value.

For bucket usage this attribute will have a null value.

Example:

"uri": ""

userId

(String) User ID with which the usage data is associated. For group level usage data the userId attribute
will be "*".

For bucket usage this attribute will have null value.

Example:

"userId": "*"

value

(String) Data value. The specific meaning of this attribute depends on the usage reporting granularity
and operation type.

When usage report granularity = raw:

889

Chapter 12. Admin API

l For operation type SB or SO (or TB or TO in the case of bucket usage statistics), the "value" is the
current storage bytes or current number of stored objects.

l For operation type HG, HP, HD, BI, or BO, the "value" is the data transfer size for the single trans-
action, in bytes.

NoteWith Multipart Upload operations (for large objects), each part upload counts as a
separate transaction toward the HP and BI statistics.

When usage report granularity = hour, day, ormonth:

l For operation type SB or SO for user or group level usage data, the "value" is the sum of the stor-
age level measures recorded by the system during the granularity interval, in bytes. For
example, for granularity day, a current SB measure is recorded for each hour during the day,
and the sum of those hourly measures is the SB "value" for the day. For SB and SO, this aggreg-
ate "value" is relevant only insofar as it is used as the numerator in the calculation of an average
storage value for the granularity interval (the denominator in the calculation is the "count" attrib-
ute).

Note In the case of bucket usage data the hour, day, or month “rollup” value for SB or SO
is the change to the stored byte or stored object count in the bucket during the rollup
period.

l For operation type HG, HP, HD, BI, or BO, the "value" is the sum data transfer size for the gran-
ularity interval, in bytes. For example, if operation type is HP and the granularity is hour, the
"value" is the aggregated data transfer size of all HTTP PUT and POST requests during the hour.

Requests from whitelisted source IP addresses are excluded from HG, HP, and HD values (unless the
usage data is for a specific bucket, in which case the whitelist feature does not apply and whitelisted
source addresses are not treated any differently than other source addresses in regard to usage track-
ing.)

Example:

"value": "80319535"

whitelistAverageValue

(String) Same as "averageValue" above, except this is exclusively for traffic from whitelisted source
addresses.

Note For bucket usage data, traffic from whitelisted sources is bundled in with the main usage
statistics rather than being separated out. For bucket usage all "whitelist*" attributes will have "0"
as their value.

Example:

"whitelistAverageValue": "0"

whitelistCount

(String) Same as "count", except this is exclusively for traffic from whitelisted source addresses.
Example:

"whitelistCount": "0"

890

12.12. usage

whitelistMaxValue

(String) Same as "maxValue" above, except this is exclusively for traffic from whitelisted source
addresses. Example:

"whitelistMaxValue": "0"

whitelistValue

(String) Same as "value", except this is exclusively for traffic from whitelisted source addresses.
Example:

"whitelistValue": "0"

12.12.12.3.1. Usage Data Topics

How Particular S3 Operations Impact Usage Data Counts
To support usage reporting, billing, and the implementation of Quality of Service (QoS) limits, the following
counters are maintained for individual users and for groups:

l Storage bytes

l Storage objects

l Number of requests

l Data bytes IN

l Data bytes OUT

When calculating size for storage byte tracking, the size of the object metadata is included as well as the size
of the object itself. If compression is used for storage of S3 objects, the uncompressed object size is counted
toward storage byte tracking.

When calculating size for data transfer byte tracking (IN and OUT), the size of the HTTP headers is included as
well as the size of the object itself.

The table below shows how particular S3 operations (the left-most column) impact the various service usage
counters (shown in the remaining columns).

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

DELETE (Add
delete marker)

Add Total-Size which is same as
size of object path including buck-
etname (i.e., <buck-
etname>/<objectname>), unless
replacing existing delete marker,
then no change

Incremented
by 1, unless
replacing
existing DM,
then no
change

No change
No
change

No
change

DELETE (No
delete marker
added) object,
bucket

If object is successfully deleted,
decremented by Total-Size of
deleted object. If request is to
region where bucket is not loc-
ated, no change.

If object is
successfully
deleted,
decremented
by 1. If
request is to
region where
bucket is not
located, no

No change
No
change

No
change

891

Chapter 12. Admin API

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

change.

DELETE object tag-
ging

Decremented by size of old tag-
ging string

No change No change
No
change

No
change

DELETE policy No change No change No change
No
change

No
change

DELETE uploadId
(MP Abort)

If successfully deleted, decre-
mented by Total-Size of
uploaded parts and 1V value
added in MP initiate

If suc-
cessfully
deleted,
decremented
by 1

No change
No
change

No
change

GET bucket, ser-
vice, policy, loc-
ation, acl,
bucketlogging, ver-
sioning, list
uploads, list parts

No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

GET object No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

GET object tagging No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

HEAD object No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

POST MP initiate
Add object name size and
metadata size.

Incremented
by 1

Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

POST MP com-
plete

If replacement object, decrement
by Total-Size of old object. Total
size of completed object
metadata is set to total size of MP
parts and initiate request.

If replace-
ment object,
decrement 1

Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

POST object
Incremented by Total-size minus
Total-size of old object, if any

Incremented
by 1 if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT bucket
Incremented by bucketname size
if bucket created in region, oth-
erwise 0

Incremented
by 1 if bucket
created in
region, oth-
erwise 0

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT bucket log- Incremented by Total-Size of log Incremented No change No No

892

12.12. usage

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

ging object object by 1 change change

PUT part

Add Content-Length of part body.
If replacing an existing part, sub-
tract Content-Length of old part
body.

No change
Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

PUT object
Incremented by Total-size minus
Total-size of old object, if any

Incremented
by 1 if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object CRR

(cross-region rep-
lication)

Incremented by Total-size of ori-
ginal object and replica object
combined, plus 51 bytes of
metadata associated with imple-
menting CRR

Incremented
by one if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object copy

Two cases: (1) Metadata COPY.
Increment by source total-size +
difference between new and old
object name. (2) Metadata
REPLACE. Increment by source
content-length + new objectname
+ new meta headers. In both
cases, if replacement object, then
Total-Size of replacement object
is subtracted.

Incremented
by one if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT policy, log-
ging, acl, ver-
sioning

No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object tagging
Incremented by size of new tag-
ging string minus size of old tag-
ging string (if any)

No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

Upload Part Copy

Increment by source content-
length. If replacement object,
then Total-Size of replacement
object is subtracted.

No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

How Request Processing Errors Impact Usage Counts
If an S3 request for uploading or downloading data fails to complete due to a processing error within the Hyper-
Store system, the request still counts towards the data transfer bytes total for usage tracking and QoS imple-
mentation. For example, if a user tries to upload a 1MB object and the request fails to complete, the 1MB is still
added to the user’s total for Data Bytes In. It would not impact the user’s Stored Bytes or Stored Objects counts.

How Auto-Tiering Impacts Usage Counts
The HyperStore system supports an S3 "PutBucketLifecycle" (page 969) API extension whereby objects can,
on a specified scheduled, be auto-tiered to Amazon S3, Amazon Glacier, a different Cloudian HyperStore ser-
vice region, or a third party Cloudian HyperStore system. When an object is transitioned to Amazon or a

893

Chapter 12. Admin API

different HyperStore region or system, its size is removed from the Storage Bytes count in the local HyperStore
region. At the same time, a reference to the transitioned object is created and the size of this reference — 8KB,
regardless of the transitioned object size — is added to the local Storage Bytes count. For example, if a 100KB
object is auto-tiered to Amazon or a different HyperStore region or system, the net local effect is a 92KB reduc-
tion in the local Storage Bytes count.

If the object is temporarily restored to local HyperStore storage (through the S3 API method POST Object
restore), then while the object is locally restored the object’s size is added to the local Storage Bytes count and
the 8KB for the reference is subtracted from the count. After the restore interval ends, the object size is once
again subtracted from Storage Bytes and the 8KB for the reference is added back.

Auto-tiering does not impact the Storage Objects count.

Note In regard to the maximum stored bytes that your license permits you — for objects that have been
auto-tiered to Amazon, the size of the tiered objects does not count toward your maximum allowed stor-
age capacity. However, the 8KB per tiered object (described above) does count toward your licensed
maximum storage capacity.

How Server-Side Encryption Impacts Usage Counts
For Server-Side Encryption where the objects are encrypted in storage, "Bytes In" and "Bytes Out" reflect the
original, unencrypted object size. The "Storage Bytes" value uses the encrypted object size. Headers are not
encrypted, and thus not included. The increase of size of the encrypted object, i.e., the "padding size", depends
on the AES block size and the amount of padding required.

The padding formula for AES/CBC/PKCS5 padding is as described below.

AES block size = 16

In the PKCS5 padding always a pad block is added at the end. So the padding

bytes vary from 1 to 16.

Non-chunked objects

Cipher size = (plain text size / 16 + 1) * 16.

Padding size = cipher size - plain text size

For example:

20 bytes object: total cipher size = (20/16 + 1) * 16 = 32 bytes

11 bytes object: total cipher size = (11/16 + 1) * 16 = 16 bytes

Chunked objects

Number of full chunks = plain text size / max chunk size

Last (partial) chunk size = plain text size % max chunk size

Cipher chunk size = (max chunk size / 16 + 1) * 16

- If last (partial) chunk size == 0

last chunk padding size = 0

- If last (partial) chunk size > 0

cipher last (partial) chunk size = (last (partial) chunk size / 16 + 1) * 16

894

12.13. user

last chunk padding size = cipher last (partial) chunk size - last (partial) chunk size

padding size = number of full chunks * (cipher chunk size - max chunk size)

+ last chunk padding size

For example:

max chunk size=1024

1024 bytes object: total cipher size = plain text size + padding size

= 1024 + 1*(1040-1024) + 0

= 1024 + 16

= 1040

1025 bytes object: total cipher size = plain text size + padding size

= 1025 + 1*(1040-1024) + 15

= 1025 + 16 + 15

= 1056

How Compression Impacts Usage Counts
For S3 service usage tracking (for purposes of QoS enforcement and billing), the uncompressed size of objects
is always used, even if you enable compression for all or some of your storage policies.

12.13. user
The Admin API methods built around the user resource are for managing HyperStore service user accounts.
This includes support for creating, changing, and deleting user accounts. These methods also support man-
agement of users' security credentials and the assignment of rating plans to users.

12.13.1. DELETE /user

DELETE /user Delete a user
The request line syntax for this method is as follows.

DELETE /user?[userId=xxx&groupId=xxx|canonicalUserId=xxx]

Either use userId together with groupId, or use canonicalUserId.

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

The user will be removed from his group; his security credentials will be deleted; and his S3 buckets and
stored objects will be deleted.Once deleted, a user’s buckets and objects will not be recoverable.

The operations associated with deleting a user are performed asynchronously. If you receive an OK response
to a DELETE /user request, this indicates that the user’s status has successfully transitioned to "deleting", and
the associated operations are underway. You can use the GET /user/list method to check on which users
within a group are in "deleting" status or "deleted" status ("deleted" status indicates that all associated oper-
ations have completed, including deletion of the user’s stored S3 buckets and objects).

895

Chapter 12. Admin API

Note Service usage report data for a deleted user is retained for a period of time as configured by the
reports.rollup.ttl setting in mts.properties.erb. You can retrieve usage data for a recently deleted user
via the GET /usage method.

Note You cannot delete the default system administrator account. This is not allowed.

12.13.1.0.1. Example Using cURL

The example below deletes a user with ID "John" who is in the "QA" group.

curl -X DELETE -k -u sysadmin:public \

'https://localhost:19443/user?userId=John&groupId=QA'

12.13.1.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 User does not exist

12.13.2. DELETE /user/credentials

DELETE /user/credentials Delete a user's S3 security credential
The request line syntax for this method is as follows.

DELETE /user/credentials?accessKey=xxx

For parameter description click on the parameter name or see "user Query Parameters" (page 919).

There is no request payload.

12.13.2.0.1. Example Using cURL

The example below deletes a user's S3 credential as specified by the access key. Note that since each S3
access key is unique in the system, you do not need to specify the user to whom the key is assigned.

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/user/credentials?accessKey=21289bab1738ffdc792a

12.13.2.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {accessKey}

896

12.13. user

Status Code Description

400 Invalid Access Key

12.13.3. DELETE /user/deleted

DELETE /user/deleted Purge profile data of a deleted user or users
The request line syntax for this method is as follows.

DELETE /user/deleted[?canonicalUserId=xxx|groupId=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

After deleting a user or users, you can use this Admin API method if you want to purge the deleted users' profile
information from the Cassandra database. Otherwise, the deleted users' profile information is retained in Cas-
sandra indefinitely.

Use the canonicalUserId parameter to specify just a single user for whom to purge profile data, or use the
groupId parameter to purge profile data for all deleted users in the specified group. Do not use both a canon-
icalUserId and a groupId together.

There is no request payload.

Note If you purge a deleted user’s profile information, you will no longer be able to retrieve that user’s
profile information via the GET /user/list method. This means that you will no longer be able to retrieve
the deleted user’s canonical user ID. Without a deleted user’s canonical user ID, you will not be able to
retrieve usage history for the user. Consequently, you should purge a deleted user’s profile information
only if you have some independent record of the user’s canonical user ID (outside of the Cassandra
database); or if you are confident that you will no longer require access to the deleted user’s usage his-
tory.

12.13.3.0.1. Example Using cURL

The example below purges a single deleted user's profile data.

curl -X DELETE -k -u sysadmin:public \

https://localhost:19443/user/deleted?canonicalUserId=bd0796cd9746ef9cc4ef656ddaacfac4

12.13.3.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Conflicting or missing parameters : {canonicalUserId, groupId}

400 User does not exist or is not in a deleted state.

897

Chapter 12. Admin API

12.13.4. GET /user

GET /user Get a user's profile
The request line syntax for this method is as follows.

GET /user?[userId=xxx&groupId=xxx|canonicalUserId=xxx]

Either use userId together with groupId, or use canonicalUserId.

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 899).

12.13.4.0.1. Example Using cURL

The example below retrieves a user with ID "John" who is in the "QA" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user?userId=John&groupId=QA' | python -mjson.tool

The response payload is a JSON-formatted UserInfo object, which in this example is as follows. For description
of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "UserInfo
Object" (page 922).

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

}

12.13.4.0.2. Response Format

The response payload is a JSON-formatted UserInfo object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

898

12.13. user

Status Code Description

204 User does not exist

400 Missing Required parameters : {userId, groupId}

12.13.4.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUser

l Parameters: Same as for GET /user, except all parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /user except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get any user's profile

o HyperStore group admin user can only get the profiles of users within her own group

o HyperStore regular user can only get own profile

o IAM user can only use this method if granted admin:GetCloudianUser permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUser" action retrieves profile data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. For example, if a HyperStore group administrator
grants admin:GetCloudianUser permission to an IAM user, the IAM user will be able to
retrieve profile information for any HyperStore user in the group administrator's group.
And if a HyperStore regular user grants admin:GetCloudianUser permission to an
IAM user, the IAM user will be able to retrieve profile information for the parent Hyper-
Store user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUser&UserId=John&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<CassandraUserInfo>

<active>Active</active>

899

Chapter 12. Admin API

etc...

...

...

</CassandraUserInfo>

</GetCloudianUserResponse>

12.13.5. GET /user/credentials

GET /user/credentials Get a user's S3 security credential
The request line syntax for this method is as follows.

GET /user/credentials?accessKey=xxx

For parameter description click on the parameter name or see "user Query Parameters" (page 919).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 901).

12.13.5.0.1. Example Using cURL

The example below retrieves the S3 credentials object corresponding to a specified S3 access key. Note that
since each S3 access key is unique in the system, you do not need to specify the user to whom the key is
assigned.

curl -X GET -k -u sysadmin:public \

https://localhost:19443/user/credentials?accessKey=009c156c79e64e0e4928 \

| python -mjson.tool

The response payload is a JSON-formatted SecurityInfo object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Secur-
ityInfo Object" (page 921).

{

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

}

12.13.5.0.2. Response Format

The response payload is a JSON-formatted SecurityInfo object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

Status Code Description

204 No Data Found

400 Missing required parameters : {accessKey}

900

12.13. user

12.13.5.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUserCredentials

l Parameters: Same as for GET /user/credentials, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /user/credentials except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's credentials

o HyperStore group admin user can only get the credentials of users within her own group

o HyperStore regular user can only get own credentials

o IAM user can only use this method if granted admin:GetCloudianUserCredentials permission by
an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentials" action retrieves credentials for Cloudian Hyper-
Store user accounts, not for subsidiary IAM users. For example, if a HyperStore group
administrator grants admin:GetCloudianUserCredentials permission to an IAM user, the
IAM user will be able to retrieve credentials for any HyperStore user in the group admin-
istrator's group. And if a HyperStore regular user grants admin:GetCloud-
ianUserCredentials permission to an IAM user, the IAM user will be able to retrieve the
parent HyperStore user's credentials.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentials&AccessKey=009c156c79e64e0e4928

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

901

Chapter 12. Admin API

</GetCloudianUserCredentialsResponse>

12.13.6. GET /user/credentials/list

GET /user/credentials/list Get a user's list of S3 security credentials
The request line syntax for this method is as follows.

GET /user/credentials/list?[userId=xxx&groupId=xxx | canonicalUserId=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

This retrieves all of the user's S3 credentials (active credentials as well as inactive [disabled] credentials).

Specify the user either by using userId and groupId, or by using canonicalUserId.

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 903).

12.13.6.0.1. Example Using cURL

The example below retrieves all of the S3 security credentials belonging to user "John" in the "QA" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/credentials/list?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted list of SecurityInfo objects, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"SecurityInfo Object" (page 921).

[

{

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

},

{

"accessKey": "21289bab1738ffdc792a",

"active": false,

"createDate": 1502283467021,

"expireDate": null,

"secretKey": "o5jqJtqV36+sENGLozEUg1EXEmQp9V6yfCHLFCJk"

}

]

902

12.13. user

12.13.6.0.2. Response Format

The response payload is a JSON-formatted list of SecurityInfo objects (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

204 No Access Key found

400 Missing Required parameters : {userId, groupId}

400 User/Group does not exist

12.13.6.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUserCredentialsList

l Parameters: Same as for GET /user/credentials/list, except all parameter names start with an upper
case letter rather than lower case

l Response body: Same response data as for GET /user/credentials/list except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's credentials list

o HyperStore group admin user can only get the credentials list of users within her own group

o HyperStore regular user can only get own credentials list

o IAM user can only use this method if granted admin:GetCloudianUserCredentialsList per-
mission by an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentialsList" action retrieves credentials for Cloudian
HyperStore user accounts, not for subsidiary IAM users. For example, if a HyperStore
group administrator grants admin:GetCloudianUserCredentialsList permission to an
IAM user, the IAM user will be able to retrieve a credentials list for any HyperStore user
in the group administrator's group. And if a HyperStore regular user grants
admin:GetCloudianUserCredentialsList permission to an IAM user, the IAM user will be
able to retrieve the parent HyperStore user's credentials list.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentialsList&UserId=John&GroupId=QA

<request headers including authorization info>

RESPONSE

903

Chapter 12. Admin API

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

<SecurityInfo>

etc...

...

</SecurityInfo>

</ListWrapper>

</GetCloudianUserCredentialsListResponse>

12.13.7. GET /user/credentials/list/active

GET /user/credentials/list/active Get a user's list of active S3 security credentials
The request line syntax for this method is as follows.

GET /user/credentials/list/active?[userId=xxx&groupId=xxx | canonicalUserId=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

This retrieves the user's active S3 credentials. Inactive (disabled) credentials are not returned.

Specify the user either by using userId and groupId, or by using canonicalUserId.

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 905).

12.13.7.0.1. Example Using cURL

The example below retrieves the active S3 credentials for user "John" in the "QA" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/credentials/list/active?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted list of SecurityInfo objects, which in this example is as follows (note
that this user has only one active credential). For description of a particular attribute, click on the attribute
name; or for the full list of attribute descriptions see "SecurityInfo Object" (page 921).

[

{

904

12.13. user

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG

}

]

12.13.7.0.2. Response Format

The response payload is a JSON-formatted list of SecurityInfo objects (see example above). For response
status code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

204 No Access Key found

400 Missing Required parameters : {userId, groupId}

400 User/Group does not exist

12.13.7.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUserCredentialsListActive

l Parameters: Same as for GET /user/credentials/list/active, except all parameter names start with an
upper case letter rather than lower case

l Response body: Same response data as for GET /user/credentials/list/active except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's active credentials list

o HyperStore group admin user can only get the active credentials list of users within her own
group

o HyperStore regular user can only get own active credentials list

o IAM user can only use this method if granted admin:GetCloudianUserCredentialsListActive per-
mission by an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentialsListActive" action retrieves credentials for Cloud-
ian HyperStore user accounts, not for subsidiary IAM users. For example, if a HyperStore
group administrator grants admin:GetCloudianUserCredentialsListActive permission to
an IAM user, the IAM user will be able to retrieve an active credentials list for any Hyper-
Store user in the group administrator's group. And if a HyperStore regular user grants
admin:GetCloudianUserCredentialsListActive permission to an IAM user, the IAM user
will be able to retrieve the parent HyperStore user's active credentials list.

l Sample request and response (abridged):

905

Chapter 12. Admin API

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentialsListActive&UserId=John&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsListActiveResponse xmlns="https://iam.amazonaws.com/doc/2010-05-

08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

<SecurityInfo>

etc...

...

</SecurityInfo>

</ListWrapper>

</GetCloudianUserCredentialsListActiveResponse>

12.13.8. GET /user/list

GET /user/list Get a list of user profiles
The request line syntax for this method is as follows.

GET /user/list?groupId=xxx&userType=xxx&userStatus=xxx[&prefix=xxx][&limit=xxx]
[&offset=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

Note The HyperStore IAM Service supports a role-based access version of this API method as
described in "RBAC Version of this Method" (page 908).

12.13.8.0.1. Example Using cURL

The example below retrieves a list of all active users in the "QA" group.

906

12.13. user

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/list?groupId=QA&userType=all&userStatus=active' \

| python -mjson.tool

The response payload is a JSON-formatted list of UserInfo objects, which in this example is as follows. For
description of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see
"UserInfo Object" (page 922).

[

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "fd221552ff4ddc857d7a9ca316bb8344",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "Glory Bee",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "Glory",

"userType": "User",

"website": "",

"zip": ""

},

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

},

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "4dc9cd1c20c78eb6c84bb825110fddcb",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "Xiao Li",

907

Chapter 12. Admin API

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "Xiao",

"userType": "GroupAdmin",

"website": "",

"zip": ""

}

]

12.13.8.0.2. Response Format

The response payload is a JSON-formatted list of UserInfo objects (see example above). For response status
code this method will return one of the "Common Response Status Codes" (page 746) or one of these
method-specific status codes:

Status Code Description

400 Missing required parameters : {groupId, userType, userStatus}

400 Invalid user type. Valid values {admin, user, all}

400 Invalid user status. Valid values {active, inactive, all}

400 Invalid limit

12.13.8.1. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

l Action name:GetCloudianUserList

l Parameters: Same as for GET /user/list, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /user/list except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get any group's user list

o HyperStore group admin user can only get the user list for her own group

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianUserList permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserList" action retrieves user profile data for Cloudian Hyper-
Store user accounts, not for subsidiary IAM users. For example, if a HyperStore group
administrator grants admin:GetCloudianUserList permission to an IAM user, the IAM user
will be able to retrieve profile information for any HyperStore user in the group admin-
istrator's group.

l Sample request and response (abridged):

908

12.13. user

REQUEST

http://localhost:16080/?Action=GetCloudianUserList&GroupId=QA&UserType=all&UserStatus=active

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<CassandraUserInfo>

<active>Active</active>

etc...

...

</CassandraUserInfo>

<CassandraUserInfo>

etc...

...

</CassandraUserInfo>

</ListWrapper>

</GetCloudianUserListResponse>

12.13.9. GET /user/password/verify

GET /user/password/verify Verify a user's CMC password
The request line syntax for this method is as follows.

GET /user/password/verify?userId=xxx&groupId=xxx&password=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

This verifies that the supplied CMC password is the correct password for the user.

There is no request payload.

12.13.9.0.1. Example Using cURL

The example below verifies the supplied password for a user "John" in the "QA" group.

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/password/verify?userId=John&groupId=QA&password=P1a2s3s4!'

The response payload is a plain text value "true" or "false", which in this example is as follows.

true

The "true" response indicates that the supplied password is the correct password for the user.

909

Chapter 12. Admin API

12.13.9.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or this method-specific status code:

Status Code Description

400 Missing Required parameters : {userId, groupId, password}

12.13.10. GET /user/ratingPlan

GET /user/ratingPlan Get a user's rating plan content
The request line syntax for this method is as follows.

GET /user/ratingPlan?userId=xxx&groupId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.10.0.1. Example Using cURL

The example below retrieves the content of the rating plan that is assigned to user "John" in group "QA".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/ratingPlan?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted RatingPlan object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Rat-
ingPlan Object" (page 839).

{

"currency": "USD",

"id": "Gold",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"BO": {

"ruleclassType": "BYTES_OUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

910

12.13. user

},

"HD": {

"ruleclassType": "HTTP_DELETE",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "100",

"second": "0.25"

},

{

"first": "0",

"second": "0.15"

}

]

}

},

"name": "Gold Rating Plan"

}

12.13.10.0.2. Response Format

The response payload is a JSON-formatted RatingPlan object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

911

Chapter 12. Admin API

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 Region {region} is not valid

12.13.11. GET /user/ratingPlanId

GET /user/ratingPlanId Get a user's rating plan ID
The request line syntax for this method is as follows.

GET /user/ratingPlanId?userId=xxx&groupId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.11.0.1. Example Using cURL

The example below retrieves the rating plan ID for user "John" in group "QA".

curl -X GET -k -u sysadmin:public \

'https://localhost:19443/user/ratingPlanId?userId=John&groupId=QA'

The response payload is the rating plan identifier in plain text, which in this example is as follows.

Gold

12.13.11.0.2. Response Format

The response payload is a plain text string (see example above). For response status code this method will
return one of the "Common Response Status Codes" (page 746) or one of these method-specific status
codes:

Status Code Description

204 Rating Plan does not exist

400 Missing Required parameters : {userId, groupId}

400 Region {region} is not valid

12.13.12. POST /user

POST /user Change a user's profile
The request line syntax for this method is as follows.

POST /user

The required request payload is a JSON-formatted UserInfo object.

912

12.13. user

12.13.12.0.1. Example Using cURL

The example below modifies the user profile that was created in the PUT /user example. Again the UserInfo
object is specified in a text file named user_John.txt which is then referenced as the data input to the cURL
command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @user_John.txt https://localhost:19443/user

Note that in editing the UserInfo object in the user_John.txt file before doing the POST operation you could edit
any attribute except for the "userId" or "canonicalUserId" attributes. For an example UserInfo object see PUT
/user.

Note You cannot change the userType of the default system administrator account. This is not allowed.

12.13.12.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 User does not exist

400 Missing Required parameters : {userId, groupId, userType}

400 Invalid JSON object

400 Invalid User Name

12.13.13. POST /user/credentials

POST /user/credentials Post a user's supplied S3 credential
The request line syntax for this method is as follows.

POST /user/credentials?userId=xxx&groupId=xxx&accessKey=xxx&secretKey=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.13.0.1. Example Using cURL

The example below posts a supplied S3 access key and secret key for user "John" in the "QA" group.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/user/credentials?userId=John&groupId=QA&accessKey=21289&secretKey=o5jqJtq'

Note To allow the single quote-enclosed 'https:...' segment in the above example to be shown on one
line, the access key and secret key values are truncated.

913

Chapter 12. Admin API

12.13.13.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId, accessKey, secretKey}

400 User does not exist

403 Reached maximum number of credentials allowed

409 Access Key already exists

12.13.14. POST /user/credentials/status

POST /user/credentials/status Deactivate or reactivate a user's S3 credential
The request line syntax for this method is as follows.

POST /user/credentials/status?accessKey=xxx&isActive=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.14.0.1. Example Using cURL

The example below deactivates a user's S3 credential. Note that since each S3 access key is unique in the sys-
tem, you do not need to specify the user to whom the key is assigned.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/user/credentials/status?accessKey=21289bab1738ffdc792a&isActive=false'

12.13.14.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing required parameters : {accessKey}

400 Invalid Access Key

12.13.15. POST /user/password

POST /user/password Create or change a user's CMC password
The request line syntax for this method is as follows.

POST /user/password?userId=xxx&groupId=xxx&password=xxx

914

12.13. user

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

Use this method to create or update a user's CMC login password.

If you are updating an existing password for a user, use the "password" parameter to specify the new pass-
word, not the existing password.

There is no request payload.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

Note You can optionally configure HyperStore to require a higher minimum password length. You can
also optionally configure additional password restrictions such as a password expiration period, a
restriction against a user's new password being too similar to their previous password, a restriction on
password reuse, and a restriction against too-frequent password changes. In common.csv, see
"user_password_min_length" (page 527) and the subsequent settings.

12.13.15.0.1. Example Using cURL

The example below posts a CMC password for the user "John" in the "QA" group.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/user/password?userId=John&groupId=QA&password=P1a2s3s4!'

12.13.15.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

204 User does not exist

400 Missing Required parameters : {userId, groupId, password}

400 Exceeded max password length

400 Password strength is too weak.

12.13.16. POST /user/ratingPlanId

POST /user/ratingPlanId Assign a rating plan to a user
The request line syntax for this method is as follows.

915

Chapter 12. Admin API

POST /user/ratingPlanId?userId=xxx&groupId=xxx&ratingPlanId=xxx[®ion=xxx]

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.16.0.1. Example Using cURL

The example below assigns the "Gold" rating plan to user "John" in the "QA" group.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/user/ratingPlanId?userId=John&groupId=QA&ratingPlanId=Gold'

12.13.16.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId, ratingPlanId}

400 Region {region} is not valid

12.13.17. PUT /user

PUT /user Create a new user
The request line syntax for this method is as follows.

PUT /user

The required request payload is a JSON-formatted UserInfo object. See example below.

Note This method does not create a CMC login password for the new user. After creating a new user
with the PUT /user method, use the POST /user/passwordmethod to a create a CMC password for the
user.

12.13.17.0.1. Example Using cURL

The example below creates a new user "John" in the "QA" group. In this example the JSON-formatted UserInfo
object is specified in a text file named user_John.txt which is then referenced as the data input to the cURL
command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:public \

-d @user_John.txt https://localhost:19443/user | python -mjson.tool

The response payload is a JSON-formatted UserInfo object.

Immediately below is the input file for this example (the UserInfo object submitted in the request). Below that is
the response payload for this example (the UserInfo object returned in the response). The difference between
the two is that the UserInfo object submitted in the request does not include a "canonicalUserId" attribute,
whereas the UserInfo object returned in the response body does have this attribute. The system has generated

916

12.13. user

a canonical user ID for the new user. For description of a particular attribute, click on the attribute name; or for
the full list of attribute descriptions see "UserInfo Object" (page 922).

Request payload:

{

"active": "true",

"address1": "",

"address2": "",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

}

Response payload:

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

}

12.13.17.0.2. Response Format

The response payload is a JSON-formatted UserInfo object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required attributes : {userId, groupId, userType}

400 Invalid JSON object

400 Problem accessing /user

917

Chapter 12. Admin API

Status Code Description

400 User Id is not allowed : {userId}

400 Invalid User Name

409 Problem accessing /user

12.13.18. PUT /user/credentials

PUT /user/credentials Create a new S3 credential for a user
The request line syntax for this method is as follows.

PUT /user/credentials?userId=xxx&groupId=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "user Query Parameters" (page 919).

There is no request payload.

12.13.18.0.1. Example Using cURL

The example below creates a new S3 credential for user "John" in the "QA" group.

curl -X PUT -k -u sysadmin:public \

'https://localhost:19443/user/credentials?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted SecurityInfo object, which in this example is as follows. For descrip-
tion of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Secur-
ityInfo Object" (page 921).

{

"accessKey": "28d945de2a2623fc9483",

"active": true,

"createDate": 1502285593100,

"expireDate": null,

"secretKey": "j2OrPGHF69hp3YsZHRHOCWdAQDabppsBtD7kttr9"

}

12.13.18.0.2. Response Format

The response payload is a JSON-formatted SecurityInfo object (see example above). For response status code
this method will return one of the "Common Response Status Codes" (page 746) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 User does not exist

403 Reached maximum number of credentials allowed

918

12.13. user

12.13.19. user Query Parameters
userId

(Optional for methods that also support a canonicalUserId parameter and mandatory for methods that
do not; string) Unique identifier of the user. This is the user ID that was supplied by the user (or whoever
created the user) at the time of user creation -- not the canonicalUserId that is automatically generated
by the system when a new user is created.

groupId

(Optional for methods that also support a canonicalUserId parameter and mandatory for methods that
do not; string) Unique identifier of the group to which the user belongs.

Note The group ID for system admins is "0".

canonicalUserId

(Optional, string) System-generated canonical user ID of the user.

If you don't know the user's canonical ID you can retrieve it via the Admin API method GET /user/list.

accessKey

(Mandatory, string) With a POST, GET, or DELETE /user/credentials request: The S3 access key.

Note An S3 security credential is a key pair consisting of an "access key" (public key) and a
"secret key" (private key).

secretKey

(Mandatory, string) With a POST /user/credentials request: The S3 secret key.

isActive

(Optional, boolean) With a POST /user/credentials/status request: The status to apply to the credentials
— true for active or false for inactive. Defaults to false if this query parameter is not supplied in the
request.

userType

(Mandatory, string) With a GET /user/list request: Retrieve users of this type. Options are:

l admin— Administrators. If the group ID is "0" this would be system admins; for any other group
this would be group admins.

l user—Regular users who lack administrative privileges.

l all—Retrieve users of all types.

userStatus

(Mandatory, string) With a GET /user/list request: Retrieve users who have this status. Options are:

l active— Active users.

l inactive— Inactive users. These users have had their status set to inactive via the POST /user

919

Chapter 12. Admin API

method (with the UserInfo object attribute "active" set to false). These users' stored S3 objects
still exist, but their S3 access credentials have been deactivated.

l deleted—Deleted users. These users have been deleted from the S3 service via the DELETE
/user method. Their S3 access credentials have been deleted, and their S3 buckets and objects
have been deleted and are unrecoverable.

l deleting— These users are in the process of being deleted from the S3 service via the DELETE
/user method. The deletion process for these users has not yet completed.

l all—Retrieve active users and inactive users. This does not retrieve users who have status
"deleted" or "deleting". To retrieve deleted or deleting users, specify "deleted" or "deleting" for
the userStatus request parameter -- not "all".

Note Since the CMC does not support retrieving users with status "deleted" or "deleting",
the only way to retrieve a list of such users is through the Admin API.

prefix

(Optional, string) With a GET /user/list request: If specified, a user ID prefix to use for filtering. For
example, if you specify "prefix=arc" then only users whose user ID starts with "arc" would be retrieved.

Defaults to empty string (meaning that no prefix-based filtering is performed).

limit

(Optional, integer) With a GET /user/list request: For purposes of pagination, the maximum number of
users to return in one response. In the response the users are sorted alphanumerically and if more than
"limit" users meet the filtering criteria, then the actual number of users returned will be "limit plus 1" (for
example, 101 users if the limit is 100). The last, extra returned user — the "plus 1" — is an indicator that
there are more users than could be returned in the current response (given the specified "limit" value).
That last user’s ID can then be used as the "offset" value in a subsequent request that retrieves addi-
tional users.

Note If the offset user happens to be the last user in the entire set of matching users, the sub-
sequent query using the offset will return no users.

Defaults to 100.

offset

(Optional, string) With a GET /user/list request: The user ID with which to start the response list of users
for the current request, sorted alphanumerically. The "offset" parameter can be used for purposes of
pagination within a large result set that is being retrieved via multiple sequential requests. See the
description of "limit" above for more information.

If "offset" is not specified, the first user in the response list will be the alphanumerically first user from the
entire result set.

ratingPlanId

(Mandatory, string) With a POST /user/ratingPlanId request: Unique identifier of the rating plan to assign
to the user, for billing purposes.

region

920

12.13. user

(Optional, string) If your service deployment has multiple service regions, rating plan assignment is on a
per-region basis. With the POST /user/ratingPlanId method, use the "region" parameter to indicate the
service region in which to apply the specified rating plan. For example, if user-
Id=Cody&groupId=Engineering&ratingPlanId=Gold®ion=East, then the Gold rating plan will be
applied to user Cody's service activity in the East region.

password

(Mandatory, string) With a POST /user/password or GET /user/password/verify request: The user’s sup-
plied CMC password.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

Note You can optionally configure HyperStore to require a higher minimum password length.
You can also optionally configure additional password restrictions such as a password expir-
ation period, a restriction against a user's new password being too similar to their previous pass-
word, a restriction on password reuse, and a restriction against too-frequent password changes.
In common.csv, see "user_password_min_length" (page 527) and the subsequent settings.

12.13.20. user Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the User related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "SecurityInfo Object" (page 921)

l "UserInfo Object" (page 922)

12.13.20.1. SecurityInfo Object

The SecurityInfo object consists of the following attributes:

accessKey

(String) User’s access key (public key) for the HyperStore S3 service. Example:

"accessKey": "009c156c79e64e0e4928

active

(Boolean) Whether the credential is active, true or false. An inactive credential cannot be used to access
the HyperStore S3 service. Example:

"active": true

921

Chapter 12. Admin API

createDate

(String) Creation timestamp for the credential in UTC milliseconds. Example:

"createDate": 1502279336024

expireDate

(String) Credential expiration date. In the current version of HyperStore this attribute's value is always
null. Example:

"expireDate": null

secretKey

(String) User’s secret key (private key) for the HyperStore S3 service. Example:

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

12.13.20.2. UserInfo Object

The UserInfo object consists of the following attributes:

active

(Optional, string) Whether the user is active — "true" or "false".

l "true" indicates an active user.

l "false" indicates that the user is not an active user. Non-active users are users who are in one of
these statuses:

o Inactive — These users have had their status set to inactive via the POST /user method
(with UserInfo object attribute "active" set to false). These users' stored S3 objects still
exist, but their S3 access credentials have been deactivated and they cannot log into the
CMC.

o Deleted — These users have been deleted from the S3 service via the DELETE /user
method. Their S3 access credentials have been deleted, and their S3 buckets and
objects have been deleted and are unrecoverable. (These users cannot be retrieved
through the GET /user method — they can only be retrieved through the GET /user/list
method.)

o Deleting — These users are in the process of being deleted from the S3 service via the
DELETE /user method. The deletion process for these users has not yet completed.
(These users cannot be retrieved through the GET /user method — they can only be
retrieved through the GET /user/listmethod.)

If the "active" attribute is unspecified for a PUT /useroperation, it defaults to "true". If the "active" attribute
is unspecified for a POST /useroperation, the user will retain her existing status.

Example:

"active": "true"

Note The only way to retrieve a list of users who have been deleted or are in the process of
being deleted is to specify "deleted" or "deleting" for the userStatus request parameter with a
GET /user/list request. In the response body, the "active" attribute for such users will say "false".

922

12.13. user

address1

(Optional, string) User’s street address line 1. Example:

"address1": "123 Main St."

address2

(Optional, string) User’s street address line 2. Example:

"address2": ""

canonicalUserId

(Optional, string) Canonical user ID, globally unique within the HyperStore system. This is automatically
generated by the system when a new user is created.

l For users created prior to HyperStore 3.0 (before the canonical ID feature existed), the canon-
icalUserId is the user’s <groupId>|<userId> combination.

l For users created in HyperStore 3.0 and later, the canonicalUserId is a system-generated, glob-
ally unique printable string. The canonicalUserId is unique per user across the system and over
time, even in the case where a user with a specific <groupId>|<userId> combination is deleted
from the system and then a new user is subsequently added with the same <groupId>|<userId>
combination. The new user will be assigned a different canonicalUserId than the deleted user.
This allows past and present users to be uniquely identified for purposes such as usage report-
ing.

l Client must not supply a canonicalUserId in a PUT /userrequest and does not need to supply
one in a POST /userrequest.

Example:

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4"

city

(Optional, string) User’s city. Example:

"city": "Portsmouth"

country

(Optional, string) User’s country. Example:

"country": "US"

emailAddr

(Optional, string) User’s email address. Example:

"emailAddr": "me@mail.com"

fullName

(Optional, string) User’s full name. By default the maximum length is 64 characters. This maximum is
configurable by the setting common.csv: "cloudian_userid_length" (page 514).

Example:

"fullName": "John Thompson"

groupId

923

Chapter 12. Admin API

(Mandatory, string) Group ID of the group to which the user belongs.

Note For all SystemAdmin type users the groupId is "0".

Example:

"groupId": "QA"

Second example (for a system administrator):

"groupId": "0"

ldapEnabled

(Optional, boolean) Whether the CMC authenticates the user by checking an LDAP system, true or
false. Defaults to false. If the user is enabled for LDAP, when authenticating the user the CMC uses the
LDAP connection information configured for the user's group. For more information see "LDAP Integ-
ration" (page 131). If the user is not LDAP enabled, the CMC authenticates the user by requiring a pass-
word that the CMC maintains.

Example:

"ldapEnabled": false

phone

(Optional, string) User’s phone number. Example:

"phone": "890-123-4567"

state

(Optional, string) User’s state. Example:

"state": "NH"

userId

(Mandatory, string) User ID.

l Only letters, numbers, dashes, and underscores are allowed.

l By default the maximum length is 64 characters. This maximum is configurable by the setting
common.csv: "cloudian_userid_length" (page 514).

l The following IDs are reserved for system use and are not available to individual users: "anonym-
ous", "public", "null", "none", "admin", "0".

Example:

"userId": "John"

Note The character rules for the user IDs of system administrators are more strict:
* Maximum length = 26 characters (this is not configurable)
* Only lower case letters, numbers, and underscores are allowed
* Must start with a letter
* Cannot end with an underscore

userType

924

12.14. whitelist

(Mandatory, string) User type. One of {"User","GroupAdmin","SystemAdmin"}. Example:

"userType": "User"

Note For all SystemAdmin type users the corresponding groupId is "0".

website

(Optional, string) User’s website URL. Example:

"website": "www.me.com"

zip

(Optional, string) User’s postal zip code. Example:

"zip": "12345"

Note In the "address1", "address2", "zip", "email", "website", and "phone" fields, the Admin Service pro-
hibits the use of any of these characters:

` | ; & > <

Note The PUT /user method does not create a CMC login password for the new user. After creating a
new user with the PUT /user method, use the POST /user/password method to a create a
CMC password for the user.

12.14. whitelist
The Admin API methods built around the whitelist resource are for managing a billing "whitelist" of source IP
addresses or subnets that you want to allow to have free S3 traffic with the HyperStore storage service. For
background information on the whitelist feature, including how to enable the feature, see "Creating a "Whitel-
ist" for Free Traffic" (page 148). The whitelist feature is disabled by default.

Note If you are using load balancers in front of the HyperStore S3 Service, the whitelist feature will
only work if you use PROXY Protocol between the load balancers and the S3 Service. This protocol
allows the load balancers to pass the IP addresses of originating clients to the S3 Service along with
the S3 requests. For more information about enabling PROXY Protocol support on the S3 Service side,
see "s3_proxy_protocol_enabled" (page 530) in common.csv. For guidance on configuring the load
balancers consult with Cloudian Sales Engineering or Support.

Note that using the "X-Forwarded-For" HTTP header is not sufficient to support the whitelist feature.
You must use PROXY Protocol if you have load balancers in front of the S3 Service and want to use the
whitelist feature .

12.14.1. GET /whitelist

GET /whitelist Get whitelist content

925

Chapter 12. Admin API

The request line syntax for this method is as follows.

GET /whitelist?whitelistId=Default-WL

For parameter description click on the parameter name or see "whitelist Query Parameters" (page 928).

There is no request payload.

Note In the current version of HyperStore, only one whitelist is supported and its ID is "Default-WL".

12.14.1.0.1. Example Using cURL

The example below retrieves the current contents of the whitelist with ID "Default-WL".

curl -X GET -k -u sysadmin:public \

https://localhost:19443/whitelist?whitelistId=Default-WL | python -mjson.tool

The response payload is a JSON-formattedWhitelist object, which in this example is as follows. For description
of a particular attribute, click on the attribute name; or for the full list of attribute descriptions see "Whitelist
Object" (page 929).

{

"id": "Default-WL",

"list": [

"10.20.2.10",

"10.20.2.11",

"10.20.2.12"

],

"name": "Default Whitelist",

"ratingPlanId": "Whitelist-RP"

}

Note By default the "Default-WL" whitelist that comes with your HyperStore system is empty. The whitel-
ist in the example above has had some IP addresses added to it.

12.14.1.0.2. Response Format

The response payload is a JSON-formattedWhitelist object (see example above). There is no response pay-
load. For response status code this method will return one of the "Common Response Status Codes" (page
746) or one of these method-specific status codes:

Status Code Description

204 Whitelist does not exist

400 Missing required parameter : whitelistId

12.14.2. POST /whitelist

POST /whitelist Change whitelist content (by request body object)
The request line syntax for this method is as follows.

926

12.14. whitelist

POST /whitelist

The required request payload is a JSON-formattedWhitelist object. See example below.

Note For billing purposes, changes that you make to the composition of the whitelist (by adding or
deleting IP addresses or subnets) will take effect starting with the next hourly roll-up of HyperStore
usage data.

12.14.2.0.1. Example Using cURL

The example below uploads whitelist content as specified in the request body. In this example the JSON-
formattedWhitelist object is specified in a text file named default_whitelist.txt which is then referenced as the
data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:public \

-d @default_whitelist.txt https://localhost:19443/whitelist

The default_whitelist.txt file content in this example is as follows. For description of a particular attribute, click
on the attribute name; or for the full list of attribute descriptions see "Whitelist Object" (page 929).

{

"id": "Default-WL",

"list": ["10.20.2.10","10.20.2.11","10.20.2.12"],

"name": "Default Whitelist",

"ratingPlanId": "Whitelist-RP"

}

12.14.2.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Whitelist does not exist

400 Missing required attributes : {id, name, ratingPlanId}

400 Invalid JSON object

400 Invalid IP Address or IPv4 Subnet CIDR: <value>

12.14.3. POST /whitelist/list

POST /whitelist/list Change whitelist content (by query parameters)
The request line syntax for this method is as follows.

POST /whitelist/list?whitelistId=xxx&list=xxx

For description of a particular parameter, click on the parameter name; or for the full list of parameter descrip-
tions see "whitelist Query Parameters" (page 928).

There is no request payload.

927

Chapter 12. Admin API

Note For billing purposes, changes that you make to the composition of the whitelist (by adding or
deleting IP addresses or subnets) will take effect starting with the next hourly roll-up of HyperStore
usage data.

12.14.3.0.1. Example Using cURL

The example below replaces the existing whitelist contents with a new list of IP addresses.

curl -X POST -k -u sysadmin:public \

'https://localhost:19443/whitelist/list?whitelistId=Default-

WL&list=10.20.2.10,10.20.2.11,10.20.2.12'

12.14.3.0.2. Response Format

There is no response payload. For response status code this method will return one of the "Common
Response Status Codes" (page 746) or one of these method-specific status codes:

Status Code Description

400 Whitelist does not exist

400 Missing required attributes : {whitelistId, list}

400 Invalid IP Address or IPv4 Subnet CIDR: {value}

12.14.4. whitelist Query Parameters
whitelistId

(Mandatory, string) Unique identifier of the whitelist. In the current HyperStore release, only one whitelist
is supported and its ID is "Default-WL".

list

(Mandatory, string) With a POST /whitelist/list request: A comma-separated list of IP addresses or sub-
nets. This list will overwrite the existing whitelist contents, so be sure to specify your full desired list of
addresses or subnets (not just new additions). IP addresses can be IPv4 or IPv6 format. For subnets,
only IPv4 format is supported in the current HyperStore release. IP addresses are validated for IPv4 or
IPv6 syntax, and subnets are validated for CIDR syntax.

12.14.5. whitelist Objects
This section describes the JSON-formatted data objects that constitute the request or response payloads for
the Whitelist related Admin API methods.

Note For examples of these objects see the API method request and response examples.

l "Whitelist Object" (page 929)

928

12.14. whitelist

12.14.5.1. Whitelist Object

TheWhitelist object consists of the following attributes:

id

(Mandatory, string) Unique ID of the whitelist.

In the current HyperStore release only one whitelist is supported and its non-editable ID is "Default-WL".

Example:

"id": "Default-WL"

list

(Mandatory, list<string>) JSON array of source IP addresses and/or subnets.

To indicate an empty list, use an empty JSON array.

Example:

"list": ["10.20.2.10","10.20.2.11","10.20.2.12"]

Note IP addresses can be IPv4 or IPv6 format. For subnets, only IPv4 format is supported in the
current HyperStore release. IP addresses are validated for IPv4 or IPv6 syntax, and subnets are
validated for CIDR syntax.

name

(Mandatory, string) Display name of the whitelist. The default whitelist object has display name "Default
Whitelist". This is editable.

Example:

"name": "Default Whitelist"

ratingPlanId

(Mandatory, string) Unique ID of the rating plan assigned to the whitelist. The default whitelist object is
assigned rating plan "Whitelist-RP". This system-provided default whitelist rating plan makes all
inbound and outbound traffic free of charge. (By contrast, data storage continues to be priced according
to the user’s regular assigned rating plan.) You can edit the "ratingPlanId" to associate a different rating
plan with the default whitelist. You can also edit the "Whitelist-RP" rating plan, using the usual rating
plan APIs.

Example:

"ratingPlanId": "Whitelist-RP"

929

This page left intentionally blank

Chapter 13. S3 API

13.1. Introduction

13.1.1. HyperStore Support for the AWSS3 API
The Cloudian HyperStore system supports the great majority of the Amazon Web Services S3 REST API,
including advanced features.

This documentation provides the details of the HyperStore system’s compliance with the S3 REST API. The
organization of this documentation parallels that of the AWS S3 API Reference. Links are provided to specific
parts of the AWS S3 API Reference so you can easily view additional information about individual API oper-
ations.

This documentation takes the approach of specifying in detail the things that the HyperStore system does sup-
port from the AWS S3 REST API — from operations down to the level of particular request parameters, request
headers, request elements, response headers, and response elements. If it’s not listed in this HyperStore S3
API Support documentation, the HyperStore system does not currently support it.

This documentation also describes ways in which the HyperStore system extends the AWS S3 API, to support
additional functionality. Most of these extensions are in the form of additional request headers that add
enhanced functionality to standard AWS S3 operations on buckets. These extensions are described within the
sections that document HyperStore compliance with standard AWS S3 operations. The extensions are always
identified by a sub-heading that says HyperStore Extension to the S3 API. (For a summary of the extensions
see "HyperStore Extensions to the S3 API" (page 937).)

13.1.1.1. Cautions

13.1.1.1.1. Organization of Data Within a Bucket

Some atypical ways of organizing data within a bucket can result in sub-optimal performance for certain S3
operations on that bucket. These include having no folders -- with all objects being stored in the root level of
the bucket -- and having massive numbers of folders with very few objects in each folder. For detail see
"Object Metadata Structure in Cassandra" (page 167).

13.1.1.1.2. Mass Deletes

Do not attempt to delete more than 100,000 objects from a single bucket in less than an hour (using the S3 API
method DELETE Multiple Objects). Doing so will result in TombstoneOverwhelmingException errors in the
Cassandra logs and an inability to successfully execute an S3 GET Bucket (List Objects) Version 1 or GET
Bucket (List Objects) Version 2 operation on the bucket. If the system is in this error condition, you can trigger
a tombstone purge as described in "Dealing with Excessive Tombstone Build-Up" (page 476).

13.1.1.2. Using TLS/SSL

By default the HyperStore S3 Service does not accept HTTPS (HTTP over TLS/SSL) connections. It listens only
for regular HTTP connections, on port 80. However you can set up HTTPS for the S3 Service as described in
"HTTPS Support (TLS/SSL)" (page 114) . If you do so then the S3 Service will listen for HTTPS connections on
port 443, as well as listening for regular HTTP connections on port 80.

931

Chapter 13. S3 API

13.1.2. S3 Client Application Options
Broadly you have three options for using HyperStore's implementation of the AWS S3 API to create storage
buckets in HyperStore, upload objects, retrieve objects, and so on:

l "Using the CMC as Your S3 Client" (page 932)

l "Using Third Party S3 Applications" (page 933)

l "Developing Custom S3 Applications for HyperStore" (page 933)

IMPORTANT ! Some atypical ways of organizing data within a bucket can result in sub-optimal per-
formance for certain S3 operations on that bucket. For detail see "Object Metadata Structure in Cas-
sandra" (page 167).

Note When the CMC or other S3 client applications delete S3 objects, the HyperStore system deletes
the object metadata immediately but does not delete the actual objects immediately. Instead the
objects are batched for deletion by a cron job. When S3 clients overwrite S3 objects, the HyperStore
system writes the new version of the object immediately, and updates the object metadata immediately,
but does not delete the outdated version of the object immediately. Instead the outdated object ver-
sions are batched for deletion by the same cron job. (Note that in a bucket that has versioning
enabled, the old object versions would be retained rather than deleted.)

13.1.2.1. Using the CMC as Your S3 Client

The CMC’s Buckets & Objects section serves as a graphical S3 client for interacting with the HyperStore
object store. With the CMC, users can do the following:

l "Add a Bucket" (page 218)

l Set bucket properties

o "Set Custom S3 Permissions for a Bucket" (page 222)

o "Set "Canned" S3 Permissions for a Bucket" (page 224)

o "View a Bucket's Storage Policy Information" (page 226)

o "Configure a Bucket Lifecycle Policy for Object Auto-Tiering or Expiration" (page 227)

o "Configure a Bucket as a Static Website" (page 235)

o "Configure Cross-Region Replication for a Bucket" (page 237)

o "Set Versioning for a Bucket" (page 239)

o "Set Logging for a Bucket" (page 240)

l "Delete a Bucket" (page 244)

l "Create or Delete a "Folder"" (page 245)

l "Upload an Object" (page 246)

l Set file properties

o "Set Custom S3 Permissions on an Object" (page 249)

o "Set "Canned" S3 Permissions on an Object" (page 252)

932

13.1. Introduction

o "Set Public URL Permissions on an Object" (page 254)

l "List or Search for Objects" (page 257)

l "Download an Object" (page 258)

l "Delete an Object" (page 261)

l "Restore an Auto-Tiered Object" (page 258)

Note The CMC system administrator role does not and cannot have its own S3 storage user account.
However you can create a regular user account for yourself, and use that to access the data store.
You can also manage other regular users' data on their behalf, if that capability is enabled in your sys-
tem by configuration.

13.1.2.2. Using Third Party S3 Applications

Because of HyperStore’s comprehensive compliance with the AWS S3 API, you can use most off-the-shelf third
party S3 client applications with HyperStore. For feedback on particular S3 applications that you are con-
sidering using with HyperStore, consult with Cloudian Sales Engineering or Cloudian Support.

To check to see what is your HyperStore S3 Service endpoint -- the URI to which you will submit S3 requests
with your third party application -- go to the CMC's Cluster Information page.

13.1.2.3. Developing Custom S3 Applications for HyperStore

In nearly every way, developing a client application for the Cloudian HyperStore storage service is the same as
developing a client application for AWS S3. Consequently, when building S3 applications for the HyperStore
service you can leverage the wealth of resources available to AWS S3 developers.

Good online resources for S3 application developers include:

l Amazon Simple Storage Service Developer Guide

l Amazon S3 resources

13.1.2.3.1. What’s Distinct About Developing for the HyperStore S3 Service

In practice, the main differences between developing for the HyperStore S3 service and developing for
Amazon S3 are:

l HyperStore S3 client applications must use the HyperStore S3 service endpoint rather than the Amazon
S3 service endpoint. To check to see what is your HyperStore S3 Service endpoint -- the URI to which
you will submit S3 requests with your custom application -- go to the CMC's Cluster Information page.

l As detailed in the "Supported S3 Operations" section of this documentation, the HyperStore S3 service
supports the great majority of but not the entire Amazon S3 API.

l Also as detailed in the "Supported S3 Operations" section of this documentation, the HyperStore S3 ser-
vice supports a small number of extensions to the Amazon S3 API. (For an overview of the extensions
see "HyperStore Extensions to the S3 API" (page 937)).

13.1.3. Authenticating Requests (AWSSignature Version 4)
HyperStore supports AWS Signature Version 4 for authenticating inbound API requests. The HyperStore imple-
mentation of this feature is compliant with Amazon’s specification of the feature. For example, you can express

933

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://aws.amazon.com/s3/developer-resources/

Chapter 13. S3 API

authentication information in the HTTP Authorization header or in query string parameters; and you can com-
pute a checksum of the entire payload prior to transmission, or for large uploads, you can use chunked upload.

For more information on this Amazon S3 feature, refer to the "Authenticating Requests (AWS Signature Ver-
sion 4)" section of the Amazon S3 REST API.

HyperStore continues to support AWS Signature Version 2 as well.

Note For HyperStore, the region name validation aspect of Signature Version 4 is disabled by default.
You can enable it with the "cloudian.s3.authorizationV4.singleregioncheck" (page 559) and/or
"cloudian.s3.authorizationV4.multiregioncheck" (page 560) settings in mts.properties.erb. Even if
you do enable region name validation, the HyperStore S3 Service employs a fall-back device where if
the region name specified in the request’s authorization header does not match against the local
region name, the system checks whether the specified region name matches against the S3 service
domain. If both checks fail then the request is rejected. This is to accommodate legacy HyperStore sys-
tems where the S3 service endpoint may not necessarily include the region name.

13.1.4. Access Control List (ACL) Support
For the AWS S3 "Access Control List (ACL)" functionality, the HyperStore system supports the items listed
below. If a grantee group, permission type, or canned ACL type from the AWS S3 documentation is not listed
below, the HyperStore system does not support it.

For ACL usage information and for descriptions of ACL items, see Access Control List (ACL) Overview in the
AWS S3 documentation.

13.1.4.1. AWS S3 Predefined Groups

l Authenticated users group

l All users group

l Log delivery group

13.1.4.2. Permission Types

l READ

l WRITE

l READ_ACP

l WRITE_ACP

l FULL_CONTROL

13.1.4.3. Canned ACL

l private

l public-read

l public-read-write

l authenticated-read

l bucket-owner-read

934

http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

13.1. Introduction

l bucket-owner-full-control

l log-delivery-write

HyperStore Extension to the S3 API

The HyperStore system supports these additional canned ACLs:

Canned ACL Applies to Permissions added to ACL

group-read Bucket and object Owner gets FULL_CONTROL. All other members of the
owner’s HyperStore service user group get READ access.

group-read-write Bucket and object Owner gets FULL_CONTROL. All other members of the
owner’s HyperStore service user group get READ and WRITE
access.

Note To grant access to groups other than the requester’s own group, you cannot use canned ACLs.
Instead, when using standard Amazon S3 methods for assigning privileges to a grantee (via request
headers or request body), specify "<groupID>|" as the grantee. The "<groupID>|" format (with vertical
bar) indicates that the grantee is a group — for example, "Group5|".

Note When access privileges have through separate requests been granted to a group and to a spe-
cific member of the group, the user gets the broader of the privilege grants. For example, if Group5 is
granted read-write privileges and a specific user within Group5 is separately granted read privileges,
the user gets read-write privileges.

13.1.5. S3 CommonRequest and Response Headers
From the "Common Request Headers" section of the AWS S3 REST API specification, HyperStore supports
the headers listed below. If a header from that specification section is not listed below, HyperStore does not
support it.

l Authorization

l Content-Length

l Content-Type

l Content-MD5

l Date

l Expect

l Host

l x-amz-content-sha256

l x-amz-date

From the "Common Response Headers" section of the AWS S3 REST API specification, HyperStore sup-
ports the headers listed below. If a header from that specification section is not listed below, HyperStore does
not support it.

l Content-Length

l Content-Type

l Connection

935

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html

Chapter 13. S3 API

l Date

l ETag

l Server

l x-amz-delete-marker

l x-amz-request-id

l x-amz-version-id

13.1.6. S3 Error Responses
From the "Error Responses" section of the AWS S3 API specification, HyperStore supports the error codes lis-
ted below, in the same format as indicated in the specification. If an error code from that specification section is
not listed below, HyperStore does not support it.

l AccessDenied

l AccountProblem

l AmbiguousGrantByEmailAddress

l BadDigest

l BucketAlreadyExists

l BucketAlreadyOwnedByYou

l BucketNotEmpty

l CrossLocationLoggingProhibited

l EntityTooLarge

l EntityTooSmall

l IllegalVersioningConfigurationException

l IncorrectNumberOfFilesInPostRequest

l InternalError

l InvalidAccessKeyId

l InvalidArgument

l InvalidBucketName

l InvalidBucketState

l InvalidDigest

l InvalidEncryptionAlgorithmError

l InvalidLocationConstraint

l InvalidObjectState

l InvalidPart

l InvalidPartOrder

l InvalidPolicyDocument

l InvalidRange

l InvalidRequest

l InvalidSecurity

l InvalidTargetBucketForLogging

936

http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

13.1. Introduction

l InvalidURI

l KeyTooLong

l MalformedACLError

l MalformedPOSTRequest

l MalformedXML

l MaxMessageLengthExceeded

l MaxPostPreDataLengthExceededError

l MetadataTooLarge

l MethodNotAllowed

l MissingContentLength

l MissingSecurityHeader

l NoSuchBucket

l NoSuchBucketPolicy

l NoSuchKey

l NoSuchLifecycleConfiguration

l NoSuchReplicationConfiguration

l NoSuchUpload

l NoSuchVersion

l NotImplemented

l PermanentRedirect

l PreconditionFailed

l Redirect

l RestoreAlreadyInProgress

l RequestIsNotMultiPartContent

l RequestTimeout

l RequestTimeTooSkewed

l SignatureDoesNotMatch

l ServiceUnavailable

l SlowDown

l TemporaryRedirect

l TooManyBuckets

l UnexpectedContent

l UnresolvableGrantByEmailAddress

l UserKeyMustBeSpecified

13.1.7. HyperStore Extensions to the S3 API
The HyperStore S3 Service supports the following extensions to the AWS S3 REST API. In each case the exten-
sions take the form of additional supported headers for standard AWS S3 API methods.

937

Chapter 13. S3 API

Extension Purpose Detail

x-gmt-policyid as optional request header for "PUT
Bucket" and response header for "GET Bucket
Object (List Objects) version 1", "GET Bucket
Object (List Objects) version 2", and "HEAD
Bucket"

Specify the Hyper-
Store storage policy
to use for a new
bucket

l "CreateBucket" (page
941)

l "ListObjects" (page 960)

l "ListObjectsV2" (page
962)

l "HeadBucket" (page
956)

l "Storage Policies
Feature Overview"
(page 76)

x-gmt-tieringinfo and x-gmt-compare and x-gmt-
post-tier-copy as optional request headers for "PUT
Bucket lifecycle" and response headers for "GET
Bucket lifecycle"

Set up auto-tiering
for a bucket

l "PutBucketLifecycle"
(page 969)

l "GetBucketLifecycle"
(page 949)

l "Auto-Tiering Feature
Overview" (page 176)

x-gmt-error-code and x-gmt-message as supported
response headers for "GET Object" and "Head
Object"

Provide additional
information about
HTTP 4xx errors

l "GetObject" (page 952)

l "HeadObject" (page
957)

13.2. Supported S3 Operations

13.2.1. AbortMultipartUpload
This operation aborts a multipart upload.

Along with the common headers, HyperStore supports the operation-specific parameters listed below.

For operation details and examples see the AWS documentation: AbortMultipartUpload

Former operation name: Abort Multipart Upload

13.2.1.1. Query Parameters

l uploadId

13.2.2. CompleteMultipartUpload
Completes a multipart upload by assembling previously uploaded parts.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: CompleteMultipartUpload

Former operation name: Complete Multipart Upload

938

https://docs.aws.amazon.com/AmazonS3/latest/API/API_AbortMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CompleteMultipartUpload.html

13.2. Supported S3 Operations

13.2.2.1. Request Elements

l CompleteMultipartUpload

l Part

l PartNumber

l ETag

13.2.2.2. Response Headers

l x-amz-expiration

l x-amz-server-side-encryption

l x-amz-version-id

13.2.2.3. Response Elements

l CompleteMultipartUploadResult

l Location

l Bucket

l Key

l ETag

13.2.3. CopyObject
Creates a copy of an object that is already stored in HyperStore.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: CopyObject

Former operation name: PUT Object - Copy

13.2.3.1. Request Headers

l x-amz-copy-source

l x-amz-metadata-directive

l x-amz-copy-source-if-match

l x-amz-copy-source-if-none-match

l x-amz-copy-source-if-unmodified-since

l x-amz-copy-source-if-modified-since

l x-amz-storage-class

Note HyperStore ignores the value of the x-amz-storage-class header and treats all requests as
being for storage class STANDARD.

939

https://docs.aws.amazon.com/AmazonS3/latest/API/API_CopyObject.html

Chapter 13. S3 API

l x-amz-tagging-directive

l x-amz-tagging

l x-amz-website-redirect-location

l x-amz-object-lock-mode

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

l x-amz-server-side-encryption

Note For information about HyperStore's support of the x-amz-server-side-encryption and x-
amz-server-side-encryption-customer-* request headers, and set-up steps that you must per-
form in order to use HyperStore's server-side encryption features, see "Server-Side Encryp-
tion" (page 105).

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

l x-amz-copy-source-server-side-encryption-customer-algorithm

l x-amz-copy-source-server-side-encryption-customer-key

l x-amz-copy-source-server-side-encryption-customer-key-MD5

l x-amz-acl

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

13.2.3.2. Response Headers

l x-amz-expiration

l x-amz-copy-source-version-id

l x-amz-server-side-encryption

l x-amz-version-id

13.2.3.3. Response Elements

l CopyObjectResult

l ETag

l LastModified

940

13.2. Supported S3 Operations

13.2.4. CreateBucket
Creates a new bucket.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: CreateBucket

Former operation name: PUT Bucket

IMPORTANT ! Some atypical ways of organizing data within a bucket can result in sub-optimal per-
formance for certain S3 operations on that bucket. For detail see "Object Metadata Structure in Cas-
sandra" (page 167).

Note By default each user is allowed a maximum of 100 buckets. You can change this setting in the
CMC's Configuration Settings page.

13.2.4.1. Request Headers

l x-amz-acl

l x-amz-object-lock-enabled

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

HyperStore Extension to the S3 API

The HyperStore system supports the following Request Header as an extension to the "PUT Bucket" operation:

Name Description Required

x-gmt-policyid This header specifies the unique ID of the storage policy to assign to the
newly created bucket. The storage policy determines how data in the
bucket will be distributed and protected through either replication or eras-
ure coding. System administrators can create multiple storage policies
through the CMC and the system automatically assigns each a unique
policy ID that becomes part of the policy definition. (To obtain a list of stor-
age policies for your system and their policy IDs, you can use the Admin
API’s GET /bppolicy/listpolicy method).

With the "x-gmt-policyid" request header for "PUT Bucket", you specify the
ID of the desired storage policy when you create a new bucket. Note how-

No

941

https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html

Chapter 13. S3 API

Name Description Required

ever that some policies may not be available to all user groups — a policy’s
availability is specified by system administrators at the time of policy cre-
ation, and this information becomes part of the policy definition. When you
specify an "x-gmt-policyid" value with a "PUT Bucket" request, the policy ID
must be for a policy that is available to the group to which the bucket owner
belongs.

Also the policy ID must be for a storage policy from the service region that is
specified in the "PUT Bucket" request’s LocationConstraint element.

If the "PUT Bucket" request does not include the "x-gmt-policyid" request
header, then the system will automatically assign the system default stor-
age policy to the bucket during bucket creation.

Note After a bucket is created, it cannot be assigned a different stor-
age policy. The storage policy assigned to the bucket at bucket cre-
ation time will continue to be bucket’s storage policy for the life of
the bucket.

Note A 403 error response is returned if you specify a policy ID that
does not exist, has been disabled, is not available to the region in
which the bucket is being created, or is not available to the group to
which the bucket owner belongs. A 403 is also returned if you do
not specify an "x-gmt-policyid" header and the system does not yet
have an established default storage policy.

Example header:

x-gmt-policyid: 1bc90238f9f11cb32f5e4e901675d50b

For more information on storage policies, see "Storage Policies Feature
Overview" (page 76).

13.2.4.2. Request Elements

l CreateBucketConfiguration

l LocationConstraint

Note The HyperStore system enforces the same bucket naming restrictions as does Amazon S3.
Also, if you use an underscore in a bucket name you will not be able to enable auto-tiering for the
bucket (for transitioning objects to Amazon or other remote destinations on a configurable schedule).
It's best not to use underscores when naming new buckets, in case you may want to enable auto-tiering
on the bucket immediately or in the future.

13.2.5. CreateMultipartUpload
This operation initiates a multipart upload and returns an upload ID.

942

http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

13.2. Supported S3 Operations

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation: CreateMultipartUpload

Former operation name: Initiate Multipart Upload

13.2.5.1. Request Headers

l Cache-Control

l Content-Disposition

l Content-Encoding

l Content-Type

l Expires

l x-amz-meta-

l x-amz-storage-class

Note HyperStore ignores the value of the x-amz-storage-class header and treats all requests as
being for storage class STANDARD.

l x-amz-website-redirect-location

l x-amz-object-lock-mode

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

l x-amz-acl

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

l x-amz-server-side-encryption

Note For information about HyperStore's support of the x-amz-server-side-encryption and x-
amz-server-side-encryption-customer-* request headers, and set-up steps that you must per-
form in order to use HyperStore's server-side encryption features, see "Server-Side Encryp-
tion" (page 105).

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

943

https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateMultipartUpload.html

Chapter 13. S3 API

13.2.5.2. Response Headers

l x-amz-abort-date

l x-amz-abort-rule-id

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key-MD5

13.2.5.3. Response Elements

l InitiateMultipartUploadResult

l Bucket

l Key

l UploadId

13.2.6. DeleteBucket
Deletes the bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucket

Former operation name: DELETE Bucket

13.2.7. DeleteBucketCors
Deletes the cors configuration information set for the bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketCors

Former operation name: DELETE Bucket cors

13.2.8. DeleteBucketEncryption
This implementation of the DELETE operation removes default encryption from the bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketEncryption

Former operation name: DELETE Bucket encryption

13.2.9. DeleteBucketLifecycle
Deletes the lifecycle configuration from the specified bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketLifecycle

Former operation name: DELETE Bucket lifecycle

944

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketCors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketLifecycle.html

13.2. Supported S3 Operations

13.2.10. DeleteBucketPolicy
This implementation of the DELETE operation uses the policy subresource to delete the policy of a specified
bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketPolicy

Former operation name: DELETE Bucket policy

13.2.11. DeleteBucketReplication
Deletes the replication configuration from the bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketReplication

Former operation name: DELETE Bucket replication

13.2.12. DeleteBucketTagging
Deletes the tags from the bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketTagging

Former operation name: DELETE Bucket tagging

13.2.13. DeleteBucketWebsite
This operation removes the website configuration for a bucket.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteBucketWebsite

Former operation name: DELETE Bucket website

13.2.14. DeleteObject
Removes the null version (if there is one) of an object and inserts a delete marker, which becomes the latest
version of the object.

Along with the common headers, HyperStore supports the operation-specific headers listed below.

For operation details and examples see the AWS documentation: DeleteObject

Former operation name: DELETE Object

Note Successful completion of a DeleteObject request results in the system marking the object as hav-
ing been deleted. However the actual deletion of object data from disk will not occur until the next auto-
matic running of the object deletion batch processing job. By default this batch processing of object

945

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketPolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketReplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketTagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucketWebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObject.html

Chapter 13. S3 API

data deletes runs hourly on each node. The frequency with which the batch processing job runs is con-
figurable by the "cloudian.delete.queue.poll.interval" (page 566) property in mts.properties.erb.

IMPORTANT ! Do not attempt to delete more than 100,000 objects from a single bucket in less than an
hour. Doing so will result in TombstoneOverwhelmingException errors in the Cassandra logs and an
inability to successfully execute a "ListObjects" (page 960) operation on the bucket. If the system is in
this error condition, you can trigger a tombstone purge as described in "Dealing with Excessive Tomb-
stone Build-Up" (page 476).

13.2.14.1. Request Headers

l x-amz-bypass-governance-retention

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

13.2.14.2. Response Headers

l x-amz-delete-marker

l x-amz-version-id

13.2.15. DeleteObjects
This operation enables you to delete multiple objects from a bucket using a single HTTP request.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: DeleteObjects

Former operation name: Delete Multiple Objects

Note The HyperStore S3 Service allows a maximum of 1000 object deletes per DeleteObjects request.

Note Successful completion of a DeleteObjects request results in the system marking the objects as
having been deleted. However the actual deletion of object data from disk will not occur until the next
automatic running of the object deletion batch processing job. By default this batch processing of object
data deletes runs hourly on each node. The frequency with which the batch processing job runs is con-
figurable by the "cloudian.delete.queue.poll.interval" (page 566) property in mts.properties.erb.

IMPORTANT ! Do not attempt to delete more than 100,000 objects from a single bucket in less than an
hour. Doing so will result in TombstoneOverwhelmingException errors in the Cassandra logs and an
inability to successfully execute an S3 "ListObjects" (page 960) or "ListObjectsV2" (page 962)

946

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html

13.2. Supported S3 Operations

operation on the bucket. If the system is in this error condition, you can trigger a tombstone purge as
described in "Dealing with Excessive Tombstone Build-Up" (page 476).

13.2.15.1. Request Headers

l Content-MD5

l Content-Length

l x-amz-bypass-governance-retention

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

13.2.15.2. Request Elements

l Delete

l Quiet

l Object

l Key

l VersionId

13.2.15.3. Response Elements

l DeleteResult

l Deleted

l Key

l VersionId

l DeleteMarker

l DeleteMarkerVersionId

l Error

l Key

l VersionId

l Code

l Message

13.2.16. DeleteObjectTagging
Removes the entire tag set from the specified object.

For this operation HyperStore supports the S3 common headers.

For operation details and examples see the AWS documentation: DeleteObjectTagging

Former operation name: DELETE Object tagging

947

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjectTagging.html

Chapter 13. S3 API

13.2.17. GetBucketAcl
This implementation of the GET operation uses the acl subresource to return the access control list (ACL) of a
bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketAcl

Former operation name: GET Bucket acl

13.2.17.1. Response Elements

l AccessControlList

l AccessControlPolicy

l DisplayName

l Grant

l Grantee

l ID

l Owner

l Permission

13.2.18. GetBucketCors
Returns the cors configuration information set for the bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketCors

Former operation name: GET Bucket cors

13.2.18.1. Response Elements

l CORSConfiguration

l CORSRule

l AllowedHeader

l AllowedMethod

l AllowedOrigin

l ExposeHeader

l ID

l MaxAgeSeconds

13.2.19. GetBucketEncryption
Returns the default encryption configuration for the bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketEncryption

948

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketAcl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketCors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketEncryption.html

13.2. Supported S3 Operations

Former operation name: GET Bucket encryption

13.2.19.1. Response Elements

l ApplyServerSideEncryptionByDefault

l Rule

l ServerSideEncryptionConfiguration

l SSEAlgorithm

13.2.20. GetBucketLifecycle
Returns the lifecycle configuration information set on the bucket.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation:GetBucketLifecycle

Former operation name: GET Bucket lifecycle

13.2.20.1. Response Headers

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Headers as extensions to the "GET Bucket lifecycle"
operation:

Name Description Required

x-gmt-tieringinfo See "PutBucketLifecycle" (page 969). No

x-gmt-compare See "PutBucketLifecycle" (page 969). No

x-gmt-post-tier-copy See "PutBucketLifecycle" (page 969). No

13.2.20.2. Response Elements

l GetBucketLifecycleOutput

l Rule

13.2.21. GetBucketLocation
Returns the Region the bucket resides in.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketLocation

Former operation name: GET Bucket location

13.2.21.1. Response Elements

l LocationConstraint

949

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketLifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketLocation.html

Chapter 13. S3 API

13.2.21.1.1. NOTE: GetBucketLocation Response for Buckets in the Default Service
Region

The GetBucketLocation operation behaves as follows:

l If the bucket specified in the GetBucketLocation request resides in a non-default service region, the
response indicates the name of the service region.

l If the bucket specified in the GetBucketLocation request resides in the default service region, the
response returns a null/empty value.

HyperStore's behavior of returning a null/empty value if the bucket is in the default region is the same as
Amazon Web Services' implementation of the GetBucketLocation operation. Some S3 client applications --
such as Veeam -- are unable to handle the return of a null/empty region value, and may display an error if the
actual default region name is set within the client application. The work-around is to not set the region in the cli-
ent application, or else set it to the AWS default region name: us-east-1.

13.2.22. GetBucketLogging
Returns the logging status of a bucket and the permissions users have to view and modify that status.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketLogging

Former operation name: GET Bucket logging

13.2.22.1. Response Elements

l BucketLoggingStatus

l Grant

l Grantee

l LoggingEnabled

l Permission

l TargetBucket

l TargetGrants

l TargetPrefix

13.2.23. GetBucketNotificationConfiguration
Returns the notification configuration of a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketNotificationConfiguration

Former operation name: GET Bucket notification

13.2.23.1. Response Elements

l NotificationConfiguration

l QueueConfiguration

l TopicConfiguration

950

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketLogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketNotificationConfiguration.html

13.2. Supported S3 Operations

13.2.24. GetBucketPolicy
Returns the policy of a specified bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketPolicy

Former operation name: GET Bucket policy

13.2.24.1. Response Elements

The response contains the (JSON) policy of the specified bucket.

13.2.25. GetBucketReplication
Returns the replication configuration of a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketReplication

Former operation name: GET Bucket replication

13.2.25.1. Response Elements

l ReplicationConfiguration

l Role

l Rule

13.2.26. GetBucketTagging
Returns the tag set associated with the bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketTagging

Former operation name: GET Bucket tagging

Note The HyperStore Admin API supports a method for retrieving all the bucket tags for all users in a
specified group. Because it is implemented through the Admin API, that method does not require the
users' S3 access credentials. For more information see GET /bucketops/gettags.

13.2.26.1. Response Elements

l Tagging

l TagSet

l Tag

l Key

l Value

951

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketPolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketReplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketTagging.html

Chapter 13. S3 API

13.2.27. GetBucketVersioning
Returns the versioning state of a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketVersioning

Former operation name: GET Bucket versioning

13.2.27.1. Response Elements

l Status

l VersioningConfiguration

13.2.28. GetBucketWebsite
Returns the website configuration for a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetBucketWebsite

Former operation name: GET Bucket website

13.2.28.1. Response Elements

l ErrorDocument

l IndexDocument

l WebsiteConfiguration

13.2.29. GetObject
Retrieves objects from the S3 storage system.

Along with the common headers, HyperStore supports the operation-specific parameters, headers, and ele-
ments listed below.

For operation details and examples see the AWS documentation:GetObject

Former operation name: GET Object

13.2.29.1. Query Parameters

l partNumber

l versionId

l response-content-type

l response-content-language

l response-expires

l response-cache-control

952

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketVersioning.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketWebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

13.2. Supported S3 Operations

l response-content-disposition

l response-content-encoding

13.2.29.2. Request Headers

l Range

l If-Modified-Since

l If-Unmodified-Since

l If-Match

l If-None-Match

l x-amz-server-side-encryption-customer-algorithm

Note For information about HyperStore's support of the x-amz-server-side-encryption-customer-
* request headers, and set-up steps that you must perform in order to use HyperStore's server-
side encryption features, see "Server-Side Encryption" (page 105).

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

13.2.29.3. Response Headers

l x-amz-delete-marker

l x-amz-expiration

l x-amz-meta-*

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key-MD5

l x-amz-restore

l x-amz-tagging-count

l x-amz-version-id

l x-amz-website-redirect-location

l x-amz-object-lock-mode

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Headers as extensions to the "GET Object" oper-
ation. These headers are returned only in the event of an HTTP 4xx response. They are not returned with
HTTP 2xx, 3xx, or 5xx responses.

953

Chapter 13. S3 API

Name Description

x-gmt-error-code In the event of an HTTP 4xx response, these two response headers provide
additional information about the nature of the error. The x-gmt-error-code
header values will be from among the list in "S3 Error Responses" (page
936).

x-gmt-message

13.2.30. GetObjectAcl
Returns the access control list (ACL) of an object.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation:GetObjectAcl

Former operation name: GET Object acl

13.2.30.1. Response Elements

l AccessControlList

l AccessControlPolicy

l DisplayName

l Grant

l Grantee

l ID

l Owner

l Permission

13.2.31. GetObjectLegalHold
Gets an object's current Legal Hold status.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation:GetObjectLegalHold

Former operation name: GET Object legal hold

13.2.31.1. Query Parameters

l versionId

13.2.31.2. Response Elements

l LegalHold

l Status

954

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectAcl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectLegalHold.html

13.2. Supported S3 Operations

13.2.32. GetObjectLockConfiguration
Gets the Object Lock configuration for a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetObjectLockConfiguration

Former operation name: GET Bucket object lock configuration

13.2.32.1. Response Elements

l ObjectLockConfiguration

l ObjectLockEnabled

l Rule

l DefaultRetention

l Mode

l Days

l Years

13.2.33. GetObjectRetention
Retrieves an object's retention settings.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation:GetObjectRetention

Former operation name: GET Object retention

13.2.33.1. Query Parameters

l versionId

13.2.33.2. Response Elements

l Retention

l Mode

l RetainUntilDate

13.2.34. GetObjectTagging
Returns the tag-set of an object.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation:GetObjectTagging

Former operation name: GET Object tagging

955

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectLockConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectRetention.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectTagging.html

Chapter 13. S3 API

13.2.34.1. Response Elements

l Tagging

l TagSet

l Tag

l Key

l Value

13.2.35. GetObjectTorrent
Return torrent files from a bucket.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation:GetObjectTorrent

Former operation name: GET Object torrent

13.2.35.1. Implementation Notes

l HyperStore does not provide a BitTorrent "tracker". You must either provide your own tracker or use one
of the many publicly available trackers. Youmust edit the "cloudian.s3.torrent.tracker" (page 577)
property in mts.properties.erb to specify the URL of the tracker that you are using.

l HyperStore implements BitTorrent HTTP seeding for in accordance with the BEP19 specification
(http://www.bittorrent.org/beps/bep_0019.html). Therefore torrent files returned by HyperStore in
response to GET Object torrent requests will include a "url-list" key and the value of that key will be the
URL of the object in HyperStore.

l HyperStore objects that have been auto-tiered to a destination S3 system cannot be retrieved via BitTor-
rent, unless the objects are first restored to local HyperStore storage (via the S3 "RestoreObject"
(page 988) method). Restored objects can be retrieved from HyperStore via BitTorrent.

l Like with Amazon S3, with HyperStore only publicly readable objects are eligible for BitTorrent retrieval.
And like with Amazon S3, the following types of objects are not retrievable via BitTorrent:

o Objects larger than 5GB

o Non-current versions of versioned objects

o Objects encrypted via SSE-C (SSE with Customer-managed key; by contrast, BitTorrent retrieval
is supported for objects encrypted with regular SSE)

13.2.36. HeadBucket
This operation is useful to determine if a bucket exists and you have permission to access it.

Along with the common headers, HyperStore supports the operation-specific headers listed below.

For operation details and examples see the AWS documentation: HeadBucket

Former operation name: HEAD Bucket

956

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectTorrent.html
http://www.bittorrent.org/beps/bep_0019.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html

13.2. Supported S3 Operations

13.2.36.1. Response Headers

l x-amz-bucket-region

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Header as an extension to the "HEAD Bucket" oper-
ation:

Parameter Description

x-gmt-policyid
This header specifies the unique ID of the storage policy assigned to the
bucket. For more information see "CreateBucket" (page 941).

13.2.37. HeadObject
The HEAD operation retrieves metadata from an object without returning the object itself.

Along with the common headers, HyperStore supports the operation-specific parameters and headers listed
below.

For operation details and examples see the AWS documentation: HeadObject

Former operation name: HEAD Object

13.2.37.1. Query Parameters

l partNumber

l versionId

13.2.37.2. Request Headers

l Range

l If-Modified-Since

l If-Unmodified-Since

l If-Match

l If-None-Match

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

13.2.37.3. Response Headers

l x-amz-expiration

l x-amz-meta-*

l x-amz-restore

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

957

https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html

Chapter 13. S3 API

l x-amz-server-side-encryption-customer-key-MD5

l x-amz-tagging-count

l x-amz-version-id

l x-amz-object-lock-mode

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Headers as extensions to the "HEAD Object" oper-
ation. These headers are returned only in the event of an HTTP 4xx response. They are not returned with
HTTP 2xx, 3xx, or 5xx responses.

Name Description

x-gmt-error-code In the event of an HTTP 4xx response, these two response headers provide
additional information about the nature of the error. The x-gmt-error-code
header values will be from among the list in "S3 Error Responses" (page
936).

x-gmt-message

13.2.38. ListBuckets
Returns a list of all buckets owned by the authenticated sender of the request.

Along with the common headers, HyperStore supports the operation-specific parameter listed below.

For operation details and examples see the AWS documentation: ListBuckets

Former operation name: GET Service

HyperStore Extension to the S3 API

The HyperStore system supports the following Query Parameter as an extension to the "ListBuckets" operation:

Note Support for this extension is disabled by default. To enable support for this extension, in "mts.-
properties.erb" (page 553) set cloudian.s3.enablesharedbucket to true, then do a Puppet push and
then restart the S3 Service.

Name Description Required

shared If the shared parameter is included in the request, the ListBuckets operation
returns a list of buckets that other users have shared with the requesting
user. This will be buckets that have been shared specifically with the
requesting user, plus buckets that have been shared with the group to
which the requesting user belongs, plus buckets that have been shared
with everyone.

Example:

GET /?shared HTTP/1.1.

Host: s3-region1.enterprise4.mobi-cloud.com.

Accept-Encoding: identity.

Date: Fri, 05 Apr 2019 15:34:01 GMT.

No

958

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListBuckets.html

13.2. Supported S3 Operations

Name Description Required

Content-Length: 0.

Authorization: AWS akey2:jTcwd1Ta+5sZftVHGtEEyweojdk=.

User-Agent: Boto/2.42.0 Python/2.7.5 Linux/3.10.0-693.el7.x86_64.

HTTP/1.1 200 OK.

Date: Fri, 05 Apr 2019 15:34:01 GMT.

x-amz-request-id: 1721b414-267b-1341-93e6-d4ae52ce5402.

Content-Type: application/xml;charset=UTF-8.

Content-Length: 432.

Server: CloudianS3.

<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult

xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

<Owner><ID>8ce1c49e532edc91b0a43e0c7e7d5975</ID>

<DisplayName>robot1</DisplayName></Owner>

<Buckets><Bucket><Name>sharedbucket1</Name>

<CreationDate>2019-04-05T15:30:03.897Z</CreationDate></Bucket>

<Bucket><Name>sharedbucket2</Name>

<CreationDate>2019-04-05T15:27:26.300Z</CreationDate>

</Bucket></Buckets></ListAllMyBucketsResult>

Note When the 'shared' parameter is used, the ListBuckets call
returns only buckets that have been shared with the requesting user
-- not buckets owned by the requesting user. So to retrieve all
buckets that a user has access to, an S3 client application must sub-
mit two ListBuckets calls -- one without the 'shared' parameter (to
retrieve the user's own buckets) and one with the 'shared' para-
meter (to retrieve buckets that have been shared with the user).

Note When the 'shared' parameter is used, in the ListBuckets
response body the "Owner" is the requesting user, not the actual
owner(s) of the shared bucket(s).

13.2.39. ListMultipartUploads
This operation lists in-progress multipart uploads.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation: ListMultipartUploads

Former operation name: List Multipart Uploads

959

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListMultipartUploads.html

Chapter 13. S3 API

13.2.39.1. Query Parameters

l delimiter

l encoding-type

l max-uploads

l key-marker

l prefix

l upload-id-marker

13.2.39.2. Response Elements

l ListMultipartUploadsResult

l Bucket

l KeyMarker

l UploadIdMarker

l NextKeyMarker

l NextUploadIdMarker

l Encoding-Type

l MaxUploads

l IsTruncated

l Upload

l Key

l UploadId

l Initiator

l ID

l DisplayName

l Owner

l StorageClass

l Initiated

l ListMultipartUploadsResult.Prefix

l Delimiter

l CommonPrefixes

l CommonPrefixes.Prefix

13.2.40. ListObjects
Returns some or all of the objects in a bucket.

Along with the common headers, HyperStore supports the operation-specific parameters, headers, and ele-
ments listed below.

For operation details and examples see the AWS documentation: ListObjects

Former operation name: GET Bucket (List Objects) Version 1

960

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html

13.2. Supported S3 Operations

Note HyperStore also supports the newer version of this API operation, ListObjectsV2.

Note When using ListObjects, use the marker request parameter to improve performance in listing the
content of buckets that contain many objects. For detail see the AWS documentation for this API oper-
ation.

13.2.40.1. Query Parameters

l delimiter

Note The HyperStore system does not support %c2%85(U+0085) as a delimiter value

l encoding-type

l marker

l max-keys

l prefix

Note The HyperStore S3 extension request parameter meta=true is no longer supported.

13.2.40.2. Response Headers

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Header as an extension to the "GET Bucket (List
Objects) Version 1" operation:

Name Description Required

x-gmt-policyid
This header specifies the unique ID of the storage policy assigned to
the bucket. For more information see "CreateBucket" (page 941).

No

13.2.40.3. Response Elements

l Contents

l CommonPrefixes

l Delimiter

l DisplayName

l Encoding-Type

l ETag

l ID

l IsTruncated

l Key

l LastModified

961

Chapter 13. S3 API

l ListBucketResult

l Marker

l MaxKeys

l Name

l NextMarker

l Owner

l Prefix

l Size

l StorageClass (values STANDARD and GLACIER only)

13.2.41. ListObjectsV2
Returns some or all of the objects in a bucket.

Along with the common headers, HyperStore supports the operation-specific parameters, headers, and ele-
ments listed below.

For operation details and examples see the AWS documentation: ListObjectsV2

Former operation name: GET Bucket (List Objects) Version 2

Note For backward-compatibility HyperStore continues to also support the older version of this API
operation, ListObjects.

Note When using ListObjectsV2, use the continuation-token request parameter to improve per-
formance in listing the content of buckets that contain many objects. For detail see the Amazon doc-
umentation for ListObjectsV2.

13.2.41.1. Query Parameters

l continuation-token

l delimiter

Note The HyperStore system does not support %c2%85(U+0085) as a delimiter value

l encoding-type

l fetch-owner

l list-type

l max-keys

l prefix

l start-after

Note The HyperStore S3 extension request parameter meta=true is no longer supported.

962

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetBucketReplication.html

13.2. Supported S3 Operations

13.2.41.2. Response Headers

HyperStore Extension to the S3 API

The HyperStore system supports the following Response Header as an extension to the "GET Bucket (List
Objects) Version 2" operation:

Name Description Required

x-gmt-policyid
This header specifies the unique ID of the storage policy assigned to
the bucket. For more information see "CreateBucket" (page 941).

No

13.2.41.3. Response Elements

l Contents

l CommonPrefixes

l Delimiter

l DisplayName

l Encoding-Type

l ETag

l ID

l IsTruncated

l Key

l LastModified

l ListBucketResult

l MaxKeys

l Name

l Owner

l Prefix

l Size

l StorageClass (values STANDARD and GLACIER only)

l ContinuationToken

l KeyCount

l NextContinuationToken

l StartAfter

13.2.42. ListObjectVersions
Returns metadata about all of the versions of objects in a bucket.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation: ListObjectVersions

Former operation name: GET Bucket Object versions

963

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectVersions.html

Chapter 13. S3 API

13.2.42.1. Query Parameters

l delimiter

l encoding-type

l key-marker

l max-keys

l prefix

l version-id-marker

13.2.42.2. Response Elements

l DeleteMarker

l DisplayName

l Encoding-Type

l ETag

l ID

l IsLatest

l IsTruncated

l Key

l KeyMarker

l LastModified

l ListVersionsResult

l MaxKeys

l Name

l NextKeyMarker

l NextVersionIdMarker

l Owner

l Prefix

l Size

l StorageClass

l Version

l VersionId

l VersionIdMarker

13.2.43. ListParts
Lists the parts that have been uploaded for a specific multipart upload.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation: ListParts

Former operation name: List Parts

964

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectRetention.html

13.2. Supported S3 Operations

13.2.43.1. Query Parameters

l encoding-type

l uploadId

l max-parts

l part-number-marker

13.2.43.2. Response Elements

l x-amz-abort-date

l x-amz-abort-rule-id

l ListPartsResult

l Bucket

l Encoding-Type

l Key

l UploadId

l Initiator

l ID

l DisplayName

l Owner

l StorageClass

l PartNumberMarker

l NextPartNumberMarker

l MaxParts

l IsTruncated

l Part

l PartNumber

l LastModified

l ETag

l Size

13.2.44. OPTIONSObject
A browser can send this preflight request to HyperStore to determine if it can send an actual request with the
specific origin, HTTP method, and headers.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation:OPTIONS Object

Former operation name: OPTIONS Object (no change)

965

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTOPTIONSobject.html

Chapter 13. S3 API

13.2.44.1. Request Headers

l Origin

l Access-Control-Request-Method

l Access-Control-Request-Headers

13.2.44.2. Response Headers

l Access-Control-Allow-Origin

l Access-Control-Max-Age

l Access-Control-Allow-Methods

l Access-Control-Allow-Headers

l Access-Control-Expose-Headers

13.2.45. POSTObject
The POST operation adds an object to a specified bucket using HTML forms.

Along with the common headers, HyperStore supports the operation-specific form fields listed below.

For operation details and examples see the AWS documentation: POST Object

Former operation name: POST Object (no change)

13.2.45.1. Form Fields

l AWSAccessKeyId

l acl

l Cache-Control, Content-Type, Content-Disposition, Content-Encoding, Expires

l file

l key

l policy

l success_action_redirect, redirect

l success_action_status

l tagging

l x-amz-storage-class

Note HyperStore ignores the value of the x-amz-storage-class field and treats all requests as
being for storage class STANDARD.

l x-amz-meta-*

Note The metadata values must be UTF-8 and must not contain control characters less than
0x20 except for \r, \n, and \t. Also, normal XML escaping is required where appropriate.

966

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

13.2. Supported S3 Operations

l x-amz-website-redirect-location

l x-amz-object-lock-mode

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

l x-amz-server-side-encryption

Note For information about HyperStore's support of the x-amz-server-side-encryption and x-
amz-server-side-encryption-customer-* request headers, and set-up steps that you must per-
form in order to use HyperStore's server-side encryption features, see "Server-Side Encryp-
tion" (page 105).

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

13.2.45.2. Response Headers

l x-amz-expiration

l success_action_redirect, redirect

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key-MD5

l x-amz-version-id

13.2.45.3. Response Elements

l Bucket

l ETag

l Key

l Location

13.2.46. PutBucketAcl
Sets the permissions on an existing bucket using access control lists (ACL).

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutBucketAcl

Former operation name: PUT Bucket acl

967

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketAcl.html

Chapter 13. S3 API

13.2.46.1. Request Headers

l x-amz-acl

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

13.2.46.2. Request Elements

l AccessControlList

l AccessControlPolicy

l DisplayName

l Grant

l Grantee

l ID

l Owner

l Permission

13.2.47. PutBucketCors
Sets the cors configuration for your bucket.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutBucketCors

Former operation name: PUT Bucket cors

13.2.47.1. Request Headers

l Content-MD5

13.2.47.2. Request Elements

l CORSConfiguration

l CORSRule

l ID

l AllowedMethod

l AllowedOrigin

l AllowedHeader

l MaxAgeSeconds

l ExposeHeader

968

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketCors.html

13.2. Supported S3 Operations

13.2.48. PutBucketEncryption
This implementation of the PUT operation uses the encryption subresource to set the default encryption state of
an existing bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketEncryption

Former operation name: PUT Bucket encryption

Note For information about HyperStore's support for server-side encryption -- including the interaction
of object level, bucket level, and storage policy level encryption settings -- see "Server-Side Encryp-
tion" (page 105).

Note In the current HyperStore release, only the bucket owner is allowed to perform operations
relating to bucket encryption. HyperStore does not currently support the use of bucket policies to
extend bucket encryption permissions to users other than the bucket owner. Specifically, with regard to
"PutBucketPolicy" (page 977), HyperStore does not currently support the "s3:PutEn-
cryptionConfiguration" or "s3:GetEncryptionConfiguration" actions.

13.2.48.1. Request Elements

l ApplyServerSideEncryptionByDefault

l KMSMasterKeyID

l Rule

l ServerSideEncryptionConfiguration

l SSEAlgorithm

13.2.49. PutBucketLifecycle
Creates a new lifecycle configuration for the bucket or replaces an existing lifecycle configuration.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutBucketLifecycle

Former operation name: PUT Bucket lifecycle

Note With the HyperStore system, only the bucket owner can create Lifecycle rules.

Note Do not set a bucket lifecycle rule and a cross-region replication configuration on the same
bucket.

969

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketLifecycle.html

Chapter 13. S3 API

13.2.49.1. Request Headers

l Content-MD5

HyperStore Extension to the S3 API

The HyperStore system supports the following Request Headers as extensions to the "PUT Bucket lifecycle"
operation:

Name Description Require-
d

x-gmt-
tieringinf-
o

This request header enables you to configure a bucket for schedule-based automatic
transitioning of objects from local HyperStore storage to a remote storage system. For
background information on the HyperStore auto-tiering feature, see "Auto-Tiering
Feature Overview" (page 176).

The x-gmt-tieringinfo header is formatted as follows:

x-gmt-tieringinfo: PROTOCOL|EndPoint:Endpoint,Action:Action[,Mode:proxy]

[,TieringBucket:TieringBucket]

l PROTOCOL (mandatory) — Specify one of these values:

o S3 -- Transition the objects to Amazon S3 storage.

o S3GLACIER -- Transition the objects to Amazon Glacier.

o GCS -- Transition the objects to Google Cloud Storage.

o AZURE -- Transition the objects to Microsoft Azure.

o SPECTRA -- Transition the objects to a Spectra Logic BlackPearl des-
tination.

Note If you are tiering to an S3-compliant system other than
Amazon S3, Glacier, or Google Cloud Storage, use "S3" as the
protocol. This would include, for instance, tiering to a remote
HyperStore region or system.

Note Auto-tiering restrictions based on destination type:
* By default the largest object size that can be auto-tiered to
Amazon, Google, or other S3-compliant destinations is 50GB. If
you want to tier objects larger than this, consult with Cloudian
Support. This 50GB limit does not apply to tiering to Azure or
Spectra BlackPearl.
* Tiering to Azure or Spectra BlackPearl is not supported for
source buckets that have versioning enabled or that have had
versioning enabled in the past.
* When auto-tiering to Spectra BlackPearl is used for a bucket,
objects in the bucket will not be auto-tiered unless they are lar-
ger than 5MB. Objects 5MB or smaller will remain in Hyper-
Store.

l EndPoint:EndPoint (mandatory) — The service endpoint URL to use as your

No

970

13.2. Supported S3 Operations

Name Description Require-
d

auto-tiering destination. For example with Amazon S3, choose the region end-
point that’s most suitable for your location (such as s3-us-west-1.amazon-
aws.com if your organization is in northern California). Or in the case of
Spectra BlackPearl, specify the URL for your Spectra BlackPearl destination.

If your ultimate tiering destination is Glacier, you must specify an Amazon S3
endpoint here, not a Glacier endpoint. The HyperStore system will first trans-
ition the objects to your specified Amazon S3 endpoint and then from there
they will be immediately transitioned to the corresponding Glacier location.

If you want to auto-tier to an external HyperStore system -- not a different
region within the same HyperStore system but rather a different HyperStore
system altogether -- see "Note About Tiering to a Different HyperStore
Region or System" (page 182), in regard to the format requirements for the
tiering endpoint.

Note You must use nested URL encoding. First URL encode the End-
point value (the endpoint itself), and then URL encode the whole x-
gmt-tieringinfo value.

Note Once you've configured an auto-tiering lifecycle on a source
bucket you cannot subsequently change the tiering endpoint for that
source bucket.

l Action:Action (mandatory) — This parameter specifies how the HyperStore
system will handle S3 GET Object requests for objects that have been
transitioned to the tiering destination. The choices are:

o stream— If the client submits a GET Object request to HyperStore, the
HyperStore system retrieves the object from the destination and
streams it through to the client. This method is supported only if the Pro-
tocol is S3, GCS, or AZURE.

o nostream— If the client submits a GET Object request to HyperStore,
the HyperStore system rejects the GET request. Instead, clients must
submit a POST Object restore request in order to temporarily restore a
copy of the object to local HyperStore storage.

If the Protocol is S3, GCS, or AZURE you can use either "stream" or "nos-
tream". If the Protocol is S3GLACIER or SPECTRA you must use "nostream"
(the "stream" option is not supported for those destinations).

l Mode:proxy (optional) — If you specify this option, then:

o All objects uploaded to the bucket from this point forward (all
objects uploaded after you successfully submit the PUT Bucket life-
cycle request) will be immediately transitioned to the destination sys-
tem.

o Any objects already in the bucket at the time that you submit the PUT
Bucket lifecycle request will be subject to the transition schedule

971

Chapter 13. S3 API

Name Description Require-
d

defined in the request body.

Note If you want to use proxy mode and do not want schedule-
based tiering of any objects that are already in the bucket, you
still must include a request body. In this case in the lifecycle
configuration in the request body you can set the "Status" attrib-
ute to "Disabled" (for an example see "Request Body if Using
"Proxy Mode"" (page 975)). The result will be that any objects
already in the bucket will not be auto-tiered, and all objects sub-
sequently uploaded to the bucket (after successfully submitting
the PUT Bucket lifecycle request) will be immediately moved to
the destination system.

Proxy mode is supported only if the Protocol is S3, GCS, or AZURE (proxy
mode is not supported for S3GLACIER or SPECTRA tiering). For more inform-
ation on proxy mode -- also known as "bridge mode" -- see "Auto-Tiering
Feature Overview" (page 176).

l TieringBucket:TieringBucket (optional) — The name of the bucket to transition
objects into, in the tiering destination system. This can be either:

o The name of a bucket that already exists in the destination system,
and for which you are the bucket owner. In this case HyperStore will
use this existing bucket as the tiering destination.

o The name of a bucket that you want HyperStore to create in the des-
tination system, to use as the tiering destination. Be sure to choose a
bucket name that is very likely to be unique in the destination system. If
your supplied bucket name is not unique in the destination system,
HyperStore will be unable to create the bucket and the PUT Bucket life-
cycle request will fail.

If you omit the tiering bucket parameter, then in the destination system Hyper-
Store will create a tiering bucket named as follows:

<origin-bucket-name-truncated-to-34-characters>-<28-character-ran-
dom-string>

Example x-gmt-tieringinfo request headers:

Example 1 (before URL encoding) Tiering to Amazon S3, into target bucket

named 'bucket12'. Streaming for local GETs will be supported.

x-gmt-tieringinfo: S3|EndPoint:http://s3.amazonaws.com,Action:stream,

TieringBucket:bucket12

Example 1 after nested URL encoding (endpoint value first, then whole

header value)

x-gmt-tieringinfo: S3%7CEndPoint%3Ahttp%253A%252F%252Fs3.amazonaws.com

%2CAction%3Astream%2CTieringBucket%3Abucket12

972

13.2. Supported S3 Operations

Name Description Require-
d

Example 2 (before URL encoding) Tiering to Azure. HyperStore will derive

target

bucket name from source bucket name. Streamed local GETs will not be

supported,

clients must use Restore.

x-gmt-tieringinfo:

AZURE|EndPoint:https://blob.core.windows.net,Action:nostream

Example 2 after nested URL encoding (endpoint value first, then whole

header value)

x-gmt-tieringinfo:

AZURE%7CEndPoint%3Ahttps%253A%252F%252Fblob.core.windows.net

%2CAction%3Anostream

IMPORTANT ! If you use the x-gmt-tieringinfo request header, then for the
request body element "StorageClass" you must specify "GLACIER". Set
the Storage Class to GLACIER even if your final tiering destination is Amazon
S3 or some other S3-compliant destination.

x-gmt-
compare

If you include this header in your "PUT Bucket lifecycle" request and set the header
value to "LAT", then in lifecycle rules that you configure with the "Days" comparator
the rule will be implemented as number of days since the object’s Last Access Time.

If you do not use this extension header, or if you include the header but assign it no
value or any value other than "LAT", then "Days" based lifecycle rules will be imple-
mented as number of days since the object’s Creation Time (the default Amazon S3
behavior).

You can use this header to create:

l Last Access Time based auto-tiering rules (use this header and also the x-
gmt-tierinfo header).

l Last Access Time based expiration rules (use this header but not the x-gmt-
tierinfo header).

Note An object’s Last Access Time is updated if the object is accessed either
for retrieval (GET or HEAD) or modification (PUT/POST/Copy). If an object is
created and then never accessed, its Last Access Time will be its Creation
Time.

Note If you use the x-gmt-compare header and set it to "LAT", it does not
apply to any in NoncurrentVersionTransition or NoncurrentVersionExpiration
rules within the lifecycle policy (for non-current versions of versioned objects).

No

973

Chapter 13. S3 API

Name Description Require-
d

These types of rules are always based on the time elapsed since an object
version became non-current (was replaced by a new version of the object).

x-gmt-
post-tier-
copy

If you use the x-gmt-tieringinfo request header to configure auto-tiering for a bucket,
you can optionally also use the x-gmt-post-tier-copy request header to specify a num-
ber of days for which a local copy of auto-tiered objects should be retained. For
example if you set x-gmt-post-tier-copy: 7 then after each object is auto-tiered to the
tiering destination, a copy of the object will be kept in the HyperStore source bucket
for 7 days. After that the local copy will be deleted and only object metadata will be
retained locally.

There is no upper limit on this value. So if you want the local copy retention period to
be practically limitless, you could for example set this header to 36500 to indicate a
local copy retention period of 100 years.

If you omit the x-gmt-post-tier-copy request header, then by default local objects are
deleted after they are successfully auto-tiered to the tiering destination system, and
only object metadata is retained locally.

No

13.2.49.2. Request Elements

l AbortIncompleteMultipartUpload

l Date

l Days

l DaysAfterInitiation

l Expiration

l ExpiredObjectDeleteMarker

l Filter

l ID

l LifecycleConfiguration

l NoncurrentDays

l NoncurrentVersionExpiration

l NoncurrentVersionTransition

l Prefix

Note If you are using "Bridge Mode" (whereby objects are auto-tiered immediately after being
uploaded to HyperStore), leave the "Object Prefix" field empty. Bridge Mode does not support fil-
tering by prefix.

l Rule

l Status

l StorageClass

974

13.2. Supported S3 Operations

Note If you are using the HyperStore extension request header x-gmt-tieringinfo, then for the
request element "StorageClass" you must specify "GLACIER". Set the Storage Class to
GLACIER even if your final tiering destination is Amazon S3, Google, Azure, or some other sys-
tem.

Note that in the case of tiering to Azure, if you do a GET Bucket (List Objects) call on a bucket,
for any objects that have been tiered to Azure the response will indicate that the storage class of
those tiered objects is STANDARD (despite your having specified GLACIER as the storage
class in the PUT Bucket Lifecycle call). This behavior is expected. With objects tiered to any
other destination, a GET Bucket (List Objects) call will indicate that tiered objects have the stor-
age class that you specified in the PUT Bucket Lifecycle call.

l Transition

13.2.49.2.1. Request Body if Using "Proxy Mode"

If you are applying a "proxy mode" bucket lifecycle (see "HyperStore Extension to the S3 API" in the "Request
Headers" section above), you still must include a request body. The lifecycle configuration specified in the
request body will apply to objects already in the bucket (if any) while the proxy mode (for immediate trans-
itioning) will apply to all objects uploaded after the PUT Bucket lifecycle request is successfully submitted. If
there are already objects in the bucket and you don't want any transitioning applied to them, make the request
body a lifecycle configuration with the "Status" attribute set to "Disabled" such as in the following example:

<LifecycleConfiguration>

<Rule>

<ID>DummyLifecycleConfig</ID>

<Filter>

<Prefix></Prefix>

</Filter>

<Status>Disabled</Status>

<Transition>

<StorageClass>GLACIER</StorageClass>

<Days>0</Days>

</Transition>

</Rule>

</LifecycleConfiguration>

13.2.50. PutBucketLogging
Set the logging parameters for a bucket and to specify permissions for who can view and modify the logging
parameters.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketLogging

Former operation name: PUT Bucket logging

975

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketLogging.html

Chapter 13. S3 API

Note For a bucket that has bucket logging enabled, bucket logs (server access logs) are generated
every 10 minutes by a HyperStore system cron job, if there was activity for that bucket during that inter-
val.

Note If you are using bucket logging in your service, and if you use a load balancer in front of your S3
Service nodes, you should configure your S3 Service to support the HTTP X-Forwarded-For header.
This will enable bucket logs to record the true originating IP address of S3 requests, rather than the
load balancer IP address. By default the S3 Service does not support the X-Forwarded-For header.
You can enable support for this header using the system configuration file s3.xml.erb.

13.2.50.1. Request Elements

l BucketLoggingStatus

l EmailAddress

l Grant

l Grantee

l LoggingEnabled

l Permission

l TargetBucket

l TargetGrants

l TargetPrefix

13.2.51. PutBucketNotificationConfiguration
Enables notifications of specified events for a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketNotificationConfiguration

Former operation name: PUT Bucket notification

Note In the current HyperStore release, only the bucket owner is allowed to submit this request and
the bucket owner must also be the owner of the destination Queue.

Note HyperStore's bucket notification feature and its SQS Service (for notification message queueing
and delivery) are disabled by default. For information on how to enable this feature set see "Hyper-
Store Support for the AWS SQS API" (page 1041).

13.2.51.1. Request Elements

l NotificationConfiguration

l QueueConfiguration

976

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketNotificationConfiguration.html

13.2. Supported S3 Operations

l Id

l Event

For event types, HyperStore supports only the following:

o s3:ObjectCreated:*

o s3:ObjectCreated:Put

o s3:ObjectCreated:Post

o s3:ObjectCreated:Copy

o s3:ObjectCreated:CompleteMultipartUpload

o s3:ObjectRemoved:*

o s3:ObjectRemoved:Delete

o s3:ObjectRemoved:DeleteMarkerCreated

l Queue

l Filter

l S3Key

l FilterRule

l Name

l Value

13.2.52. PutBucketPolicy
Applies an S3 bucket policy to an S3 bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketPolicy

Former operation name: PUT Bucket policy

13.2.52.1. Request Elements

The request body is a JSON-formatted bucket policy containing one or more policy statements. Within a
policy's Statement block(s), HyperStore support for policy statement elements and their values is as follows:

l Sid -- Same as Amazon: Custom string identifying the statement, for example "Statement1" or "Only
allow access from partner source IPs"

l Effect -- Same as Amazon: "Allow" or "Deny"

l Principal -- Must be one of the following:

l "*" -- Statement applies to all users.

l {"CanonicalUser": "<canonicalUserId>"} -- Statement applies to the specified user.

l {"CanonicalUser": ["<canonicalUserId>", "<canonicalUserId>"]} -- Statement applies to the spe-
cified users.

Note You can obtain a HyperStore user's canonical ID by retrieving the user through the
CMC's "Manage Users" (page 262) page or by using the Admin API method GET /user.

977

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketPolicy.html

Chapter 13. S3 API

Note HyperStore does not support having an IAM user as the Principal in a bucket
policy. Instead any specified users must be HyperStore root account holders.

l Action -- See details below.

l Resource -- Same as Amazon; must be one of:

l "arn:aws:s3:::<bucketName>" -- For bucket actions (such as "s3:ListBucket") and bucket subre-
source actions (such as "s3:GetBucketAcl").

l "arn:aws:s3:::<bucketName>/*" or "arn:aws:s3:::<bucketName>/<objectName>" -- For object
actions (such as "s3:PutObject").

l Condition -- See details below.

13.2.52.1.1. Supported "Action" Values

Within bucket policy statements, HyperStore supports only the following Action values (also known as per-
mission keywords).

Note For information about how to use Action values in a bucket policy, see the AWS documentation
on Specifying Permissions in a Policy.

Object Actions

l s3:AbortMultipartUpload

l s3:BypassGovernanceRetention

l s3:DeleteObject

l s3:DeleteObjectTagging

l s3:DeleteObjectVersion

l s3:DeleteObjectVersionTagging

l s3:GetObject

l s3:GetObjectAcl

l s3:GetObjectLegalHold

l s3:GetObjectRetention

l s3:GetObjectTagging

l x3:GetObjectTorrent

l s3:GetObjectVersion

l s3:GetObjectVersionAcl

l s3:GetObjectVersionTagging

l s3:ListMultipartUploadParts

l s3:PutObject

l s3:PutObjectAcl

l s3:PutObjectLegalHold

l s3:PutObjectRetention

l s3:PutObjectTagging

978

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

13.2. Supported S3 Operations

l s3:PutObjectVersionAcl

l s3:PutObjectVersionTagging

l s3:RestoreObject

Bucket Actions

l s3:CreateBucket

l s3:DeleteBucket

l s3:ListBucket

l s3:ListBucketMultipartUploads

l s3:ListBucketVersions

Bucket Subresource Actions

l s3:DeleteBucketPolicy

l s3:DeleteBucketWebsite

l s3:GetBucketAcl

l s3:GetBucketCORS

l s3:GetBucketLocation

l s3:GetBucketLogging

l s3:GetBucketNotification

l s3:GetBucketObjectLockConfiguration

l s3:GetBucketPolicy

l s3:GetBucketRequestPayment

l s3:GetBucketTagging

l s3:GetBucketVersioning

l s3:GetBucketWebsite

l s3:GetLifecycleConfiguration

l s3:GetReplicationConfiguration

l s3:PutBucketAcl

l s3:PutBucketCORS

l s3:PutBucketLogging

l s3:PutBucketNotification

l s3:PutBucketObjectLockConfiguration

l s3:PutBucketPolicy

l s3:PutBucketRequestPayment

l s3:PutBucketTagging

l s3:PutBucketVersioning

l s3:PutBucketWebsite

l s3:PutLifecycleConfiguration

l s3:PutReplicationConfiguration

979

Chapter 13. S3 API

Note Like Amazon, the HyperStore system supports the use of a wildcard in your Action configuration
("Action":["s3:*"]). When an Action wildcard is used together with an object-level Resource element
("arn:aws:s3:::<bucketName>/*" or "arn:aws:s3:::<bucketName>/<objectName>"), the wildcard denotes
all the Object actions that HyperStore supports. When an Action wildcard is used together with
bucket-level Resource element ("arn:aws:s3:::<bucketName>"), the wildcard denotes all the Bucket
actions and Bucket Subresource actions that HyperStore supports.

13.2.52.1.2. Supported "Condition" Values

Within bucket policy statements, HyperStore supports only the following Condition operators and keys.

Note For information about how to use condition operators and keys in a bucket policy, see the AWS
documentation on Specifying Conditions in a Policy.

Condition Operators

l IpAddress

Note If you are using load balancers in front of the HyperStore S3 Service, then IP address
based bucket policies will only work if you use PROXY Protocol between the load balancers
and the S3 Service. This protocol allows the load balancers to pass the IP addresses of ori-
ginating clients to the S3 Service along with the S3 requests. For more information about
enabling PROXY Protocol support on the S3 Service side, see "s3_proxy_protocol_enabled"
(page 530) in "common.csv" (page 512). For guidance on configuring the load balancers con-
sult with Cloudian Sales Engineering or Support.

Note that using the "X-Forwarded-For" HTTP header is not sufficient to support IP address
based bucket policies. You must use PROXY Protocol if you have load balancers in front of the
S3 Service and want to use IP address based bucket policies .

l NotIpAddress

l NumericEquals

l NumericNotEquals

l NumericLessThan

l NumericLessThanEquals

l NumericGreaterThan

l NumericGreaterThanEquals

l StringEquals

l StringNotEquals

l StringEqualsIgnoreCase

l StringNotEqualsIgnoreCase

l StringLike

l ForAllValues:StringLike

980

http://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html

13.2. Supported S3 Operations

l ForAnyValue:StringLike

l StringNotLike

Condition Keys

l aws:Referer

l aws:SourceIp

Note If you create a bucket policy that restricts access based on source IP address, these restric-
tions will not apply to IP addresses within your HyperStore cluster. IP addresses from within your
cluster are automatically "whitelisted".

l s3:delimiter

l s3:ExistingObjectTag/<tag-key>

l s3:LocationConstraint

l s3:max-keys

l s3:prefix

l s3:RequestObjectTag/<tag-keys>

l s3:RequestObjectTagKeys

l s3:VersionId

l s3:x-amz-acl

l s3:x-amz-copy-source

l s3:x-amz-grant-full-control

l s3:x-amz-grant-read

l s3:x-amz-grant-read-acp

l s3:x-amz-grant-write

l s3:x-amz-grant-write-acp

l s3:x-amz-metadata-directive

l s3:x-amz-server-side-encryption

l s3:object-lock-mode

l s3:object-lock-retain-until-date

l s3:object-lock-legal-hold

l s3:object-lock-remaining-retention-days

For examples of the kinds of things you can do with bucket policies, see the AWS documentation on Bucket
Policy Examples.

13.2.53. PutBucketReplication
Creates a replication configuration or replaces an existing one.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutBucketReplication

Former operation name: PUT Bucket replication

981

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketReplication.html

Chapter 13. S3 API

IMPORTANT ! Unlike Amazon S3, HyperStore does not require that you set up an IAM Role (or any-
thing analogous) in order to use bucket replication. Also, HyperStore does not require that the des-
tination bucket be in a different region than the source bucket. With HyperStore you can replicate to a
destination bucket that’s in the same region as the source bucket, if you want to.

Apart from the above exceptions, HyperStore bucket replication has the same requirements as Amazon
S3 bucket replication, including that versioning must be enabled (using the "PutBucketVersioning"
(page 983) operation) on both the source bucket and the destination bucket in order to use bucket rep-
lication.

Note Do not set a cross-region replication configuration and a bucket lifecycle rule on the same
bucket.

13.2.53.1. Request Headers

l Content-MD5

13.2.53.2. Request Elements

l ReplicationConfiguration

l Role

Note As with the Amazon S3 API specification, for HyperStore the "Role" element must be
included in the PUT Bucket replication request. However, HyperStore ignores the "Role" ele-
ment’s value (so, you can use any random string as its value). HyperStore does not use an IAM
role or anything analogous when implementing cross-region replication.

l Rule

l ID

l Status

l Prefix

l Destination

l Bucket

Note Use the same "Bucket" value formatting as in the Amazon S3 API spec, i.e.

l arn:aws:s3:::<bucketname>.

l StorageClass

Note If you include this optional element in the request, HyperStore ignores its value.

982

13.2. Supported S3 Operations

13.2.54. PutBucketTagging
Sets the tags for a bucket.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutBucketTagging

Former operation name: PUT Bucket tagging

Note The HyperStore Admin API supports a method for retrieving all the bucket tags for all users in a
specified group. Because it is implemented through the Admin API, that method does not require the
users' S3 access credentials. For more information see GET /bucketops/gettags.

13.2.54.1. Request Headers

l Content-MD5

13.2.54.2. Request Elements

l Tagging

l TagSet

l Tag

l Key

l Value

13.2.55. PutBucketVersioning
Sets the versioning state of an existing bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketVersioning

Former operation name: PUT Bucket versioning

13.2.55.1. Request Elements

l Status

l VersioningConfiguration

13.2.56. PutBucketWebsite
Sets the configuration of the website that is specified in the website subresource.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutBucketWebsite

Former operation name: PUT Bucket website

983

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketTagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketVersioning.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketWebsite.html

Chapter 13. S3 API

13.2.56.1. Request Elements

l WebsiteConfiguration

l RedirectAllRequestsTo

l HostName

l Protocol

l WebsiteConfiguration

l IndexDocument

l ErrorDocument

13.2.57. PutObject
Adds an object to a bucket.

Along with the common headers, HyperStore supports the operation-specific headers listed below.

For operation details and examples see the AWS documentation: PutObject

Former operation name: PUT Object

13.2.57.1. Request Headers

l Cache-Control

l Content-Disposition

l Content-Encoding

l Content-Length

l Content-MD5

l Content-Type

l Expect

l Expires

l x-amz-meta-*

Note The metadata values must be UTF-8 and must not contain control characters less than
0x20 except for \r, \n, and \t. Also, normal XML escaping is required where appropriate.

l x-amz-storage-class

Note HyperStore ignores the value of the x-amz-storage-class header and treats all requests as
being for storage class STANDARD.

l x-amz-tagging

l x-amz-website-redirect-location

l x-amz-object-lock-mode

984

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

13.2. Supported S3 Operations

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see
"WORM (Object Lock)" (page 121).

l x-amz-object-lock-retain-until-date

l x-amz-object-lock-legal-hold

l x-amz-acl

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

l x-amz-server-side-encryption

Note For information about HyperStore's support of the x-amz-server-side-encryption and x-
amz-server-side-encryption-customer-* request headers, and set-up steps that you must per-
form in order to use HyperStore's server-side encryption features, see "Server-Side Encryp-
tion" (page 105).

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

HyperStore Restrictions on Object Names

The following control characters cannot be used anywhere in an object name and will result in a 400 Bad
Request response: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A ("\n"), 0x0B, 0x0C, 0x0D
("\r"), 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E,
0x1F

Also unsupported are:

l 0x09 ("\t") at the beginning of an object name

l 0xBF (inverted question mark) at the end of an object name

l Object names consisting only of "." or only of ".."

l Object names containing a combination of "." and "/", or a combination of ".." and "/"

13.2.57.2. Response Headers

l x-amz-expiration

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key-MD5

l x-amz-version-id

985

Chapter 13. S3 API

13.2.58. PutObjectAcl
Uses the acl subresource to set the access control list (ACL) permissions for an object that already exists in a
bucket.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: PutObjectAcl

Former operation name: PUT Object acl

13.2.58.1. Request Headers

l x-amz-acl

l x-amz-grant-read

l x-amz-grant-write

l x-amz-grant-read-acp

l x-amz-grant-write-acp

l x-amz-grant-full-control

13.2.58.2. Request Elements

l AccessControlList

l AccessControlPolicy

l DisplayName

l Grant

l Grantee

l ID

l Owner

l Permission

13.2.58.3. Response Headers

l x-amz-version-id

13.2.59. PutObjectLegalHold
Applies a Legal Hold configuration to the specified object.

Along with the common headers, HyperStore supports the operation-specific parameters and elements listed
below.

For operation details and examples see the AWS documentation: PutObjectLegalHold

Former operation name: PUT Object legal hold

986

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectAcl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectLegalHold.html

13.2. Supported S3 Operations

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see "WORM
(Object Lock)" (page 121).

13.2.59.1. Query Parameters

l versionId

13.2.59.2. Request Elements

l LegalHold

l Status

13.2.60. PutObjectLockConfiguration
Places an Object Lock configuration on the specified bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutObjectLockConfiguration

Former operation name: PUT Bucket object lock configuration

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see "WORM
(Object Lock)" (page 121).

13.2.60.1. Request Elements

l ObjectLockConfiguration

l ObjectLockEnabled

l Rule

l DefaultRetention

l Mode

l Days

l Years

13.2.61. PutObjectRetention
Places an Object Retention configuration on an object.

Along with the common headers, HyperStore supports the operation-specific parameters, headers, and ele-
ments listed below.

For operation details and examples see the AWS documentation: PutObjectRetention

Former operation name: PUT Object retention

987

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectLockConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectRetention.html

Chapter 13. S3 API

Note For more information on HyperStore's support for the S3 "Object Lock" feature, see "WORM
(Object Lock)" (page 121).

13.2.61.1. Query Parameters

l versionId

13.2.61.2. Request Headers

l x-amz-bypass-governance-retention

13.2.61.3. Request Elements

l Retention

l Mode

l RetainUntilDate

13.2.62. PutObjectTagging
Sets the supplied tag-set to an object that already exists in a bucket.

Along with the common headers, HyperStore supports the operation-specific elements listed below.

For operation details and examples see the AWS documentation: PutObjectTagging

Former operation name: PUT Object tagging

13.2.62.1. Request Elements

l Tagging

l TagSet

l Tag

l Key

l Value

13.2.63. RestoreObject
Restores a tiered object back into HyperStore.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: RestoreObject

Former operation name: POST Object restore

Note In the context of the HyperStore system, this standard S3 operation is for temporarily restoring a
copy of an object that has been auto-tiered to a tiering destination, such as Amazon S3 or Amazon

988

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectTagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_RestoreObject.html

13.2. Supported S3 Operations

Glacier. For information about the HyperStore auto-tiering feature, see "Auto-Tiering Feature Over-
view" (page 176).

13.2.63.1. Request Headers

l Content-MD5

13.2.63.2. Request Elements

l RestoreRequest

l Days

l GlacierJobParameters

Note For the sake of S3 API compatibility, HyperStore's S3 Service allows the request elements
GlacierJobParameters and Tierto be included in a "POST Object restore" request -- but in the
current HyperStore release these elements will have no effect on how the restore request is
implemented.

l Tier

13.2.64. UploadPart
Uploads a part in a multipart upload.

Along with the common headers, HyperStore supports the operation-specific headers listed below.

For operation details and examples see the AWS documentation: UploadPart

Former operation name: Upload Part

13.2.64.1. Request Headers

l Content-Length

l Content-MD5

l Expect

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

Note For information about HyperStore's support of the x-amz-server-side-encryption-customer-
* request headers, and set-up steps that you must perform in order to use HyperStore's server-
side encryption features, see "Server-Side Encryption" (page 105).

l x-amz-server-side-encryption-customer-key

l x-amz-server-side-encryption-customer-key-MD5

989

https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPart.html

Chapter 13. S3 API

13.2.64.2. Response Headers

l x-amz-server-side-encryption

l x-amz-server-side-encryption-customer-algorithm

l x-amz-server-side-encryption-customer-key-MD5

13.2.65. UploadPartCopy
Uploads a part by copying data from an existing object as data source.

Along with the common headers, HyperStore supports the operation-specific headers and elements listed
below.

For operation details and examples see the AWS documentation: UploadPartCopy

Former operation name: Upload Part - Copy

13.2.65.1. Request Headers

l x-amz-copy-source

l x-amz-copy-source-range

l x-amz-copy-source-if-match

l x-amz-copy-source-if-none-match

l x-amz-copy-source-if-unmodified-since

l x-amz-copy-source-if-modified-since

13.2.65.2. Response Headers

l x-amz-copy-source-version-id

l x-amz-server-side-encryption

13.2.65.3. Response Elements

l CopyPartResult

l ETag

l LastModified

990

https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPartCopy.html

Chapter 14. IAM API

14.1. Introduction

14.1.1. HyperStore Support for the AWS IAM API
Subjects covered in this section:

l Introduction (immediately below)

l "Restrictions and Limitations in HyperStore's IAM Support" (page 991)

l "HyperStore IAM Extensions to Support RBAC for Admin Functions" (page 991)

l "Deleting or Suspending HyperStore Users Who Have Created IAM Users" (page 992)

l "Disabling the HyperStore IAM Service" (page 992)

l "The IAM Service in Multi-Region Systems" (page 992)

HyperStore provides limited support for the Amazon Web Services Identity and Access Management (IAM)
API. This support enables each HyperStore user, under his or her HyperStore user account, to create IAM
groups and IAM users. The HyperStore user -- also known as the "account root user" -- can then grant those
IAM users permissions to perform certain actions (such as reading or writing objects in a particular bucket or
buckets). As with Amazon, the means by which a HyperStore account root user grants such permissions to
IAM groups and users is by creating and attaching "managed" IAM policies to IAM groups or users, and/or by
creating and embedding "inline" IAM policies for IAM groups or users. By default newly created IAM users
have no permissions; they gain permissions only when their parent HyperStore user attaches or embeds IAM
policies for them.

In the HyperStore system all S3 object data created by IAM users belongs to the parent HyperStore user
account. Consequently, if an IAM user is deleted by their HyperStore parent user, the IAM user's data is not
deleted from the system.

14.1.1.1. Restrictions and Limitations in HyperStore's IAM Support

l HyperStore supports most but not all of the Amazon IAM API "Actions". For the list of supported actions
see Section 14.2 "Supported IAM Actions".

l HyperStore supports most but not all of the Amazon IAM API policy elements, actions, resources, and
condition keys. For more information see "Supported IAM Policy Elements" (page 1023)

l HyperStore does not support editing managed policies, after they've been created. Likewise Hyper-
Store does not support managed policy "versions". HyperStore does support editing "inline" policies.

l IAM users cannot login to the CMC, and cannot use the CMC as their S3 client application. To access
the HyperStore S3 Service, IAM users must use a third party S3 client application.

14.1.1.2. HyperStore IAM Extensions to Support RBAC for Admin Functions

The HyperStore implementation of the IAM API includes extensions that:

l Allow HyperStore system admins, group admins, or regular users to execute certain read-only Hyper-
Store administrative functions by submitting a request to the IAM Service.

991

Chapter 14. IAM API

l Allow HyperStore system admins, group admins, or regular users to grant their IAM users permission to
execute those same read-only HyperStore administrative functions.

For more information, including information about the client tool that HyperStore provides to help you use this
feature, see "IAM Extensions for Role-Based Access to HyperStore Admin Functions" (page 1027).

14.1.1.3. Deleting or Suspending HyperStore Users Who Have Created IAM Users

If a HyperStore user creates IAM groups and users, and then subsequently you delete that HyperStore user
from the system, all IAM resources associated with that HyperStore user will also be deleted from the system.
That includes IAM groups, users, and policies that the HyperStore user created, the security credentials of
those IAM users, and any object data that those IAM users have stored in the system.

If rather than deleting the HyperStore user you suspend the HyperStore user (make the user inactive), then
any IAM users that the HyperStore user created will be unable to access any HyperStore services (just like the
suspended HyperStore user will be unable to access HyperStore services). If you subsequently make the
HyperStore user active again, then IAM users under that HyperStore user will again be able to access Hyper-
Store services.

14.1.1.4. Disabling the HyperStore IAM Service

HyperStore's IAM Service is enabled by default, and IAM Service functionality can be accessed either through
the CMC or by your third party or custom client applications. If you want to disable the IAM Service, do the fol-
lowing:

1. On your Puppet master node open this configuration file in a text editor:

/etc/cloudian-<version>-puppet/manifests/extdata/common.csv

2. Change the setting iam_service_enabled,true to iam_service_enabled,false and save your change.

3. Push your change to the cluster and restart the S3 Service. If you need instructions see "Pushing Con-
figuration File Edits to the Cluster and Restarting Services" (page 506).

If you disable the HyperStore IAM Service, then IAM functions will no longer display in the CMC and the
IAM Service will no longer accept requests from IAM client applications.

14.1.1.5. The IAM Service in Multi-Region Systems

In a multi-region HyperStore system, the IAM Service runs only on nodes in the default service region. In your
DNS set-up, the IAM service endpoint should resolve to a load balancer that distributes traffic to HyperStore
nodes in the default service region.

14.1.2. IAM Client Application Options
Subjects covered in this section:

l Introduction (immediately below)

l "CMC Support for IAM Functions" (page 993)

l "Accessing the IAM Service with a Third Party or Custom Client Application" (page 993)

l "Creating S3 Access Credentials for the Default System Admin User" (page 993)

Users can access and use the HyperStore IAM Service either through the CMC, a third party client application
that supports IAM calls, or a custom IAM client that you develop. Whether using the CMC or a third party or

992

14.1. Introduction

custom client application, application users must have S3 access credentials (access key ID and secret key) in
order to use the HyperStore IAM Service.

14.1.2.1. CMC Support for IAM Functions

Through the CMC, HyperStore account root users can:

l Add, Manage, and Delete IAM Users

l Add, Manage, and Delete IAM Groups

l Add, Manage, and Delete IAM Policies

14.1.2.2. Accessing the IAM Service with a Third Party or Custom Client Application

Third party or custom client applications can access the HyperStore IAM Service at these service endpoints:

http://iam.<your-domain>:16080

https://iam.<your-domain>:16443

HyperStore supports the standard IAM request line formatting, for example:

http://iam.enterprise.com:16080/?Action=<action-name>&<Parameter-name>=<value>

Note that:

l These are the default service endpoints for the HyperStore IAM Service. You can customize the end-
points as described in "Changing S3, Admin, CMC, or IAM Service Endpoints" (page 600)..

l The HyperStore IAM Service by default uses a self-signed certificate for its HTTPS listener, so if you are
using HTTPS to access the service your client application must be configured to allow self-signed cer-
tificates.

l You must configure your DNS environment to resolve the IAM Service endpoint as described in DNS
Set-Up "DNS Set-Up" in the HyperStore Installation Guide.

14.1.2.3. Creating S3 Access Credentials for the Default System Admin User

If you want the default HyperStore system admin user -- the user whose user ID is "admin" in the CMC -- to be
able to use the IAM Service, do the following:

1. Log into the CMC as the "admin" user. (You will see that an IAM tab now displays in the CMC interface,
but clicking that tab will return an authorization error until after you've completed Steps 2 and 3 below.)

2. On the right side of the CMC's top navigation bar, hold your cursor over your login name ("admin") and
then in the drop-down menu select Security Credentials.

3. In the security credentials page's S3 Access Credentials section, click Create New Key.

This creates S3 access credentials (access key ID and secret key) for the "admin" user. S3 access credentials
are required in order to access HyperStore's IAM Service. The CMC will use these credentials automatically
when the "admin" user uses the CMC to access IAM functions (on the IAM tab). Or if you are using a third party
application to access the HyperStore IAM Service, you will need to provide the credentials to that application.

Note If you created any additional system admin users prior to the HyperStore 7.1 release, and if you
want those system admin users to be able to use the IAM Service, those system admin users will need

993

Chapter 14. IAM API

to complete the steps described above to create S3 access credentials for themselves.

Regular users and group admins created in the CMC are given S3 credentials automatically as part of
the user creation process, so such users already have the credentials that they need to access the IAM
Service. Also, additional system admins that you create in HyperStore 7.1 or later are automatically
given S3 credentials.

14.1.3. IAM CommonRequest Parameters
From the "Common Parameters" section of the AWS IAM API specification, HyperStore supports the para-
meters listed below. If a common parameter from that specification section is not listed below, HyperStore does
not support it.

l Action

l Version

Note Unlike Amazon's IAM implementation, in HyperStore's IAM implementation the "Version"
request parameter is not required.

l X-Amz-Algorithm

l X-Amz-Credential

l X-Amz-Date

l X-Amz-Signature

l X-Amz-SignedHeaders

Note Like Amazon's IAM implementation, in HyperStore's IAM implementation you can either use
query parameters or the HTTP header Authorization to submit the authentication data required by the
Signature Version 2 or Signature Version 4 protocol. For more information on this topic see the
Amazon documentation topic Task 4: Add the Signature to the HTTP Request.

14.1.4. IAM Common Errors
From the "Common Errors" section of the AWS IAM API specification, HyperStore supports the errors listed
below. If a common error from that specification section is not listed below, HyperStore does not support it.

l AccessDenied

l IncompleteSignature

l InternalFailure

l InvalidAction

l InvalidClientTokenId

l InvalidParameterCombination

l InvalidParameterValue

l InvalidQueryParameter

l MalformedQueryString

994

http://docs.aws.amazon.com/IAM/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
http://docs.aws.amazon.com/IAM/latest/APIReference/CommonErrors.html

14.2. Supported IAM Actions

l MissingAction

l MissingAuthenticationToken

l MissingParameter

l OptInRequired

l RequestExpired

l ServiceUnavailable

l ThrottlingException

l ValidationError

14.2. Supported IAM Actions
The HyperStore implementation of the AWS IAM API supports the Actions listed in this section. If an IAM Action
is not listed in this section, HyperStore does not support it. For each Action, the documentation here lists the
request parameters and request or response elements that HyperStore supports. For detailed descriptions of
each Action and its associated parameters and elements, see the AWS documentation links.

Note For all "List" actions (such as "ListAccessKeys", "ListGroups" and so on): The HyperStore
IAM Service does not support truncation. If the client request includes the "MaxItems" and "Marker"
request parameters, the HyperStore IAM Service ignores those parameters. Accordingly, in the
response bodies the "IsTruncated" response element will always be "false".

14.2.1. AddUserToGroup
Adds the specified user to the specified group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: AddUserToGroup

14.2.1.1. Request Parameters

l GroupName

l UserName

14.2.1.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.2. AttachGroupPolicy
Attaches the specified managed policy to the specified IAM group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: AttachGroupPolicy

995

http://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html

Chapter 14. IAM API

14.2.2.1. Request Parameters

l GroupName

l PolicyArn

14.2.2.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l PolicyNotAttachable

l ServiceFailure

14.2.3. AttachRolePolicy
Attaches the specified managed policy to the specified IAM role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: AttachRolePolicy

14.2.3.1. Request Parameters

l PolicyArn

l RoleName

14.2.3.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l PolicyNotAttachable

l ServiceFailure

l UnmodifiableEntity

14.2.4. AttachUserPolicy
Attaches the specified managed policy to the specified user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: AttachUserPolicy

14.2.4.1. Request Parameters

l PolicyArn

l UserName

996

https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html

14.2. Supported IAM Actions

14.2.4.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l PolicyNotAttachable

l ServiceFailure

14.2.5. CreateAccessKey
Creates a new secret access key and corresponding access key ID for the specified user.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: CreateAccessKey

14.2.5.1. Request Parameters

l UserName

14.2.5.2. Response Elements

l AccessKey

14.2.5.3. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

Note By default the HyperStore system allows only two key pairs per IAM user. This restriction is con-
figurable by the "credentials.iamuser.max" (page 571) setting in mts.properties.erb. Note that an IAM
user's inactive credentials (if any) count toward this limit, as well as active credentials.

14.2.6. CreateGroup
Creates a new group.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: CreateGroup

14.2.6.1. Request Parameters

l GroupName

l Path

997

http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateGroup.html

Chapter 14. IAM API

14.2.6.2. Response Elements

l Group

Note For HyperStore, within the "Group" object the system-generated "GroupId" attribute value
will be in this format: <Canonical-UID-of-HyperStore-User>|<IAM-groupname>

For example: e97eb4557aea18781f53eb2b8f7e282e|iamgroup2

The canonical user ID is that of the HyperStore user account under which the IAM group is cre-
ated. The IAM group name will be preceded by the path if any is specified when the group is cre-
ated.

Similarly, the "Arn" attribute value will be in this format:
arn:aws:iam::<Canonical-UID-of-HyperStore-User>:group/<IAM-groupname>

14.2.6.3. Errors

l EntityAlreadyExists

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.7. CreatePolicy
Creates a new managed policy under your HyperStore account.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: CreatePolicy

14.2.7.1. Request Parameters

l Description

l Path

l PolicyDocument

Note For information about HyperStore's IAM policy document support see "Supported IAM
Policy Elements" (page 1023).

l PolicyName

14.2.7.2. Response Elements

l Policy

998

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html

14.2. Supported IAM Actions

14.2.7.3. Errors

l EntityAlreadyExists

l InvalidInput

l LimitExceeded

l MalformedPolicyDocument

l ServiceFailure

14.2.8. CreateRole
Creates a new role under your account.

HyperStore supports the parameters, parameters, and errors listed below.

For action details and examples see the AWS documentation: CreateRole

See also the AWS documentation: IAM Roles

14.2.8.1. Request Parameters

l AssumeRolePolicyDocument (also known as the "trust policy")

l Description

l MaxSessionDuration

l Path

l PermissionsBoundary

l RoleName

Example role trust policy for a federated/SAML principal:

{

"Version": "2012-10-17",

"Statement": {

"Effect": "Allow",

"Action": "sts:AssumeRoleWithSAML",

"Principal": {"Federated": "arn:aws:iam::123456789012:saml-provider/adfs"},

"Condition": {"StringEquals": {"saml:aud": "https://cmc.mycloudianhyperstore.com/saml"}}

}

}

The example policy above says to trust SAML assertions from the "adfs" SAML Provider to use STS:As-
sumeRoleWithSAML for this role but only if the SAML assertion contains the recipient string matching https://cm-
c.mycloudianhyperstore.com/saml.

Note For Conditions in a trust policy, HyperStore supports only the StringEquals condition operator
and only the following condition keys:
aws:TokenIssueTime
sts:ExternalId
saml:aud
saml:doc
saml:iss

999

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Chapter 14. IAM API

saml:namequalifier
saml:sub
saml:sub_type

14.2.8.2. Response Elements

l Role

14.2.8.3. Errors

l ConcurrentModification

l EntityAlreadyExists

l InvalidInput

l LimitExceeded

l MalformedPolicyDocument

l ServiceFailure

14.2.9. CreateSAMLProvider
Creates an IAM resource that describes an identity provider (IdP) that supports SAML 2.0.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: CreateSAMLProvider

14.2.9.1. Request Parameters

l Name

l SAMLMetadataDocument

14.2.9.2. Response Elements

l SAMLProviderArn

14.2.9.3. Errors

l EntityAlreadyExists

l LimitExceeded

l ServiceFailure

14.2.10. CreateUser
Creates a new IAM user under your account.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: CreateUser

1000

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateSAMLProvider.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html

14.2. Supported IAM Actions

14.2.10.1. Request Parameters

l Path

l UserName

14.2.10.2. Response Elements

l User

Note For HyperStore, within the "User" object the system-generated "UserId" attribute value will
be in this format: <Canonical-UID-of-HyperStore-User>|<IAM-username>

For example: e97eb4557aea18781f53eb2b8f7e282e|iamuser2

The canonical user ID is that of the HyperStore user account under which the IAM user is cre-
ated. The IAM user name will be preceded by the path if any is specified when the user is cre-
ated.

Similarly, the "Arn" attribute value will be in this format:
arn:aws:iam::<Canonical-UID-of-HyperStore-User>:user/<IAM-username>

14.2.10.3. Errors

l EntityAlreadyExists

l LimitExceeded

l NoSuchEntity

l ServiceFailure

Note IAM users that you create under your HyperStore user accountwill not be allowed to log into the
CMC or to use the CMC as their S3 client application. IAM users will need to use an S3 client applic-
ation other than the CMC to access the HyperStore S3 Service.

14.2.11. DeleteAccessKey
Deletes the access key pair associated with the specified IAM user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteAccessKey

14.2.11.1. Request Parameters

l AccessKeyId

l UserName

1001

http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html

Chapter 14. IAM API

14.2.11.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.12. DeleteGroup
Deletes the specified IAM group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteGroup

14.2.12.1. Request Parameters

l GroupName

14.2.12.2. Errors

l DeleteConflict

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.13. DeleteGroupPolicy
Deletes the specified inline policy that is embedded in the specified IAM group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteGroupPolicy

14.2.13.1. Request Parameters

l GroupName

l PolicyName

14.2.13.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.14. DeletePolicy
Deletes the specified managed policy.

HyperStore supports the parameters and errors listed below.

1002

http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroup.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html

14.2. Supported IAM Actions

For action details and examples see the AWS documentation: DeletePolicy

14.2.14.1. Request Parameters

l PolicyArn

14.2.14.2. Errors

l DeleteConflict

l InvalidInput

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.15. DeleteRole
Deletes the specified role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteRole

14.2.15.1. Request Parameters

l RoleName

14.2.15.2. Errors

l ConcurrentModification

l DeleteConflict

l LimitExceeded

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.16. DeleteRolePolicy
Deletes the specified inline policy that is embedded in the specified IAM role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteRolePolicy

14.2.16.1. Request Parameters

l PolicyName

l RoleName

1003

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html

Chapter 14. IAM API

14.2.16.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.17. DeleteSAMLProvider
Deletes a SAML provider resource in IAM.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteSAMLProvider

14.2.17.1. Request Parameters

l SAMLProviderArn

14.2.17.2. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.18. DeleteUser
Deletes the specified IAM user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DeleteUser

14.2.18.1. Request Parameters

l UserName

14.2.18.2. Errors

l DeleteConflict

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.19. DeleteUserPolicy
Deletes the specified inline policy that is embedded in the specified IAM user.

HyperStore supports the parameters and errors listed below.

1004

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteSAMLProvider.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html

14.2. Supported IAM Actions

For action details and examples see the AWS documentation: DeleteUserPolicy

14.2.19.1. Request Parameters

l PolicyName

l UserName

14.2.19.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.20. DetachGroupPolicy
Removes the specified managed policy from the specified IAM group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DetachGroupPolicy

14.2.20.1. Request Parameters

l GroupName

l PolicyArn

14.2.20.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.21. DetachRolePolicy
Removes the specified managed policy from the specified role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DetachRolePolicy

14.2.21.1. Request Parameters

l PolicyArn

l RoleName

1005

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html

Chapter 14. IAM API

14.2.21.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.22. DetachUserPolicy
Removes the specified managed policy from the specified user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: DetachUserPolicy

14.2.22.1. Request Parameters

l PolicyArn

l UserName

14.2.22.2. Errors

l InvalidInput

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.23. GetGroup
Returns a list of IAM users that are in the specified IAM group.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetGroup

14.2.23.1. Request Parameters

l GroupName

Note The "Marker" and "MaxItems" request parameters, if submitted, are ignored.

14.2.23.2. Response Elements

l Group

1006

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html

14.2. Supported IAM Actions

Note For HyperStore, within the "Group" object the system-generated "GroupId" attribute value
will be in this format: <Canonical-UID-of-HyperStore-User>|<IAM-groupname>

For example: e97eb4557aea18781f53eb2b8f7e282e|iamgroup2

The canonical user ID is that of the HyperStore user account under which the IAM group was cre-
ated. The IAM group name will be preceded by the path if any was specified when the group
was created.

Similarly, the "Arn" attribute value will be in this format:
arn:aws:iam::<Canonical-UID-of-HyperStore-User>:group/<IAM-groupname>

l IsTruncated

Note "IsTruncated" will always be "false".

l Users.member.N

14.2.23.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.24. GetGroupPolicy
Retrieves the specified inline policy document that is embedded in the specified IAM group.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetGroupPolicy

14.2.24.1. Request Parameters

l GroupName

l PolicyName

14.2.24.2. Response Elements

l GroupName

l PolicyDocument

l PolicyName

14.2.24.3. Errors

l NoSuchEntity

l ServiceFailure

1007

http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroupPolicy.html

Chapter 14. IAM API

14.2.25. GetPolicy
Retrieves information about the specified managed policy, including the policy's default version and the total
number of IAM users, groups, and roles to which the policy is attached.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation:GetPolicy

14.2.25.1. Request Parameters

l PolicyArn

14.2.25.2. Response Elements

l Policy

14.2.25.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.26. GetPolicyVersion
Retrieves information about the specified version of the specified managed policy, including the policy doc-
ument.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetPolicyVersion

14.2.26.1. Request Parameters

l PolicyArn

Note The "VersionId" request parameter, if submitted, is ignored and always defaults to "v1". Hyper-
Store does not currently support IAM managed policy versioning. However, the "GetPolicyVersion"
action is supported because this is the only action that returns the actual policy document (within the
"PolicyVersion" object).

14.2.26.2. Response Elements

l PolicyVersion

14.2.26.3. Errors

l InvalidInput

l NoSuchEntity

1008

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicyVersion.html

14.2. Supported IAM Actions

l ServiceFailure

14.2.27. GetRole
Retrieves information about the specified role, including the role's path, GUID, ARN, and the role's trust policy
that grants permission to assume the role.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetRole

14.2.27.1. Request Parameters

l RoleName

14.2.27.2. Response Elements

l Role

14.2.27.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.28. GetRolePolicy
Retrieves the specified inline policy document that is embedded with the specified IAM role.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetRolePolicy

14.2.28.1. Request Parameters

l PolicyName

l RoleName

14.2.28.2. Response Elements

l PolicyDocument

l PolicyName

l RoleName

14.2.28.3. Errors

l NoSuchEntity

l ServiceFailure

1009

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html

Chapter 14. IAM API

14.2.29. GetSAMLProvider
Returns the SAML provider metadata document that was uploaded when the IAM SAML provider resource
object was created or updated.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation:GetSAMLProvider

14.2.29.1. Request Parameters

l SAMLProviderArn

14.2.29.2. Response Elements

l CreateDate

l SAMLMetadataDocument

l ValidUntil

14.2.29.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.30. GetUser
Retrieves information about the specified IAM user, including the user's creation date, path, unique ID, and
ARN.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetUser

14.2.30.1. Request Parameters

l UserName

14.2.30.2. Response Elements

l User

Note For HyperStore, within the "User" object the system-generated "UserId" attribute value will
be in this format: <Canonical-UID-of-HyperStore-User>|<IAM-username>

For example: e97eb4557aea18781f53eb2b8f7e282e|iamuser2

The canonical user ID is that of the HyperStore user account under which the IAM user was cre-
ated.The IAM user name will be preceded by the path if any was specified when the user was

1010

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetSAMLProvider.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html

14.2. Supported IAM Actions

created.

Similarly, the "Arn" attribute value will be in this format:
arn:aws:iam::<Canonical-UID-of-HyperStore-User>:user/<IAM-username>

14.2.30.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.31. GetUserPolicy
Retrieves the specified inline policy document that is embedded in the specified IAM user.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation:GetUserPolicy

14.2.31.1. Request Parameters

l PolicyName

l UserName

14.2.31.2. Response Elements

l PolicyDocument

l PolicyName

l UserName

14.2.31.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.32. ListAccessKeys
Returns information about the access key IDs associated with the specified IAM user.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListAccessKeys

14.2.32.1. Request Parameters

l UserName

1011

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUserPolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html

Chapter 14. IAM API

14.2.32.2. Response Elements

l AccessKeyMetadata.member.N

l IsTruncated

14.2.32.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.33. ListAttachedGroupPolicies
Lists all managed policies that are attached to the specified IAM group.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListAttachedGroupPolicies

14.2.33.1. Request Parameters

l GroupName

l PathPrefix

14.2.33.2. Response Elements

l AttachedPolicies.member.N

l IsTruncated

14.2.33.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.34. ListAttachedRolePolicies
Lists all managed policies that are attached to the specified IAM role.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListAttachedRolePolicies

14.2.34.1. Request Parameters

l PathPrefix

l UserName

1012

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html

14.2. Supported IAM Actions

14.2.34.2. Response Elements

l AttachedPolicies.member.N

l IsTruncated

14.2.34.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.35. ListAttachedUserPolicies
Lists all managed policies that are attached to the specified IAM user.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListAttachedUserPolicies

14.2.35.1. Request Parameters

l PathPrefix

l UserName

14.2.35.2. Response Elements

l AttachedPolicies.member.N

l IsTruncated

14.2.35.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.36. ListEntitiesForPolicy
Lists all IAM users, groups, and roles that the specified managed policy is attached to.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListEntitiesForPolicy

14.2.36.1. Request Parameters

l EntityFilter

l PathPrefix

l PolicyArn

1013

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html

Chapter 14. IAM API

14.2.36.2. Response Elements

l IsTruncated

l PolicyGroups.member.N

l PolicyUsers.member.N

14.2.36.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.37. ListGroupPolicies
Lists the names of the inline policies that are embedded in the specified IAM group.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListGroupPolicies

14.2.37.1. Request Parameters

l GroupName

14.2.37.2. Response Elements

l IsTruncated

l PolicyNames.member.N

14.2.37.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.38. ListGroups
Lists the IAM groups that have the specified path prefix.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListGroups

14.2.38.1. Request Parameters

l PathPrefix

1014

http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroups.html

14.2. Supported IAM Actions

14.2.38.2. Response Elements

l Groups.member.N

l IsTruncated

14.2.38.3. Errors

l ServiceFailure

14.2.39. ListGroupsForUser
Lists the IAM groups that the specified IAM user belongs to.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListGroupsForUser

Request Parameters

l UserName

Response Elements

l Groups.member.N

l IsTruncated

Errors

l NoSuchEntity

l ServiceFailure

14.2.40. ListPolicies
Lists all the managed policies that are available under your account.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListPolicies

14.2.40.1. Request Parameters

l OnlyAttached

l PathPrefix

Note The "Scope" request parameter, if submitted, is ignored and defaults to All. Note however that
only Local policies are currently supported in HyperStore, so the policies returned by this command will
all be Local policies.

14.2.40.2. Response Elements

l IsTruncated

l Policies.member.N

1015

http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html

Chapter 14. IAM API

14.2.40.3. Errors

l ServiceFailure

14.2.41. ListPolicyVersions
Lists information about the versions of the specified managed policy, including the version that is currently set
as the policy's default version.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListPolicyVersions

14.2.41.1. Request Parameters

l PolicyArn

14.2.41.2. Response Elements

l IsTruncated

l Versions.member.N

Note The only version returned will be "v1". HyperStore does not currently support
IAM managed policy versioning.

14.2.41.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.42. ListRolePolicies
Lists the names of the inline policies that are embedded in the specified IAM role.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListRolePolicies

14.2.42.1. Request Parameters

l RoleName

14.2.42.2. Response Elements

l IsTruncated

l PolicyNames.member.N

1016

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicyVersions.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html

14.2. Supported IAM Actions

14.2.42.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.43. ListRoles
Lists the IAM roles that have the specified path prefix.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListRoles

14.2.43.1. Request Parameters

l PathPrefix

14.2.43.2. Response Elements

l IsTruncated

l Roles.member.N

14.2.43.3. Errors

l ServiceFailure

14.2.44. ListSAMLProviders
Lists the SAML provider resource objects defined in IAM in the account.

HyperStore supports the elements and errors listed below.

For action details and examples see the AWS documentation: ListSAMLProviders

14.2.44.1. Response Elements

l SAMLProviderList.member.N

14.2.44.2. Errors

l ServiceFailure

14.2.45. ListUserPolicies
Lists the names of the inline policies embedded in the specified IAM user.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListUserPolicies

1017

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html

Chapter 14. IAM API

14.2.45.1. Request Parameters

l UserName

14.2.45.2. Response Elements

l IsTruncated

l PolicyNames.member.N

14.2.45.3. Errors

l NoSuchEntity

l ServiceFailure

14.2.46. ListUsers
Lists the IAM users that have the specified path prefix.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: ListUsers

14.2.46.1. Request Parameters

l PathPrefix

14.2.46.2. Response Elements

l IsTruncated

l Users.member.N

14.2.46.3. Errors

l ServiceFailure

14.2.47. PutGroupPolicy
Adds or updates an inline policy document that is embedded in the specified IAM group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: PutGroupPolicy

14.2.47.1. Request Parameters

l GroupName

l PolicyDocument

1018

http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html

14.2. Supported IAM Actions

Note For information about HyperStore's IAM policy document support see "Supported IAM
Policy Elements" (page 1023).

l PolicyName

14.2.47.2. Errors

l LimitExceeded

l MalformedPolicyDocument

l NoSuchEntity

l ServiceFailure

14.2.48. PutRolePolicy
Adds or updates an inline policy document that is embedded in the specified IAM role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: PutRolePolicy

14.2.48.1. Request Parameters

l PolicyDocument

l PolicyName

l RoleName

14.2.48.2. Errors

l LimitExceeded

l MalformedPolicyDocument

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.49. PutUserPolicy
Adds or updates an inline policy document that is embedded in the specified IAM user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: PutUserPolicy

14.2.49.1. Request Parameters

l PolicyDocument

1019

https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPolicy.html

Chapter 14. IAM API

Note For information about HyperStore's IAM policy document support see "Supported IAM
Policy Elements" (page 1023).

l PolicyName

l UserName

14.2.49.2. Errors

l LimitExceeded

l MalformedPolicyDocument

l NoSuchEntity

l ServiceFailure

14.2.50. RemoveUserFromGroup
Removes the specified user from the specified group.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: RemoveUserFromGroup

14.2.50.1. Request Parameters

l GroupName

l UserName

14.2.50.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.51. UpdateAccessKey
Changes the status of the specified access key from Active to Inactive, or vice versa.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: UpdateAccessKey

14.2.51.1. Request Parameters

l AccessKeyId

l Status

l UserName

1020

http://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

14.2. Supported IAM Actions

14.2.51.2. Errors

l LimitExceeded

l NoSuchEntity

l ServiceFailure

Note By default the HyperStore system allows only two key pairs per IAM user. This restriction is con-
figurable by the "credentials.iamuser.max" (page 571) setting in mts.properties.erb. Note that an IAM
user's inactive credentials (if any) count toward this limit, as well as active credentials.

14.2.52. UpdateAssumeRolePolicy
Updates the policy that grants an IAM entity permission to assume a role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: UpdateAssumeRolePolicy

14.2.52.1. Request Parameters

l PolicyDocument

l RoleName

Note For Conditions in a trust policy, HyperStore supports only the StringEquals condition operator
and only the following condition keys:
aws:TokenIssueTime
sts:ExternalId
saml:aud
saml:doc
saml:iss
saml:namequalifier
saml:sub
saml:sub_type

14.2.52.2. Errors

l LimitExceeded

l MalformedPolicyDocument

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.53. UpdateGroup
Updates the name and/or the path of the specified IAM group.

HyperStore supports the parameters and errors listed below.

1021

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAssumeRolePolicy.html

Chapter 14. IAM API

For action details and examples see the AWS documentation: UpdateGroup

14.2.53.1. Request Parameters

l GroupName

l NewGroupName

l NewPath

14.2.53.2. Errors

l EntityAlreadyExists

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.2.54. UpdateRole
Updates the description or maximum session duration setting of a role.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: UpdateRole

14.2.54.1. Request Parameters

l Description

l MaxSessionDuration

l RoleName

14.2.54.2. Errors

l NoSuchEntity

l ServiceFailure

l UnmodifiableEntity

14.2.55. UpdateRoleDescription
Although HyperStore supports this Action, it is recommended to use UpdateRole instead.

AWS documentation: UpdateRoleDescription

14.2.56. UpdateSAMLProvider
Updates the metadata document for an existing SAML provider resource object.

HyperStore supports the parameters, response elements, and errors listed below.

For action details and examples see the AWS documentation: UpdateSAMLProvider

1022

http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateSAMLProvider.html

14.3. Supported IAM Policy Elements

14.2.56.1. Request Parameters

l SAMLMetadataDocument

l SAMLProviderArn

14.2.56.2. Response Elements

l SAMLProviderArn

14.2.56.3. Errors

l InvalidInput

l NoSuchEntity

l ServiceFailure

14.2.57. UpdateUser
Updates the name and/or the path of the specified IAM user.

HyperStore supports the parameters and errors listed below.

For action details and examples see the AWS documentation: UpdateUser

14.2.57.1. Request Parameters

l NewPath

l NewUserName

l UserName

14.2.57.2. Errors

l EntityAlreadyExists

l EntityTemporarilyUnmodifiable

l LimitExceeded

l NoSuchEntity

l ServiceFailure

14.3. Supported IAM Policy Elements
Subjects covered in this section:

l Introduction (immediately below)

l "Policy Document Content for Granting S3 or IAM Permissions" (page 1024)

l "Policy Document Content for Granting HyperStore Administrative Permissions" (page 1025)

This section describes HyperStore's support for IAM policy document content. IAM policies grant permissions to
IAM groups and users. You can create IAM policy documents through the CMC or by using a third party or

1023

http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html

Chapter 14. IAM API

custom IAM client. If you use the CMC, you have the choice of using a visual policy editor or using a JSON
editor.

In regard to IAM policy document content, HyperStore supports most of the standard AWS IAM policy elements
that define S3 permissions or IAM permissions. As an extension to the IAM standard, HyperStore also supports
policy elements that define permissions for HyperStore administrative actions.

14.3.1. Policy Document Content for Granting S3 or IAM Permissions
HyperStore supports AWS standard IAM policy formatting and most policy elements for granting S3 or IAM ser-
vice permissions.

Note In the current HyperStore release:
* HyperStore support for IAM policy document components is not fully comprehensive. HyperStore sup-
portsmost but not all of the policy elements, actions, resources, and/or condition keys cited in the AWS
documentation for IAM policy formation.
* IAM Actions are case sensitive.
* The use of the wildcard character "*" to match missing text in an Action or Resource is not well sup-
ported. Explicit Action names or Resource ARNs can be grouped together in lists as a work-around.

For guidance on how to construct IAM policies for S3 or IAM service permissions, see the AWS documentation
on this topic. For example:

l Policies and Permissions

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

l IAM JSON Policy Elements Reference

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

l Actions, Resources, and Condition Keys for Amazon S3

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html

l Actions, Resources, and Condition Keys for Identity And Access Management

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html

Note HyperStore supports only the IAM actions listed in Section 14.2 "Supported IAM Actions".

Below is an example of a simple IAM policy document granting permission to list the contents of a bucket
named "example_bucket":

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Action": "s3:ListBucket",

"Resource": "arn:aws:s3:::bucket1"

}]

}

1024

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html

14.3. Supported IAM Policy Elements

14.3.2. Policy Document Content for Granting HyperStore Administrative
Permissions
Along with granting S3 service permissions, you can also use IAM policies to grant IAM groups and users per-
missions to perform read-only HyperStore administrative actions. Note that:

l As is the case with S3 permissions, an IAM user by default has no admin permissions -- an IAM user
gains permissions only if she is assigned an IAM policy that specifies those permissions, and she gains
only the permissions specified in the policy.

l When an IAM policy grants an IAM user permission to an administrative action, the IAM user's per-
mission scope in respect to that action is the same as her parent HyperStore user's permission
scope (as identified in the table below).

l The IAM Service will not allow an IAM user to execute an administrative action that her parent
HyperStore user is not allowed to execute, even if an IAM policy grants the IAM user permission to
the action.

Note For an overview of this feature see "IAM Extensions for Role-Based Access to HyperStore
Admin Functions" (page 1027).

The table below lists the administrative Action permissions supported by the HyperStore IAM Service, and indic-
ates how, if an IAM user is granted permission to an Action, the IAM Service restricts the IAM user's use of the
Action according to the role of the parent HyperStore user. Note that -- when specified as an "Action" in a policy
document -- all HyperStore administrative actions are prefixed by "admin: " (analogous to how S3 actions are
prefixed by "s3: "). For examples of policy documents granting HyperStore administrative permissions see
below the table.

IAM Action Permission
IAM User's Permission Scope Based On Parent

User's Role
System Admin Group Admin Regular User

admin:GetCloudianBill Get any user's bill
Get bill of any
user in own
group

Get parent
user's bill

admin:GetCloudianGroup
Get any group's pro-
file

Get own group's
profile

Not allowed

admin:GetCloudianGroupList Get list of groups Not allowed Not allowed

admin:GetCloudianMonitorEvents
Get event list for a
node

Not allowed Not allowed

admin:GetCloudianMonitorNodelist
Get list of monitored
nodes

Not allowed Not allowed

admin:GetCloudianMonitorHost
Get monitoring stats
for a node

Not allowed Not allowed

admin:GetCloudianMonitorRegion
Get monitoring stats
for a region

Not allowed Not allowed

admin:GetCloudianQosLimits
Get QoS limits for
any group or user

Get QoS limits for
own group or
users in own
group

Get parent
user's QoS lim-
its

1025

Chapter 14. IAM API

IAM Action Permission
IAM User's Permission Scope Based On Parent

User's Role
System Admin Group Admin Regular User

admin:GetCloudianSystemLicense
Get system license
info

Not allowed Not allowed

admin:GetCloudianSystemVersion
Get current system
version

Get current sys-
tem version

Get current sys-
tem version

admin:GetCloudianUsage
Get usage info for
any group or user

Get usage info for
own group or
users in own
group

Get parent
user's usage
info

admin:GetCloudianUser
Get any user's pro-
file

Get profile of any
user in own
group

Get parent
user's profile

admin:GetCloudianUserCredentials
Get any user's S3
credential

Get S3 credential
of any user in
own group

Get parent
user's S3 cre-
dential

admin:GetCloudianUserCredentialsList
Get any user's S3
credentials list

Get S3 cre-
dentials list of
any user in own
group

Get parent
user's S3 cre-
dentials list

admin:GetCloudianUserCredentialsListActive
Get any user's act-
ive S3 credentials
list

Get active S3 cre-
dentials list of
any user in own
group

Get parent
user's active S3
credentials list

admin:GetCloudianUserList
Get list of users in
any group

Get list of users in
own group

Not allowed

Note When a HyperStore regular user grants his IAM users administrative action permissions that are
allowed to a regular user -- such as "GetCloudianUsage" or "GetCloudianQosLimits" -- this gives the
IAM users permission to perform those actions in regard to the parent user's account. HyperStore
does not track usage, billing, or QoS information specifically for IAM users. This information is only
tracked for the parent HyperStore user accounts.

Below is an example of a simple IAM policy document for HyperStore administrative permissions:

{

"Version":"2012-10-17",

"Statement":[{

"Effect":"Allow",

"Action":"admin:GetCloudianBill",

"Resource":"*"

}

]

}

1026

14.4. IAM Extensions for Role-Based Access to HyperStore Admin Functions

Note You must include the "Resource" element and set it to "*". This is because Resource is a required
element in IAM policy document syntax.

14.4. IAM Extensions for Role-Based Access to HyperStore
Admin Functions
Subjects covered in this section:

l Introduction (immediately below)

l "Comparing the Admin API to the IAM API with RBAC Extensions" (page 1027)

l "Administrative Actions Supported by the IAM API" (page 1028)

l "Giving Administrative Action Privileges to IAM Users" (page 1030)

l "Using admin_client.py to Call the IAM Service Extensions for Administrative Actions" (page
1031)

The HyperStore IAM Service supports extensions to the IAM API that allow for role-based access control
(RBAC) for read-only HyperStore administrative functions. The extensions take the form of additions to the list
of valid values that can be specified by the "Action" request parameter in a request to the IAM Service. The sup-
ported Actions vary by the role of the requester: the IAM Service allows a HyperStore system administrator to
execute a wider range of Actions than can a group administrator or a regular user.

14.4.1. Comparing the Admin API to the IAM API with RBACExtensions
In HyperStore 7.0.x and older, the Admin API was the only administrative API for the system. In HyperStore 7.1
and newer, certain administrative functions can also be called through HyperStore's implementation of the IAM
API. The table below compares the HyperStore Admin API to the HyperStore IAM API with its extensions for
admin actions.

Admin API IAM API with RBAC Extensions
for Admin Actions

Implemented by the HyperStore Admin Service

l Enabled by default

l Runs on each node in each of your service regions (but with lim-
ited functionality in regions other than the default region)

l Listens on ports 19443 (HTTPS) and 18081 (HTTP, optional)

l Includes a bundled self-signed certificate for HTTPS

l Request authentication is by HTTP Basic Authentication

l Should only be exposed to internal traffic, not user traffic

l Makes no distinctions based on role of the requester -- all access
is system administrator level access

Implemented by the HyperStore
IAM Service

l Disabled by default

l If enabled, runs on each
node in your default region
only

l Listens on ports 16443
(HTTPS) and 16080
(HTTP)

l Includes a bundled self-
signed certificate for
HTTPS

l Request authentication is
by Amazon-compliant Sig-
nature v2 or v4

l Can be exposed to user

1027

Chapter 14. IAM API

Admin API IAM API with RBAC Extensions
for Admin Actions

traffic

l Makes distinctions based
on the role of the requester
-- system administrators
have a greater per-
missions scope than group
administrators, who have a
greater permission scope
than regular users (role-
based access control)

Proprietary RESTful API

l GET, PUT, POST, and DELETE are all supported, and are dif-
ferent operations with different consequences

l Request parameters are in lower camel case -- for example
"canonicalUserId" and "billingPeriod"

l Response bodies are JSON formatted

Compliant with Amazon's IAM API

l Only GET and POST are
supported and it doesn't
matter which you use
(what matters is the
"Action" parameter)

l Request parameters are in
upper camel case (Pascal
case) -- for example
"CanonicalUserId" and
"BillingPeriod"

l Response bodies are XML
formatted

Wide range of administrative tasks

The Admin API supports more than 80 different methods for retrieving
information about or making changes to the system

Narrow range of administrative
tasks

The IAM API extensions currently
support only 16 administrative
actions and these are all read-
only (none of the supported
actions make changes to the sys-
tem)

14.4.2. Administrative Actions Supported by the IAM API
The table below lists the administrative Actions supported by the HyperStore IAM Service, and how the
IAM Service restricts the use and implementation of these Actions according to the role (user account type) of
the requester.

Also as shown by the table, each administrative Action supported by the IAM Service corresponds to an exist-
ing method in the Admin API -- in the sense that the IAM Action supports the same request parameters as the
corresponding Admin API method (except the IAM version uses upper camel case for parameter names rather
than lower camel case) and returns the same response body elements as the corresponding Admin API
method (except the IAM version uses XML formatting for the response body rather than JSON). Consequently,
for details about the request parameters and response body associated with a particular administrative IAM
Action you can check the documentation of the corresponding Admin API method.

1028

14.4. IAM Extensions for Role-Based Access to HyperStore Admin Functions

IAM Action

Permission Scope Based On
Requester's Role Corresponding Admin API

MethodSystem
Admin

Group
Admin

Regular
User

GetCloudianBill

(see Important note below table)

Get any
user's bill

Get bill of
any user in
own group

Get own
bill

GET /billing

GetCloudianGroup
Get any
group's pro-
file

Get own
group's pro-
file

Not
allowed

GET /group

GetCloudianGroupList
Get list of
groups

Not
allowed

Not
allowed

GET /group/list

GetCloudianMonitorEvents
Get event
list for a
node

Not
allowed

Not
allowed

GET /monitor/events

GetCloudianMonitorNodelist
Get list of
monitored
nodes

Not
allowed

Not
allowed

GET /monitor/nodelist

GetCloudianMonitorHost
Get mon-
itoring stats
for a node

Not
allowed

Not
allowed

GET /monitor/host

GetCloudianMonitorRegion
Get mon-
itoring stats
for a region

Not
allowed

Not
allowed

GET /monitor

GetCloudianQosLimits

Get QoS
limits for
any group
or user

Get QoS
limits for
own group
or users in
own group

Get own
QoS limits

GET /qos/limits

GetCloudianSystemLicense
Get system
license info

Not
allowed

Not
allowed

GET /system/license

GetCloudianSystemVersion
Get current
system ver-
sion

Get current
system ver-
sion

Get current
system ver-
sion

GET /system/version

GetCloudianUsage

Get usage
info for any
group or
user

Get usage
info for own
group or
users in
own group

Get own
usage info

GET /usage

GetCloudianUser
Get any
user's pro-
file

Get profile
of any user
in own
group

Get own
profile

GET /user

GetCloudianUserCredentials
Get any
user's S3
credential

Get S3 cre-
dential of
any user in

Get own S3
credential

GET /user/credentials

1029

Chapter 14. IAM API

IAM Action

Permission Scope Based On
Requester's Role Corresponding Admin API

MethodSystem
Admin

Group
Admin

Regular
User

own group

GetCloudianUserCredentialsList

Get any
user's S3
credentials
list

Get S3 cre-
dentials list
of any user
in own
group

Get own S3
credentials
list

GET /user/credentials/list

GetCloudianUserCredentialsListActive

Get any
user's act-
ive S3 cre-
dentials list

Get active
S3 cre-
dentials list
of any user
in own
group

Get own
active S3
credentials
list

GET /user-
/credentials/list/active

GetCloudianUserList
Get list of
users in
any group

Get list of
users in
own group

Not
allowed

GET /user/list

IMPORTANT ! Before the "GetCloudianBill" Action can be used to retrieve billing data for a specified
user and billing period, you must either execute the Admin API method POST /billing to generate billing
data for that user and billing period, or else use the CMC's Account Activity page to generate billing
data for that user and billing period. There is currently no RBAC version of the POST /billing call that
generates user billing data.

14.4.3. Giving Administrative Action Privileges to IAM Users
Just as HyperStore users can use IAM policies to grant S3 action permissions to their IAM users, so too can
HyperStore users use IAM policies to grant HyperStore admin permissions to their IAM users. A typical use
case would be if a HyperStore system administrator wanted to create an IAM user who is allowed to perform
some of the system admin Actions but not all of them.

At a high level this feature works as follows:

l As is the case with S3 permissions, an IAM user by default has no admin permissions -- an IAM user
gains permissions only if she is assigned an IAM policy that specifies those permissions, and she gains
only the permissions specified in the policy.

l When an IAM policy grants an IAM user permission to an administrative action, the IAM user's per-
mission scope in respect to that action is the same as her parent HyperStore user's permission
scope (as identified in the table above). For example:

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a system administrator, the IAM user can get any HyperStore group's profile.

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a group administrator, the IAM user can (only) get that HyperStore group's profile.

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a regular user, the IAM Service will reject the IAM user's attempt to get any group

1030

14.4. IAM Extensions for Role-Based Access to HyperStore Admin Functions

profile. The IAM Service will not allow an IAM user to execute an administrative action that
her parent HyperStore user is not allowed to execute.

NoteWhen a HyperStore regular user grants his IAM users administrative action permissions
that are allowed to a regular user -- such as "GetCloudianUsage" or "GetCloudianQosLimits" --
this gives the IAM users permission to perform those actions in regard to the parent user's
account. For example an IAM user granted permission to the "GetCloudianUsage" action would
be able to get usage information for the parent user account; and if granted permission to
"GetCloudianQosLimits" would be able to get the QoS limits associated with the parent user
account. HyperStore does not track usage, billing, or QoS information specifically for IAM users.
This information is only tracked for the parent HyperStore user accounts.

For more information on using IAM polices to grant admin permissions to IAM users, see:

l "Supported IAM Policy Elements" (page 1023) (for the HyperStore IAM Service's support of policy doc-
ument elements)

l "Manage IAM Policy" (page 303) (for the CMC's support for creating IAM policies)

Note The CMC provides two tools for creating IAM policies -- a Visual Editor and a JSON Editor.
The Visual Editor does not support creating a policy that contains HyperStore admin per-
missions, but the JSON Editor does.

14.4.4. Using admin_client.py to Call the IAM Service Extensions for Admin-
istrative Actions
In the current HyperStore release, the CMC's built-in IAM client does not support calling the IAM extensions for
HyperStore administrative Actions. To perform administrative Actions through the HyperStore IAM Service you
can either:

l Use a third party tool that you customize to be able to support the HyperStore admin Action strings (as
listed in the table above) and their associated request parameters (detailed in the corresponding Admin
API links provided for each action in the table).

l Use the Python tool admin_client.py that comes bundled with HyperStore version 7.1 and later, as
described below.

If you are using the HyperStore Shell

The HyperStore Shell (HSH) does not support using the admin_client.py tool.

Note To use the admin_client.py tool you will need to supply the tool with S3 access credentials.
These can be your own credentials (see "Creating S3 Access Credentials for the Default System
Admin User" (page 993) if applicable) or those of an IAM user to whom you have granted admin-
istrative action permissions in an IAM policy. .

HyperStore includes an interactive tool (written in Python) that makes it easy to call the administrative Actions
that the HyperStore IAM Service supports. The tool is located in the following directory on each HyperStore
node:

/opt/cloudian/tools

To launch the tool:

1031

Chapter 14. IAM API

./admin_client.py

The first time that the tool is launched on a node, the tool automatically downloads and installs the required
Python packages if they are not already present on the node (this requires outbound internet access from the
node, in order for the tool to download the packages).

Once this completes, the tool's main menu displays:

Use option 1 to supply the tool with your S3 access credentials and to specify the host information (you can con-
nect to any HyperStore host) and the region in which the host resides.

You can then perform admin Actions by choosing from the menus. For each request type the tool will prompt
you to provide the needed parameter values (if any). The request response will display in the tool interface, in
XML format.

It may be helpful to have the HyperStore Help open as you use the tool -- specifically the Admin API section of
the Help. If needed you can check the documentation for the corresponding Admin API call as you provide the
information required for a given request type. For example if you're using the tool to call the "GetCloudianBill"
request and the tool prompts you for the "BillingPeriod", and you're not sure of the proper format for billing
period -- you can check the Help for GET /bill to get this information. See "Administrative Actions Supported
by the IAM API" (page 1028) to see which Admin API methods correspond to the administrative Actions that
the IAM Service supports.

Note Although the CMC's built-in IAM client does not currently support calling the admin Actions, the
CMC does support creating an IAM user, assigning that user to an IAM group, and creating an inline
policy for that group which includes admin Action permissions. The IAM user will then have those
admin Action permissions. However, the IAM user will not be able to execute those admin Actions
through the CMC -- he would need to use the Python tool, or a third party IAM client that's been cus-
tomized to support the IAM extensions.

14.5. SAML Support
HyperStore supports Security Assertion Markup Language (SAML 2.0) based access to S3 storage resources.
It does so by supporting the standard AWS IAM Service calls and Security Token Service calls that are needed
to set up and execute SAML based access. With SAML, federated users -- users who have been authenticated

1032

14.5. SAML Support

by a trusted identity provider system (IdP) external to HyperStore -- can be granted temporary access to Hyper-
Store S3 resources, subject to configurable permission restrictions.

At a high level, the process of setting up and using SAML access for HyperStore works as described below.

l "Downloading the HyperStore SAMLMetadata Document for IdP Setup" (page 1033)

l "Using the IAM Service to Create and Manage SAML Provider Resources" (page 1033)

l "Using the IAM Service to Create and Manage Roles" (page 1034)

l "Using the STS Service to Assume a Role" (page 1034)

14.5.1. Downloading the HyperStore SAMLMetadata Document for IdP
Setup
For each external identity provider system (IdP) that you expect to be a source of SAML assertions submitted to
HyperStore, you must load HyperStore's SAML Service Provider Metadata document into the IdP. This
metadata document is specific to your HyperStore system, and provides the IdP with information about how to
submit SAML assertions to HyperStore. The procedure for loading the metadata document into the IdP will
depend on the IdP that you are working with (refer to your IdP's documentation), but regardless of those par-
ticulars the URL for downloading the document from your HyperStore system is:

https://<cmc FQDN>:<cmc port>/static/saml-metadata.xml

For example:

https://cmc.enterprise.com:8443/static/saml-metadata.xml

If you have configured your load balancers so that external access to the CMC is through a different port
number than the CMC is listening on internally (which is 8443 by default), then before downloading the Hyper-
Store SAML Provider Metadata document run the following commands on your Puppet master node:

hsctl config set cmc.ports.loadBalancer.https=<load balancer port for CMC>
hsctl config apply saml

For example:

hsctl config set cmc.ports.loadBalancer.https=443
hsctl config apply saml

This will result in the correct CMC external access port being specified within the Service Provider Metadata
document.

14.5.2. Using the IAM Service to Create andManage SAMLProvider
Resources
HyperStore's IAM Service supports all the calls that you need to create and manage SAML provider resources
within the HyperStore IAM system. A SAML provider resource describes an IdP that will be a source of SAML
assertions submitted to HyperStore on behalf of federated users who have been authenticated by the IdP. The
relevant IAM calls are:

l CreateSAMLProvider

l ListSAMLProviders

l GetSAMLProvider

l UpdateSAMLProvider

l DeleteSAMLProvider

1033

Chapter 14. IAM API

You should create a SAML provider resource for each IdP that will be a trusted source of incoming SAML asser-
tions.

14.5.2.1. Limitations

In the current HyperStore release, the CMC does not support the IAM calls for creating and managing SAML
provider resources. You must use a third party or custom IAM client application to execute these calls to the
HyperStore IAM Service.

14.5.3. Using the IAM Service to Create andManage Roles
HyperStore's IAM Service supports all the calls that you need to create and manage IAM roles. As part of cre-
ating a role you define a "trust policy" that specifies who will be allowed to assume that role. To facilitate SAML
based access to HyperStore, you specify one or more SAML providers as the principal within a role's trust
policy. Once a role is created, you then specify the S3 permissions granted to that role, by either attaching a
managed permissions policy to the role or creating an inline permission policy specific to that role.

The relevant IAM calls are:

l CreateRole

l ListRoles

l GetRole

l UpdateRole

l UpdateAssumRolePolicy

l DeleteRole

l AttachRolePolicy

l ListAttachedRolePolicies

l DetachRolePolicy

l PutRolePolicy

l ListRolePolicies

l GetRolePolicy

l DeleteRolePolicy

14.5.3.1. Limitations

l In the current HyperStore release, the CMC does not support the IAM calls for creating and managing
roles. You must use a third party or custom IAM client application to execute these calls to the Hyper-
Store IAM Service.

l Role session policies and role tags are not supported.

l Support for Conditions in trust policies is limited; see CreateRole.

14.5.4. Using the STSService to Assume aRole
Once an IdP has been configured with HyperStore's SAML metadata XML document, and you have created a
SAML provider IAM resource for that IdP and specified that provider as part of an IAM role's trust policy, SAML
assertions from that provider can be used to allow federated users to assume that role by calling the Hyper-

1034

14.5. SAML Support

Store Security Token Service's AssumeRoleWithSAML API. This API initiates a role session during which prop-
erly authenticated and authorized users are provided with temporary S3 security credentials.

The HyperStore STS Service's AssumeRoleWithSAML API can be called by a third party or custom STS client
application.

Also, the CMC hosts a simple single-sign-on (SSO) page to which an IdP can submit a SAML assertion on
behalf of a user who has successfully logged into the IdP. The IdP can submit an HTTP POST to the Location
URL identified within the AssertionConsumerService attribute of the HyperStore SAML Metadata document.
Based on the submitted SAML assertion contents, the CMC will display a list of Roles that the user identified in
the assertion is eligible for. The user can select a Role from that list, and the CMC will then submit an
AssumeRoleWithSAML request for that Role to the HyperStore STS Service. The CMC then makes the
returned temporary security credentials available for the user to copy to their clipboard, and the user can then
paste the temporary credentials into an S3 application and perform the S3 operations permitted by the Role.

Note Users who obtain temporary security credentials, either through the CMC as described above or
through a third party client application's calls directly to the HyperStore STS Service, will not be able to
log in to the CMC to use it as their S3 client application. They must use a third party S3 client applic-
ation to perform S3 operations on the HyperStore storage system.

1035

Chapter 14. IAM API

14.5.4.1. Limitations

In the current HyperStore release, users with temporary security credentials can only access the HyperStore
S3 Service, and only by using a third party or custom S3 client application. Users with temporary security cre-
dentials cannot log into the CMC, and they cannot access the HyperStore IAM Service (even with a third party
or customer IAM client application).

[[can't log into CMC]]

1036

Chapter 15. STS API

15.1. Introduction

15.1.1. HyperStore Support for the AWSSTSAPI
To facilitate Security Assertion Markup Language (SAML) based access to HyperStore S3 services, Hyper-
Store provides limited support for the Amazon Web Services Security Token Service (STS) API:

l Only a few STS Actions are supported -- for details see Section 15.2 "Supported STS Actions".

l HyperStore does not allow users with temporary security credentials (obtained through the STS Ser-
vice) to perform IAM operations. The HyperStore IAM Service will reject requests that contain tem-
porary credentials. Users with temporary credentials can only access the S3 Service (within the
permission restrictions of the roles that such users assume).

l Users with temporary security credentials are not allowed to log into the CMC.

The default STS Service endpoint URLs for HTTP and HTTPS are:

l http://sts.<organization-domain>:16080

l https://sts.<organization-domain>:16443

Note Be sure to configure the STS endpoint domain in your DNS environment.

Note The STS Service uses the same listening ports as the IAM Service.

15.1.2. STSCommonRequest Parameters
From the "Common Parameters" section of the AWS STS API specification, HyperStore supports the para-
meters listed below. If a common parameter from that specification section is not listed below, HyperStore does
not support it.

l Action

l Version

l X-Amz-Algorithm

l X-Amz-Credential

l X-Amz-Date

l X-Amz-Security-Token (only supported for GetCallerIdentity requests)

l X-Amz-Signature

l X-Amz-SignedHeaders

15.1.3. STSCommon Errors
From the "Common Errors" section of the AWS STS API specification, HyperStore supports the parameters
listed below. If a common parameter from that specification section is not listed below, HyperStore does not

1037

https://docs.aws.amazon.com/STS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/STS/latest/APIReference/CommonErrors.html

Chapter 15. STS API

support it.

l AccessDeniedException

l InternalFailure

l InvalidAction

l InvalidClientTokenId

l InvalidParameterCombination

l InvalidParameterValue

l MissingAuthenticationToken

l MissingParameter

l ServiceUnavailable

l ValidationError

15.2. Supported STS Actions

15.2.1. AssumeRole
Returns a set of temporary security credentials that you can use to access S3 resources that you might not nor-
mally have access to.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: AssumeRole

Note HyperStore does not allow users with temporary security credentials to perform IAM operations.

15.2.1.1. Request Parameters

l DurationSeconds

l ExternalId

l RoleArn

l RoleSessionName

15.2.1.2. Response Elements

l AssumedRoleUser

l Credentials

15.2.1.3. Errors

l InvalidParameterValue

l NoSuchEntity

1038

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

15.2. Supported STS Actions

15.2.2. AssumeRoleWithSAML
Returns a set of temporary security credentials for users who have been authenticated via a SAML authen-
tication response.

HyperStore supports the parameters, elements, and errors listed below.

For action details and examples see the AWS documentation: AssumeRoleWithSAML

Note HyperStore does not allow users with temporary security credentials to perform IAM operations.

15.2.2.1. Request Parameters

l DurationSeconds

l PrincipalArn

l RoleArn

l SAMLAssertion

15.2.2.2. Response Elements

l AssumedRoleUser

l Audience

l Credentials

l Issuer

l NameQualifier

l Subject

l SubjectType

15.2.2.3. Errors

l ExpiredToken

l InvalidClientTokenId

l InvalidParameterValue

15.2.3. GetCallerIdentity
Returns details about the IAM user or role whose credentials are used to call the operation.

HyperStore supports the elements listed below.

For action details and examples see the AWS documentation:GetCallerIdentity

15.2.3.1. Response Elements

l Account

l Arn

1039

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html

Chapter 15. STS API

l UserId

15.2.3.2. Errors

l ExpiredToken

l InvalidClientTokenId

1040

Chapter 16. SQS API

16.1. HyperStore Support for the AWS SQS API
In support of the bucket notification feature, HyperStore provides limited support for the Amazon Web Services
Simple Queue Service (SQS) API. The queueing and processing of messages is implemented within the Hyper-
Store system. Bucket owners can use the S3 API operation PUT Bucket Notification to configure bucket noti-
fication so that when specified S3 operations occur within the bucket -- such as objects being uploaded to the
bucket or deleted from the bucket -- HyperStore publishes a notification message to a specified SQS queue.

In the current HyperStore release, there are these limitations to the bucket notification feature and the SQS Ser-
vice:

l A third party SQS client application must be used to interface with the HyperStore SQS Service to per-
form operations such as creating and configuring queues and receiving and deleting queued mes-
sages. The CMC does not yet support SQS operations.

l A third party S3 client application must be used to execute the PUT Bucket Notification operation. The
CMC does not yet support this S3 operation.

l For bucket notifications to an SQS queue to work, the bucket owner must also be the owner of the
SQS queue.

l HTTPS access to the SQS Service is not supported. Only regular HTTP access is supported.

l The HyperStore SQS Service supports many of the Actions from the Amazon SQS API, but not all of
them. For more detail see "SQS Supported Actions" (page 1042).

16.1.1. Enabling the Bucket Notification Feature and the SQSService
HyperStore's bucket notification feature and its SQS Service are disabled by default. To enable the notification
feature and the SQS Service:

1. In common.csv set sqs_enabled to true.

Note Also in common.csv you can optionally edit the sqs_endpoint setting, if you wish to have
an SQS Service endpoint different than the default SQS Service endpoint. The default SQS Ser-
vice endpoint is s3-sqs.<your-domain>.

2. In mts.properties.erb:

o Edit the cloudian.s3.unsupported property to remove notification from the list of unsupported S3
request types. Be sure to delete the preceding comma as well.

Before your edit:

cloudian.s3.unsupported=accelerate,requestPayment,analytics,inventory,metrics,select,no

tification

After your edit:

cloudian.s3.unsupported=accelerate,requestPayment,analytics,inventory,metrics,select

1041

Chapter 16. SQS API

o Below the cloudian.s3.unsupported property, add this new property to the file (it is not in the file
by default):

cloudian.s3.bucketnotification=true

3. Use the installer to push the configuration changes to the cluster and restart the S3 Service and the
SQS Service.

Once you have enabled the bucket notification feature and the SQS Service, then:

l A third party SQS client application can be used to submit requests to the HyperStore SQS Service,
such as for creating and configuring a queue. For HyperStore support of SQS Actions see "SQS Sup-
ported Actions" (page 1042). The default SQS Service endpoint URL is http://s3-sqs.<domain>:18090

l A third party S3 client application can be used to submit a PUT Bucket Notification request to the Hyper-
Store S3 Service, to configure notifications for an existing bucket. For HyperStore support of this S3 API
method see PUT Bucket Notification. As noted previously, the bucket owner must also be the SQS
queue owner.

Note Information about requests processed by the SQS Service are logged to cloudian-sqs-request.-
log, which exists on each node. For more information see "S3 Service Logs (including Auto-Tiering,
CRR, andWORM)" (page 619).

16.2. SQS Supported Actions
When enabled, the HyperStore SQS Service supports the following Actions from the Amazon Simple Queue
Service API. If an SQS Action is not listed here, HyperStore does not support it. For descriptions of each Action
and its associated parameters, elements, and errors, and for examples, see the AWS documentation links.

Note HyperStore currently only supports Standard queues. HyperStore does not support FIFO queues.

Supported Action AWS Documentation

ChangeMessageVisibility ChangeMessageVisibility

CreateQueue

HyperStore does not currently support these queue attributes and will ignore
them if included in the CreateQueue request:

l Policy

l RedrivePolicy

l KmsMasterKeyId

l KmsDataKeyReusePeriodSeconds

l FifoQueue

l ContentBasedDeduplication

CreateQueue

DeleteMessage DeleteMessage

DeleteQueue DeleteQueue

GetQueueAttributes GetQueueAttributes

1042

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

16.2. SQS Supported Actions

Supported Action AWS Documentation

GetQueueUrl GetQueueUrl

ListQueues ListQueues

PurgeQueue PurgeQueue

ReceiveMessage ReceiveMessage

SendMessage

The HyperStore S3 Service uses the SendMessage action to publish notification
messages to a queue. The SendMessage action is not intended to be used by
external SQS clients.

HyperStore does not currently support message attributes.

SendMessage

SetQueueAttributes

See CreateQueue for a list of queue attributes that HyperStore does not currently
support.

SetQueueAttributes

1043

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

This page left intentionally blank

Chapter 17. Open Source License Agree-
ments
Cloudian, Inc. acknowledges the redistribution of open source components under the licenses shown below.

Component or
Library License License URL Copyright

Airlift
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright 2011 Dain Sundstrom
dain@iq80.com Copyright 2010
Cedric Beust cedric@beust.com

Amazon S3 SDK
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright 2010-2014 Amazon.-
com, Inc. or its affiliates.

Antlr BSD http://www.antlr.org/license.html
Copyright (c) 2012 Terence Parr

and Sam Harwell

Apache Com-
mons

Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2018 The Apache
Software Foundation.

Apache
HTTPCom-
ponents

Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2005-2018 The
Apache Software Foundation

Apache Tomcat
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 1999-2018, The
Apache Software Foundation

Apache Velocity
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2005-2018 The
Apache Software Foundation

Avro
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2012 The Apache
Software Foundation."

Blueimp MIT https://opensource.org/licenses/MIT
Copyright © 2010 Sebastian
Tschan, https://blueimp.net

Bootstrap MIT https://opensource.org/licenses/MIT
Copyright (c) 2011-2018 Twitter,
Inc. Copyright (c) 2011-2018 The

Bootstrap Authors

Cassandra
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright 2009-2014 The Apache
Software Foundation

CentOS
GPL
and vari-
ous

http://mir-
ror.centos.org/centos/6/os/i386/EULA

Copyright © 2017 The CentOS Pro-
ject

D3 BSD
https://opensource.org/licenses/BSD-3-
Clause

Copyright 2010-2017 Mike
Bostock

DataStax Java
Driver

Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright 2012-2018, DataStax

DataTables MIT https://opensource.org/licenses/MIT
Copyright (C) 2008-2018, SpryMe-

dia Ltd.

Disruptor Apache http://www.apache.org/licenses/LICENSE- None

1045

Chapter 17. Open Source License Agreements

Component or
Library License License URL Copyright

2.0 2.0

DropWizard
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Gson
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright 2008 Google Inc.

Guava
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Hector MIT https://opensource.org/licenses/MIT Copyright (c) 2010 Ran Tavory

High-scale-lib
Public
Domain

https://github.com/stephenc/high-scale-
lib/blob/master/LICENSE

None

Jackson
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Java

Oracle
binary
code
license

http://www.or-
acle.com/technetwork/java/javase/
terms/license/index.html

Copyright © 1995, 2018, Oracle
and/or its affiliates.

JCraft BSD http://www.jcraft.com/jsch
Copyright (c) 2002-2015 Atsuhiko

Yamanaka, JCraft,Inc.

Jedis

Custom:
No lim-
itation
if copy-
right
include-
d

https://github.com/xetorthio/jedis/blob/
master/LICENSE.txt

Copyright (c) 2010 Jonathan Leibi-
usky

Jersey
CDDL
v1.1

https://jersey.java.net/license.html
Copyright ©2010-2017 Oracle Cor-

poration.

Jetty
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2016 The Eclipse
Foundation.

JNA
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Joda-Time
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright ©2002-2017 Joda.org.

Jquery MIT https://opensource.org/licenses/MIT
Copyright JS Foundation and
other contributors, https://js.-

foundation/

jsviews MIT https://opensource.org/licenses/MIT
Copyright (c) 2015 Boris Moore,

https://-
github.com/BorisMoore/jsviews

JYaml BSD http://jyaml.sourceforge.net/license.html None

log4j
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 1999-2018 The
Apache Software Foundation.

1046

Component or
Library License License URL Copyright

LZ4
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Netty
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

OpenCSV
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Paranamer BSD
https://github.com/paul-ham-
mant/paranamer/blob/
master/LICENSE.txt

Copyright (c) 2006 Paul Hammant
& ThoughtWorks Inc

Puppet
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright (C) 2005-2016 Puppet,
Inc.

Redis
3-
clause
BSD

http://redis.io/topics/license
Copyright (c) 2006-2015, Sal-

vatore Sanfilippo

RocksDB
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright (c) 2011 The LevelDB
Authors.

SLF4J MIT https://opensource.org/licenses/MIT Copyright (c) 2004-2017 QOS.ch

SnakeYaml
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

Snappy
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

None

SNMP4J
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2003-2018,
SNMP4J.org

Spring
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright (c) 2013 GoPivotal, Inc.
Copyright (c) 2000-2011 INRIA,
France Telecom Copyright (c)
1999-2009, OW2 Consortium

<http://www.ow2.org/>

Thrift
Apache
2.0

http://www.apache.org/licenses/LICENSE-
2.0

Copyright © 2005-2018 The
Apache Software Foundation

UUID MIT https://opensource.org/licenses/MIT
Copyright © 2003-2013 Johann

Burkard

1047

	Contents
	What's New in HyperStore 7.2
	AWS API Support -- New Features and Enhancements
	Admin API -- New Features and Enhancements
	System Operations -- New Features and Enhancements
	Documentation -- New Features and Enhancements

	Chapter 1. Introduction
	1.1. HyperStore Documentation
	1.2. HyperStore Overview
	1.3. Licensing and Auditing
	1.3.1. License Expiration
	1.3.2. Licensed Maximum On-Premise Storage Usage
	1.3.3. Licensed Maximum Tiered Storage Usage
	1.3.4. WORM (Object Lock) License
	1.3.5. HyperIQ License
	1.3.6. License Updating
	1.3.7. Auditing

	1.4. HyperStore Services
	1.4.1. S3 Service
	1.4.2. HyperStore Service and the HSFS
	1.4.3. Cassandra Service
	1.4.4. Redis Credentials and Redis QoS Services
	1.4.5. Redis Monitor Service
	1.4.6. Admin Service
	1.4.7. IAM, STS, and SQS Services
	1.4.8. Cloudian Management Console (CMC) Service
	1.4.9. Supporting Services

	1.5. System Diagrams
	1.5.1. System Levels
	1.5.2. Service Interconnections
	1.5.3. Services Distribution -- 3 Nodes, Single DC
	1.5.4. Services Distribution -- Multi-DC, Single Region
	1.5.5. Services Distribution -- Multi-Region
	1.5.6. Specialized Services Availability
	1.5.7. S3 PUT Processing Flow
	1.5.8. S3 GET Processing Flow
	1.5.9. Data Freshness for Replicated Object Reads
	1.5.10. Dynamic Consistency Levels
	1.5.11. How vNodes Work

	Chapter 2. Getting Started with a New HyperStore System
	Chapter 3. Upgrading Your HyperStore Software Version
	3.1. Preparing to Upgrade Your System
	3.1.1. Additional Upgrade Preparation If Your System Currently Has Failed Disks
	3.1.2. Additional Upgrade Preparation If You Are Using Elasticsearch

	3.2. Upgrading Your System
	3.2.1. Upgrade Failure and Roll-Back

	3.3. Verifying Your System Upgrade
	3.4. Installing a Patch
	3.4.1. Reapplying the Patch in the Case of Installation Errors
	3.4.2. Reverting a Patch
	3.4.3. Adding Nodes to a Patched System

	Chapter 4. Working with HyperStore Major Features
	4.1. Management Interfaces and Tools
	4.1.1. HyperStore Management Interfaces and Tools -- Feature Overview

	4.2. Support for AWS APIs
	4.2.1. Support for AWS APIs -- Feature Overview

	4.3. Nodes, Data Centers, and Regions
	4.3.1. Nodes, Data Centers, and Regions Feature Overview
	4.3.2. Capacity Monitoring and Expansion
	4.3.3. Using the CMC with Multiple DCs or Regions

	4.4. Storage Policies
	4.4.1. Storage Policies Feature Overview
	4.4.2. Consistency Levels
	4.4.3. Object Metadata Replication
	4.4.4. System Metadata Replication
	4.4.5. Creating and Managing Storage Policies
	4.4.6. Assigning a Storage Policy to a Bucket
	4.4.7. Finding an Object's Replicas or EC Fragments
	4.4.8. Storage Policy Resilience to Downed Nodes

	4.5. Security Features
	4.5.1. HyperStore Shell (HSH)
	4.5.2. HyperStore Firewall
	4.5.3. Server-Side Encryption
	4.5.4. FIPS Support
	4.5.5. HTTPS Support (TLS/SSL)
	4.5.6. Secure Delete
	4.5.7. WORM (Object Lock)

	4.6. User Provisioning and LDAP Integration
	4.6.1. User Provisioning and LDAP Integration Feature Overview
	4.6.2. Provisioning Groups
	4.6.3. Provisioning Users
	4.6.4. LDAP Integration

	4.7. Quality of Service Controls
	4.7.1. Quality of Service (QoS) Feature Overview
	4.7.2. Enabling QoS Enforcement
	4.7.3. Setting QoS Limits for Groups
	4.7.4. Setting QoS Limits for Users

	4.8. Usage Reporting and Billing
	4.8.1. Usage Reporting and Billing Feature Overview
	4.8.2. Enabling Advanced Usage Reporting Features
	4.8.3. Validating Storage Usage Data
	4.8.4. Setting Usage Data Retention Periods
	4.8.5. Generating a Usage Report
	4.8.6. Creating Rating Plans for Billing
	4.8.7. Assigning Rating Plans to Users
	4.8.8. Creating a Whitelist for Free Traffic
	4.8.9. Generating Billing Data for a User or Group

	4.9. Automated Data Repair
	4.9.1. Automated Data Repair Feature Overview
	4.9.2. Configuring Automatic Data Repair
	4.9.3. Checking Data Repair Status
	4.9.4. Disabling or Stopping Data Repairs

	4.10. Automated Disk Management
	4.10.1. Automated Disk Management Feature Overview
	4.10.2. Configuring Disk Usage Balancing
	4.10.3. Triggering a Disk Usage Balance Check
	4.10.4. Configuring Disk Failure Handling
	4.10.5. Checking Disk Usage and Health Status
	4.10.6. Disk Error Alerts
	4.10.7. Responding to a Disabled Disk

	4.11. Object Metadata
	4.11.1. Object Metadata Feature Overview
	4.11.2. Creating Object Metadata and Tags
	4.11.3. Retrieving Object Metadata and Tags
	4.11.4. Object Metadata Structure in Cassandra
	4.11.5. Elasticsearch Integration for Object Metadata

	4.12. Auto-Tiering
	4.12.1. Auto-Tiering Feature Overview
	4.12.2. Setting Up Auto-Tiering
	4.12.3. Accessing Auto-Tiered Objects

	4.13. Cross-Region Replication
	4.13.1. Cross-Region Replication Feature Overview
	4.13.2. Configuring Cross-Region Replication for a Bucket

	4.14. Smart Support
	4.14.1. Smart Support and Diagnostics Feature Overview
	4.14.2. Configuring Smart Support and Node Diagnostics
	4.14.3. Executing Node Diagnostics Collection

	Chapter 5. Cloudian Management Console (CMC)
	5.1. Dashboard
	5.1.1. Dashboard

	5.2. Analytics
	5.2.1. Cluster Usage
	5.2.2. Capacity Explorer
	5.2.3. Usage By Users & Groups
	5.2.4. Object Locator

	5.3. Buckets
	5.3.1. Add a Bucket
	5.3.2. Set Bucket Properties
	5.3.3. Delete a Bucket

	5.4. Objects
	5.4.1. Create or Delete a Folder
	5.4.2. Upload an Object
	5.4.3. Set Object Properties
	5.4.4. List or Search for Objects
	5.4.5. Download an Object
	5.4.6. Restore an Auto-Tiered Object
	5.4.7. Delete an Object

	5.5. Users & Groups
	5.5.1. Manage Users
	5.5.2. Manage Groups
	5.5.3. Rating Plan
	5.5.4. Account Activity
	5.5.5. Whitelist
	5.5.6. Set Quality of Service (QoS) Controls

	5.6. IAM
	5.6.1. Manage IAM User
	5.6.2. Manage IAM Group
	5.6.3. Manage IAM Policy

	5.7. Cluster
	5.7.1. Data Centers
	5.7.2. Node Status
	5.7.3. Node Activity
	5.7.4. Node Advanced
	5.7.5. Cluster Information
	5.7.6. Configuration Settings
	5.7.7. Storage Policies
	5.7.8. Repair Status
	5.7.9. Operation Status

	5.8. Alerts
	5.8.1. Alerts
	5.8.2. Alert Rules
	5.8.3. How HyperStore Implements Alerts

	5.9. My Account
	5.9.1. Profile
	5.9.2. Security Credentials

	5.10. Customizing the CMC
	5.10.1. Showing/Hiding CMC UI Functions
	5.10.2. Rebranding the CMC UI
	5.10.3. Configuring a Login Page Banner
	5.10.4. Configuring a Login Page Acknowledgment Gate
	5.10.5. Implementing Single Sign-On for the CMC

	Chapter 6. Node and Cluster Operations
	6.1. Starting and Stopping Services
	6.1.1. Start or Stop Services on All Nodes in the Cluster
	6.1.2. Start or Stop Services on One Node
	6.1.3. Shutting Down or Rebooting a Node
	6.1.4. Automatic Service Start on Node Boot-Up

	6.2. Adding Nodes
	6.2.1. Special Requirements if an Existing Node is Down
	6.2.2. Preparing to Add Nodes
	6.2.3. Adding Nodes

	6.3. Adding a Data Center
	6.3.1. Special Requirements if an Existing Node is Down or Unreachable
	6.3.2. Preparing to Add a Data Center
	6.3.3. Adding a Data Center

	6.4. Adding a Region
	6.4.1. Preparing to Add a Region
	6.4.2. Adding a Region

	6.5. Removing a Node
	6.5.1. Preparing to Remove a Node
	6.5.2. Removing a Node

	6.6. Replacing a Node
	6.7. Restoring a Node That Has Been Offline
	6.7.1. 6.7.1 Repairing a Node That's Been Down for Longer than the Proactive Repair Limit

	6.8. Changing a Node's IP Address
	6.9. Backing Up and Restoring a Cluster
	6.9.1. Backing Up an Entire Cluster
	6.9.2. Restoring an Entire Cluster

	6.10. Change Node Role Assignments
	6.10.1. Move the Redis Credentials Master or QoS Master Role
	6.10.2. Move or Add a Redis Credentials Slave or Redis QoS Slave
	6.10.3. Move the Cassandra Seed Role
	6.10.4. Reduce or Change the List of CMC Hosts
	6.10.5. Move the Redis Monitor Primary or Backup Role
	6.10.6. Move the Cron Job Primary or Backup Role
	6.10.7. Move the Puppet Master Primary or Backup Role
	6.10.8. Change Internal NTP Servers or External NTP Servers

	6.11. Cron Jobs and Automated System Maintenance
	6.11.1. System cron Jobs
	6.11.2. Scheduled Auto-Repair
	6.11.3. Cassandra Data Compaction

	Chapter 7. Disk Operations
	7.1. Disabling a HyperStore Data Disk
	7.1.1. The Impact of Disabling a Disk
	7.1.2. Disabling a Disk

	7.2. Enabling a HyperStore Data Disk
	7.2.1. The Impact of Enabling a Disk
	7.2.2. Enabling a Disabled Disk

	7.3. Replacing a HyperStore Data Disk
	7.3.1. The Impact of Replacing a Disk
	7.3.2. Replacing a Disk

	7.4. Replacing a Cassandra Disk
	7.5. Responding to Data Disks Nearing Capacity
	7.6. Responding to Cassandra Disks Nearing Capacity
	7.7. Adding Disks is Not Supported

	Chapter 8. System Monitoring
	8.1. Using the CMC to Monitor Your HyperStore System
	8.2. Cloudian HyperIQ
	8.3. Additional Monitoring Tools
	8.3.1. Using the Admin API to Monitor HyperStore
	8.3.2. Doing an HTTP Health Check
	8.3.3. Using JMX to Monitor Java-Based HyperStore Services
	8.3.4. Using Native Linux Utilities for System Resource Monitoring
	8.3.5. Using nodetool to Monitor Cassandra
	8.3.6. Using the Redis CLI to Monitor Redis

	Chapter 9. System Configuration
	9.1. CMC's Configuration Settings Page
	9.2. Installer Advanced Configuration Options
	9.3. Pushing Configuration File Edits to the Cluster and Restarting Services
	9.3.1. Puppet Overview
	9.3.2. Installation Staging Directory
	9.3.3. Using the Installer to Push Configuration Changes and Restart Services
	9.3.4. Option for Triggering a Puppet Sync-Up from the Command Line
	9.3.5. Excluding a Down Node from an Installer-Driven Configuration Push
	9.3.6. Automatic Puppet Sync-Up on an Interval

	9.4. Using the HSH to Manage Configuration Files
	9.5. HyperStore Configuration Files
	9.5.1. common.csv
	9.5.2. hyperstore-server.properties.erb
	9.5.3. mts.properties.erb
	9.5.4. mts-ui.properties.erb
	9.5.5. Other Configuration Files
	9.5.6. Using JMX to Dynamically Change Configuration Settings

	9.6. Configuration Special Topics
	9.6.1. Anti-Virus Software
	9.6.2. NTP Automatic Set-Up
	9.6.3. Changing S3, Admin, or CMC Listening Ports
	9.6.4. Changing S3, Admin, CMC, or IAM Service Endpoints
	9.6.5. Tuning HyperStore Performance Parameters
	9.6.6. Vanity Domains for S3 Buckets

	Chapter 10. Logging
	10.1. HyperStore Logs
	10.1.1. Admin Service Logs
	10.1.2. Cassandra Logs
	10.1.3. CMC Log
	10.1.4. HyperStore Firewall Log
	10.1.5. HyperStore Service Logs
	10.1.6. HyperStore Shell Log
	10.1.7. IAM Service Logs
	10.1.8. Monitoring Agent and Collector Logs
	10.1.9. Phone Home (Smart Support) Log
	10.1.10. Redis and Redis Monitor Logs
	10.1.11. S3 Service Logs (including Auto-Tiering, CRR, and WORM)
	10.1.12. SQS Service Logs

	10.2. Log Configuration Settings
	10.3. Aggregating Logs to a Central Server
	10.4. Setting Up Elastic Stack for S3 Request Traffic Analysis
	10.4.1. Installing Elasticsearch, Kibana, and Logstash
	10.4.2. Installing Filebeat
	10.4.3. Configuring Kibana for Custom Metrics Visualizations

	10.5. Using the HSH to View Logs

	Chapter 11. Commands
	11.1. hsstool
	11.1.1. hsstool cleanup
	11.1.2. hsstool cleanupec
	11.1.3. hsstool info
	11.1.4. hsstool ls
	11.1.5. hsstool metadata
	11.1.6. hsstool opctl
	11.1.7. hsstool opstatus
	11.1.8. hsstool proactiverepairq
	11.1.9. hsstool rebalance
	11.1.10. hsstool repair
	11.1.11. hsstool repaircassandra
	11.1.12. hsstool repairec
	11.1.13. hsstool repairqueue
	11.1.14. hsstool ring
	11.1.15. hsstool status
	11.1.16. hsstool trmap
	11.1.17. hsstool whereis

	11.2. Redis Monitor Commands
	11.2.1. get cluster
	11.2.2. get master
	11.2.3. get nodes
	11.2.4. get clients
	11.2.5. enable monitoring
	11.2.6. disable monitoring
	11.2.7. enable notifications
	11.2.8. disable notifications
	11.2.9. set master
	11.2.10. add node
	11.2.11. add client
	11.2.12. test dc partition
	11.2.13. test split brain
	11.2.14. disable dc partition monitoring
	11.2.15. enable dc partition monitoring
	11.2.16. disable split brain monitoring
	11.2.17. enable split brain monitoring
	11.2.18. resolve split brain

	Chapter 12. Admin API
	12.1. Introduction
	12.1.1. HyperStore Admin API Introduction
	12.1.2. Admin API Methods List
	12.1.3. Common Request and Response Headers
	12.1.4. Common Response Status Codes
	12.1.5. cURL Examples
	12.1.6. HTTP and HTTPS for Admin API Access
	12.1.7. HTTP/S Basic Authentication for Admin API Access
	12.1.8. Admin API Logging

	12.2. billing
	12.2.1. GET /billing
	12.2.2. POST /billing
	12.2.3. billing Query Parameters
	12.2.4. billing Objects

	12.3. bppolicy
	12.3.1. GET /bppolicy/bucketsperpolicy
	12.3.2. GET /bppolicy/listpolicy
	12.3.3. bppolicy Query Parameters
	12.3.4. bppolicy Objects

	12.4. bucketops
	12.4.1. GET /bucketops/id
	12.4.2. GET /bucketops/gettags
	12.4.3. POST /bucketops/purge
	12.4.4. bucketops Query Parameters
	12.4.5. bucketops Objects

	12.5. group
	12.5.1. DELETE /group
	12.5.2. GET /group
	12.5.3. GET /group/list
	12.5.4. GET /group/ratingPlanId
	12.5.5. POST /group
	12.5.6. POST /group/ratingPlanId
	12.5.7. PUT /group
	12.5.8. group Query Parameters
	12.5.9. group Objects

	12.6. monitor
	12.6.1. DELETE /monitor/notificationrule
	12.6.2. GET /monitor/events
	12.6.3. GET /monitor/nodelist
	12.6.4. GET /monitor/host
	12.6.5. GET /monitor
	12.6.6. GET /monitor/history
	12.6.7. GET /monitor/notificationrules
	12.6.8. POST /monitor/acknowledgeevents
	12.6.9. POST /monitor/notificationruleenable
	12.6.10. POST /monitor/notificationrule
	12.6.11. PUT /monitor/notificationrule
	12.6.12. monitor Query Parameters
	12.6.13. monitor Objects

	12.7. permissions
	12.7.1. GET /permissions/publicUrl
	12.7.2. POST /permissions/publicUrl
	12.7.3. permissions Query Parameters
	12.7.4. permissions Objects

	12.8. qos
	12.8.1. DELETE /qos/limits
	12.8.2. GET /qos/limits
	12.8.3. POST /qos/limits
	12.8.4. qos Query Parameters
	12.8.5. qos Objects

	12.9. ratingPlan
	12.9.1. DELETE /ratingPlan
	12.9.2. GET /ratingPlan
	12.9.3. GET /ratingPlan/list
	12.9.4. POST /ratingPlan
	12.9.5. PUT /ratingPlan
	12.9.6. ratingPlan Query Parameters
	12.9.7. ratingPlan Objects

	12.10. system
	12.10.1. GET /system/audit
	12.10.2. GET /system/bucketcount
	12.10.3. GET /system/bucketlist
	12.10.4. GET /system/bytecount
	12.10.5. GET /system/bytestiered
	12.10.6. GET /system/groupbytecount
	12.10.7. GET /system/groupobjectcount
	12.10.8. GET /system/license
	12.10.9. GET system/objectcount
	12.10.10. GET /system/objectlockenabled
	12.10.11. GET /system/version
	12.10.12. POST /system/processProtectionPolicy
	12.10.13. POST /system/repairusercount
	12.10.14. system Query Parameters
	12.10.15. system Objects

	12.11. tiering
	12.11.1. DELETE /tiering/credentials
	12.11.2. DELETE /tiering/azure/credentials
	12.11.3. DELETE /tiering/spectra/credentials
	12.11.4. GET /tiering/credentials
	12.11.5. GET /tiering/credentials/src
	12.11.6. GET /tiering/azure/credentials
	12.11.7. GET /tiering/spectra/credentials
	12.11.8. POST /tiering/credentials
	12.11.9. POST /tiering/azure/credentials
	12.11.10. POST /tiering/spectra/credentials
	12.11.11. tiering Query Parameters

	12.12. usage
	12.12.1. DELETE /usage
	12.12.2. GET /usage
	12.12.3. POST /usage/bucket
	12.12.4. POST /usage/repair
	12.12.5. POST /usage/repair/bucket
	12.12.6. POST /usage/repair/dirtyusers
	12.12.7. POST /usage/repair/user
	12.12.8. POST /usage/rollup
	12.12.9. POST /usage/storage
	12.12.10. POST /usage/storageall
	12.12.11. usage Query Parameters
	12.12.12. usage Objects

	12.13. user
	12.13.1. DELETE /user
	12.13.2. DELETE /user/credentials
	12.13.3. DELETE /user/deleted
	12.13.4. GET /user
	12.13.5. GET /user/credentials
	12.13.6. GET /user/credentials/list
	12.13.7. GET /user/credentials/list/active
	12.13.8. GET /user/list
	12.13.9. GET /user/password/verify
	12.13.10. GET /user/ratingPlan
	12.13.11. GET /user/ratingPlanId
	12.13.12. POST /user
	12.13.13. POST /user/credentials
	12.13.14. POST /user/credentials/status
	12.13.15. POST /user/password
	12.13.16. POST /user/ratingPlanId
	12.13.17. PUT /user
	12.13.18. PUT /user/credentials
	12.13.19. user Query Parameters
	12.13.20. user Objects

	12.14. whitelist
	12.14.1. GET /whitelist
	12.14.2. POST /whitelist
	12.14.3. POST /whitelist/list
	12.14.4. whitelist Query Parameters
	12.14.5. whitelist Objects

	Chapter 13. S3 API
	13.1. Introduction
	13.1.1. HyperStore Support for the AWS S3 API
	13.1.2. S3 Client Application Options
	13.1.3. Authenticating Requests (AWS Signature Version 4)
	13.1.4. Access Control List (ACL) Support
	13.1.5. S3 Common Request and Response Headers
	13.1.6. S3 Error Responses
	13.1.7. HyperStore Extensions to the S3 API

	13.2. Supported S3 Operations
	13.2.1. AbortMultipartUpload
	13.2.2. CompleteMultipartUpload
	13.2.3. CopyObject
	13.2.4. CreateBucket
	13.2.5. CreateMultipartUpload
	13.2.6. DeleteBucket
	13.2.7. DeleteBucketCors
	13.2.8. DeleteBucketEncryption
	13.2.9. DeleteBucketLifecycle
	13.2.10. DeleteBucketPolicy
	13.2.11. DeleteBucketReplication
	13.2.12. DeleteBucketTagging
	13.2.13. DeleteBucketWebsite
	13.2.14. DeleteObject
	13.2.15. DeleteObjects
	13.2.16. DeleteObjectTagging
	13.2.17. GetBucketAcl
	13.2.18. GetBucketCors
	13.2.19. GetBucketEncryption
	13.2.20. GetBucketLifecycle
	13.2.21. GetBucketLocation
	13.2.22. GetBucketLogging
	13.2.23. GetBucketNotificationConfiguration
	13.2.24. GetBucketPolicy
	13.2.25. GetBucketReplication
	13.2.26. GetBucketTagging
	13.2.27. GetBucketVersioning
	13.2.28. GetBucketWebsite
	13.2.29. GetObject
	13.2.30. GetObjectAcl
	13.2.31. GetObjectLegalHold
	13.2.32. GetObjectLockConfiguration
	13.2.33. GetObjectRetention
	13.2.34. GetObjectTagging
	13.2.35. GetObjectTorrent
	13.2.36. HeadBucket
	13.2.37. HeadObject
	13.2.38. ListBuckets
	13.2.39. ListMultipartUploads
	13.2.40. ListObjects
	13.2.41. ListObjectsV2
	13.2.42. ListObjectVersions
	13.2.43. ListParts
	13.2.44. OPTIONS Object
	13.2.45. POST Object
	13.2.46. PutBucketAcl
	13.2.47. PutBucketCors
	13.2.48. PutBucketEncryption
	13.2.49. PutBucketLifecycle
	13.2.50. PutBucketLogging
	13.2.51. PutBucketNotificationConfiguration
	13.2.52. PutBucketPolicy
	13.2.53. PutBucketReplication
	13.2.54. PutBucketTagging
	13.2.55. PutBucketVersioning
	13.2.56. PutBucketWebsite
	13.2.57. PutObject
	13.2.58. PutObjectAcl
	13.2.59. PutObjectLegalHold
	13.2.60. PutObjectLockConfiguration
	13.2.61. PutObjectRetention
	13.2.62. PutObjectTagging
	13.2.63. RestoreObject
	13.2.64. UploadPart
	13.2.65. UploadPartCopy

	Chapter 14. IAM API
	14.1. Introduction
	14.1.1. HyperStore Support for the AWS IAM API
	14.1.2. IAM Client Application Options
	14.1.3. IAM Common Request Parameters
	14.1.4. IAM Common Errors

	14.2. Supported IAM Actions
	14.2.1. AddUserToGroup
	14.2.2. AttachGroupPolicy
	14.2.3. AttachRolePolicy
	14.2.4. AttachUserPolicy
	14.2.5. CreateAccessKey
	14.2.6. CreateGroup
	14.2.7. CreatePolicy
	14.2.8. CreateRole
	14.2.9. CreateSAMLProvider
	14.2.10. CreateUser
	14.2.11. DeleteAccessKey
	14.2.12. DeleteGroup
	14.2.13. DeleteGroupPolicy
	14.2.14. DeletePolicy
	14.2.15. DeleteRole
	14.2.16. DeleteRolePolicy
	14.2.17. DeleteSAMLProvider
	14.2.18. DeleteUser
	14.2.19. DeleteUserPolicy
	14.2.20. DetachGroupPolicy
	14.2.21. DetachRolePolicy
	14.2.22. DetachUserPolicy
	14.2.23. GetGroup
	14.2.24. GetGroupPolicy
	14.2.25. GetPolicy
	14.2.26. GetPolicyVersion
	14.2.27. GetRole
	14.2.28. GetRolePolicy
	14.2.29. GetSAMLProvider
	14.2.30. GetUser
	14.2.31. GetUserPolicy
	14.2.32. ListAccessKeys
	14.2.33. ListAttachedGroupPolicies
	14.2.34. ListAttachedRolePolicies
	14.2.35. ListAttachedUserPolicies
	14.2.36. ListEntitiesForPolicy
	14.2.37. ListGroupPolicies
	14.2.38. ListGroups
	14.2.39. ListGroupsForUser
	14.2.40. ListPolicies
	14.2.41. ListPolicyVersions
	14.2.42. ListRolePolicies
	14.2.43. ListRoles
	14.2.44. ListSAMLProviders
	14.2.45. ListUserPolicies
	14.2.46. ListUsers
	14.2.47. PutGroupPolicy
	14.2.48. PutRolePolicy
	14.2.49. PutUserPolicy
	14.2.50. RemoveUserFromGroup
	14.2.51. UpdateAccessKey
	14.2.52. UpdateAssumeRolePolicy
	14.2.53. UpdateGroup
	14.2.54. UpdateRole
	14.2.55. UpdateRoleDescription
	14.2.56. UpdateSAMLProvider
	14.2.57. UpdateUser

	14.3. Supported IAM Policy Elements
	14.3.1. Policy Document Content for Granting S3 or IAM Permissions
	14.3.2. Policy Document Content for Granting HyperStore Administrative Permissions

	14.4. IAM Extensions for Role-Based Access to HyperStore Admin Functions
	14.4.1. Comparing the Admin API to the IAM API with RBAC Extensions
	14.4.2. Administrative Actions Supported by the IAM API
	14.4.3. Giving Administrative Action Privileges to IAM Users
	14.4.4. Using admin_client.py to Call the IAM Service Extensions for Administrative Actions

	14.5. SAML Support
	14.5.1. Downloading the HyperStore SAML Metadata Document for IdP Setup
	14.5.2. Using the IAM Service to Create and Manage SAML Provider Resources
	14.5.3. Using the IAM Service to Create and Manage Roles
	14.5.4. Using the STS Service to Assume a Role

	Chapter 15. STS API
	15.1. Introduction
	15.1.1. HyperStore Support for the AWS STS API
	15.1.2. STS Common Request Parameters
	15.1.3. STS Common Errors

	15.2. Supported STS Actions
	15.2.1. AssumeRole
	15.2.2. AssumeRoleWithSAML
	15.2.3. GetCallerIdentity

	Chapter 16. SQS API
	16.1. HyperStore Support for the AWS SQS API
	16.1.1. Enabling the Bucket Notification Feature and the SQS Service

	16.2. SQS Supported Actions

	Chapter 17. Open Source License Agreements

