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Processing capabilities of supercomputers are improving 

at a rapid pace. However, I/O bandwidth is advancing at a 

much slower rate. This is one of the most pressing matters 

facing large-scale scientific simulations. Simulations can 

generate many tera- or petabytes of data, meaning that it 

is difficult to save all important data to permanent storage 

as a result of limited storage capacity or time-consuming 

I/O operations [1-3]. In-transit co-processing can instead 

be used to analyze and visualize data for each time step 

while it is generated. 

 

In-transit co-processing is typically performed on a 

separate group of nodes, which we call transit nodes. 

Utilizing a separate node group means that co-processing 

can be performed asynchronously during the simulation 

stage, resulting in a less strict time limitation compared to 

other solutions.  The data transfers required to perform 

in-transit co-processing can be accelerated by 

compressing the simulation data. However, using a lossy 

compression method could lower the accuracy and detail 

of regions of interest in the data. It could instead be 

preferable to selectively compress regions based on their 

contribution to the simulated phenomenon. Reducing 

regions which are not of interest would result in less time-

consuming data transfers, without any significant loss in 

data quality. 

We have developed an approach, called ATCO, to 

accelerate in-transit co-processing for large-scale 

simulations which utilize multivariate and temporal data 

sets in the form of structured rectilinear grids. In these 

grids, lightweight computations are adaptively performed 

in-situ to accelerate the simulation, data reduction, data 

transfers and co-processing. The importance of blocks, 

convex and contiguous data regions which make up the 

simulation data, are determined by utilizing various 

importance metrics and filters. Such information can then 

be used to identify important regions, down-sample, 

reduce, compress or simply remove parts of the data based 

on user-defined constraints. By this approach, we strive to 

reduce the data size and the in-transit data transfer time by 

utilizing multiple reduction and compression methods 

based on the entropy of the data. The loss of detail in 

regions of interest can thus be kept at a minimum. 

 

Determining and analyzing regions of interest in three-

dimensional (3D) data sets has been an important topic in 

many different fields of research, and has as such been 

explored in many related works [4-8]. However, such 

research has generally been limited in scope or in its 

ability to perform multiple analyses to determine block 

importance. Our approach improves upon this related 

work by being able to efficiently handle multiple 

importance analyses and by adaptively utilizing multiple 

different compression and reduction strategies. 

 

Close to our work is a paper by Dorier et al. [4], in which 

various importance metrics were used to dynamically 

reduce unimportant data. Their approach specifically 

targeted in-situ visualization and supported elementary 

data reduction. In addition, they utilized load balancing 

based on a random distribution to balance the load among 

the available compute nodes. However, their approach 

only supported the use of a single reduction method. 

 

Our approach consists of three stages: the in-situ stage, 
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where importance is calculated and which compression 

method to use is determined for each block, the 

distribution stage, where generated simulation data is 

compressed, load balanced and transferred to transit nodes, 

and the in-transit stage, where data is decompressed and 

restructured on the transit nodes. 

 

A key issue when calculating the importance of individual 

blocks is data locality. The simulation region is typically 

allocated in contiguous memory space. However, a block 

makes up a 3D subset of the simulated region, which leads 

to low cache hit rates, especially when using small block 

sizes. Utilizing multiple importance metrics or advanced 

data access patterns further complicate this issue. Our 

solution is to dynamically allocate a separate buffer for a 

block when it is analyzed. Relevant filters, which 

calculate importance metrics and determine which 

compression methods to use based on user-defined 

conditions, can then be applied in sequence for each block, 

leading to low memory overhead and high cache hit rates. 

This approach also ensures that the generated simulation 

data of each block only needs to be allocated and copied 

once, minimizing the overhead introduced by this step. 

Operating on data allocated on a per-block basis leads to 

a much higher data locality, meaning that multiple 

importance calculations can be performed at a lower 

computational cost. 

 

Which importance metrics and filters to use depends on 

the used simulation. Similarly, which compression 

methods to use for which importance values depends on 

the needs of the researcher. We consider four compression 

and reduction methods: run-length encoding (RLE), LZ77 

value) and Skip (the block is not transferred to any transit 

node). 

 

The generated simulation data varies throughout the 

simulation, meaning that the compressed data size is 

constantly changing. It follows that the need for 

compression and data reduction also changes throughout 

the simulation. It could be preferable to adaptively change 

filter parameters and the used compression methods based 

on some criteria. The criteria could be based on the 

memory usage, execution time or the remaining allocated 

time on a compute cluster. Rudimentary use of an adaptive 

condition has been explored in some related work [4]. 

However, only one condition was used, which limits its 

application. 

 

We support the use of multiple filters and importance 

metrics, and a key issue is how to adaptively modify the 

conditions without affecting the intended flow of analysis. 

Our solution is to utilize an adaptive condition window, by 

which filter conditions can vary. The value of the 

condition window can slide one interval of 0.05 between 

0.0 and 1.0 between each time step, based on input to the 

program. Filter conditions can have a defined lower and 

upper bound. Let cl and ch be the lower and upper bounds, 

respectively, and w be the current value of the condition 

window. The current value of the filter condition can then 

be calculated using the equation 

   (1) 

This method ensures that the filter condition values 

adaptively can be changes in a controlled manner, thus 

retaining the intended flow of the analysis. 

 

To evaluate the proposed approach we devised a double-

planar case of the Richtmyer-Meshkov Instability using 

the simulation program CNS3D. 

Initially, all fluids are at rest, other than the shocked 

incoming air. The shock wave passes from left to right, 

causing the membranes separating the two fluids to 

rupture. The membranes are supported on a fine wire 

mesh with a grid spacing of 0.4 cm. The initial boundary 

conditions and initial setup are illustrated in Fig. 1.  

Small initial perturbations increase greatly in size, leading 

to high Reynolds number turbulent mixing of the two 

gases. The simulation ran for 15,653 time steps on 32 
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compute nodes at a resolution of 2401 × 601 × 1201, for a 

total of 3,228 node hours. Out of all time steps, 80 were 

analyzed and used for testing purposes. In total, four 

transit nodes were used for co-processing. A visualization 

of three time steps of the mass fraction are shown in Fig. 

2. 

 

For testing purposes we devised a filter pipeline, 

consisting of three filters. Blocks which had a range of 0 

were set to use Homogeneous compression. The 

Homogeneous compression method is lossy. However, 

since the range of the affected blocks was zero, all 

information could be retained.  Blocks which consisted 

of more than 90% distinct values were set to use no 

compression, since lossless compression methods would 

not be able to compress such data as effectively. All other 

blocks were set to use RLE compression. The average 

execution times are displayed in Fig. 3. Using the lossless 

RLE method reduced the data transfer time by 35.2% as 

compared to using no compression. However, the 

decompression process significantly increased the co-

processing time on the transit nodes. Compared to the 

RLE method, ATCO sped up the decompression process 

by a factor of 2.0. The speedup compared to using no 

compression was measured at 1.05. As for the data 

distribution stage, ATCO achieved a speedup of 1.14 

compared to using the RLE method, and a factor of 1.77 

compared to using no compression. Interestingly, ATCO 

was able to achieve better performance in all aspects 

(compressed data size, compression, transfer and 

decompression times) compared to the other lossless 

compression methods used for comparison. This is a result 

of the fact that ATCO scales with the compression 

methods which are used in its pipeline; in this case RLE 

and Homogeneous. This behavior should extend to other 

compression methods as well. 

 

We devised and evaluated a novel approach to perform in-

transit co-processing in which the simulation data is 

analyzed to determine the importance of all regions of data. 

Such information is then used to simultaneously utilize 

multiple compression and reduction methods to accelerate 

the in-transit co-processing while minimizing loss of 

detail in regions of interest. The approach was able to 

calculate the importance of regions of data expediently, 

even in cases where multiple importance metrics were in 

use. Our approach was able to achieve better performance 

in all aspects (compressed data size as well as 

compression, data transfer and decompression times) in 

all evaluated tests than the methods used for comparison. 

Compared to a run length encoding compression, our 

approach achieved speedups of 1.14 and 2 when 

performing data transfers and data decompression, 

respectively. The excellent scalability and performance 

make the approach suitable to be used in tandem with 

many large-scale simulations which utilize in-transit co-

processing to analyze the generated data. In future work 

Fig. 2: Visualization of the mass fraction of the 
Richtmyer-Meshkov Instability simulation at recorded 
time steps 1, 40 and 80. 
 

Fig. 1: Initial and boundary condition of the double-planar 
problem. 
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we plan to extend the approach to work better with in-situ 

workflows. 
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Fig. 3: Average execution times of the three main stages. 


