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1. Introduction

Global warming is world class problem that
becomes more worrying over the years. A
promising solution comes from the conversion of
CO, (i.e., greenhouse gas) to higher-value
chemical such as methanol which can be achieved
by heterogenous catalysis. The advantage of this
conversion is two-fold: reducing the amount of
CO; in atmosphere and producing methanol
which can be used to generate electricity through
fuel cell [1]. Understanding the non-equilibrium
states (i.e., states when the transformation
occurs) of catalytic process of methanol synthesis
is the key factor in designing the best catalyst.
However, observing the non-equilibrium states is
inaccessible in most experiments due to the
atomistic size and time scale of the events.

Though computational approaches such as
Density Functional Theory (DFT) and Molecular
Dynamics (MD) can observe detail atomistic
events, it suffers from huge tradeoff between
speed and accuracy. For instance, DFT can be
used to accurately describe the stability of the
catalytic system by calculating the energy and the
atomic forces. However, it is computationally
expensive and typically applied only for models
with small size and short observation time. On the
other hand, MD method can be used to explicitly
simulate the trajectory of thousands to ten
thousand of direct

atoms, enabling the

observation to the non-equilibrium states with

observation time up to seconds. Despite the
efficiency of MD for simulating large system, it
has unreliable accuracy when dealing with
chemical reactions, which are fundamental in the
heterogenous catalysis. This originates from the
inadequacy of the classical interatomic-potential
(i.e., function governing atomic interactions) in
MD to take into account the electronic structures
of the system, which is eventually obtainable from
DFT method.

In the emergence of data science, it is possible
to accelerate the MD simulation while
maintaining high accuracy at the DFT level. This
can be achieved by constructing a machine-
learning (ML) interatomic potential by learning
the energy and forces of atomic structures defined
in a set of DFT data. The ML then acts as a bridge
for the low-scale but accurate DFT, and the high-
scale but inaccurate MD, resulting in multiscale
simulation. Armed with this framework, we
conducted direct observation of non-equilibrium
states of initial stage of methanol synthesis on Cu-
based catalyst, including the three main reactants:
CO,, CO, and H,. We note that in this project,
these three reactants are still treated
independently. Interacting all the reactants is

much more complicated and becomes our project

in the future.



2. Multiscale Simulation

The framework of the multiscale simulation is
shown schematically in Fig. 1. There are four
important building blocks, namely DFT, ML, MD
and the analysis tool that we called elucidator.

Each of them is discussed in the following.
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Fig. 1 : The framework of multiscale simulation
2.1 Density Functional Theory (DFT)

DFT is used to start the framework by
generating the training data used as input in the
ML algorithm. In this project, we tried two
popular DFT software, namely STATE [2] and
Quantum Espresso [3]. The STATE is used in the
multiscale simulations of CO; and H; while
Quantum Espresso is used for the simulations of
CO. All of these reactants are interacted with Cu
surface. The training data of Cu-H system, Cu-
CO system, and Cu-CO,-H; system consist of
atomic environments within structures of the Cu
surface interacting with various configurations
molecules (both in gas and adsorbed states). The
typical training structure of Cu-H, Cu-CO, and
Cu-CO;-H are depicted in Fig 2, Fig 3, and Fig 4,
respectively. In practice, the DFT software can
run using MPI and OMP parallelization and thus
increase the efficiency of the calculations
especially in large super computer. We note that
the generation of database is the most time
consuming the

considering computational

expense of DFT.

>

2.2 Machine-Learning (ML)

After the database was generated, we proceed
to the construction of machine-learning
interatomic potential. In this project we used ML
algorithm called Gaussian Process Regression
(GPR) which is implemented in FLARE software
[4]. GPR is chosen since it can provide the
uncertainty of prediction based on the database
itself. This enables the learning scheme called
active learning in which the high uncertainty
value is used as the criterion for an atomic
environment to be included in the database. This
learning scheme thus ensures each data is
sufficiently different from each other, resulting in
a compact and low-correlated database. Further,
on-thely learning scheme can be implemented

by the force-field

simulation to generate more high-uncertainty

employing in dynamic
data that can be used to improve the force-field
continuously. The GPR that is implemented in
FLARE can use OMP parallelization in a single

node.

Fig. 3 : The Cu-CO training structure



Fig. 4 : The Cu-CO»-H training structure

2.3 Molecular Dynamics (MD)

The LAMMPS [5] software is used to perform
large scale molecular dynamics in parallel both
using MPI and OMP parallelization. The
machine-learning interatomic potential is read by
the software and the energy and forces are
calculated at every timestep. The non-equilibrium
states of the catalysis then can be obtained from

the atomic trajectories of MD simulations.

2.4 Elucidator

Elucidator is a set of analysis tool that we used
to analyze the trajectory of the MD simulation.
This tool is Python-based program which relies on
two libraries, namely ASE [6] and Ovito [7].
Tasks that are performed wusing this tool

including: the analysis of splitting and
recombination rate of hydrogen, the surface
reconstruction of induced by CO, and the

vibrational states of CO; hydrogenation.

3. Validation of Machine Learning
Interatomic Potential

Before starting a production run of MD
simulations, it is necessary to validate the
accuracy of the interatomic potential produced by
ML. The validations were done in terms of mean
absolute error (MAE) of atomic forces (i.e., the
difference between the forces calculated by DFT
and the forces predicted by ML). All the results of

MAE for the Cu-H, Cu-C), and Cu-CO,-H
systems are shown in Fig 5, Fig 6, and Fig 7,
respectively. We found that the MAEs are smaller
than 50 meV/A, which is reasonably good,
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Fig. 5: Validation of atomic forces for Cu-H system

Cu-CO Force Validation (16k envs.)
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Fig. 6: Validation of atomic forces for Cu-CO system

Cu-CO,-H Force Validation (3k envs.)
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Fig. 7: Validation of atomic forces for Cu-CO,-H
system

4. Non-equilibrium states of H, CO, and



C0, interacting with Gu surface

After confirming the accuracy of the
interatomic potential, the production run of MD
simulations was performed. The resulting
dynamics of H, interacting with Cu surface is
shown in Fig.8. The figure shows the splitting of
hydrogen molecules into two hydrogen atoms
(shown in red color). The hydrogen atom is
involved in almost every intermediate state of
methanol synthesis. Fig 9 shows the snapshot of
dynamics of Cu-CO system of which the CO co-
adsorbed on the Cu surface. The analysis of the
CO induced-surface reconstruction is ongoing.
The snapshot depicting the hydrogenation
process of CO; is shown in Fig 10. The current

simulation has able to show successful and

unsuccessful hydrogenation of COs,.

Fig. 8 : Snapshot of dynamics of Cu-H system

Fig. 9 : Snapshot of dynamics of Cu-CO system

Fig. 10 : Snapshot of dynamics of Cu-CO,-H system

5. Conclusion

Overall, we have been able to provide the direct
observation to the dynamics of reactants in the
methanol synthesis. The analysis of the resulting
dynamics is being prepared and expected to be
published in near future. When this research is
successfully completed, detail knowledge of
non-equilibrium states (the ‘missing link’ in
experimental and computational studies) can
be provided, which lead to more confident

understanding of heterogenous catalysis.
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