# スパコンの使い方

#### 大阪大学 情報推進部 情報基盤課

### 利用方法の解説

#### 本講習会では初めてスパコンを使う方を対象に SQUIDの利用方法を解説します

#### 途中、スパコンを利用したデモを行います 配布したアカウントは講習会後も、1週間ご利用可能です ご自宅からでも接続できますのでご自由にお試しください!

2 / 56

### 本日のプログラム

- I. システムのご紹介
- II. 利用方法の解説
  - i. システムへの接続
  - ii. プログラムの作成・環境設定・コンパイル
  - iii. ジョブスクリプトの作成
  - iv. ジョブスクリプトの投入

III.利用を希望する方へ

## SQUID

- 3種類の計算ノードと21PBのストレージで構成される
- 総理論演算性能は16.591 PFLOPS
- 阪大だけでなく国内外の研究者に提供



|      | CPUノード GPUノード   |                       | ベクトルノード              |
|------|-----------------|-----------------------|----------------------|
| コア数  | 76              | 76                    | VH:24<br>VE:80       |
| 演算性能 | 5.837<br>TFLOPS | 161.837 TFLOPS        | 24.56<br>TFLOPS      |
| ХŦIJ | 256GB           | 512GB                 | VH:128GB<br>VE:48GB  |
| ノード数 | 1520ノード         | 42ノード<br>(8GPU / ノード) | 36ノード<br>(8VE / ノード) |

#### 合計1,598ノード 16.591PFLOPS

### スーパーコンピュータ利用の流れ



## フロントエンドノードへの接続

#### SSH (Secure Shell) 接続

- ターミナル(Mac/Linux)やコマンドプロンプト(Win)を使用
- ターミナルソフトを使用(TeraTerm, Putty等)



#### squidhpc.hpc.cmc.osaka-u.ac.jp

接続コマンド例

ssh <u>利用者番号</u>@squidhpc.hpc.cmc.osaka-u.ac.jp

学内/外、国内/外どこからでも接続可能

### フロントエンドノードへの接続

#### SQUIDは多要素認証でのログインとなります 多要素認証用の端末が必要です



※公開鍵認証には対応していません



#### ご自身のスマートフォンやパソコンを多要素認証用の端末としてお使いください 以下いずれかのアプリケーションをインストールしてください

| OS      | アプリケーション                | 配布元               |  |
|---------|-------------------------|-------------------|--|
| Android | Google Authenticator    | Google Play Store |  |
| iOS     | Microsoft Authenticator | Apple App Store   |  |
| Windows | WinAuth                 | <u>Github</u>     |  |
| macOS   | Step Two                | Apple App Store   |  |



## フロントエンドノードへの接続

#### SQUIDに初めてログインするとQRコードが表示されます。 QRコードをアプリで読み込むことで多要素認証の登録が完了します



## フロントエンドノードへの接続:デモ

お持ちのアカウントでSQUIDに接続します <mark>接続 1回目</mark>

\$ ssh アカウント@squidhpc.hpc.cmc.osaka-u.ac.jp

→パスワードのみで認証

表示されるQRコードを読み込んでワンタイムコードを取得し、ログアウト

#### 接続 2回目

\$ ssh アカウント@squidhpc.hpc.cmc.osaka-u.ac.jp →パスワード認証の後、ワンタイムコードを入力 SQUIDのフロントエンドノードに接続完了

### スーパーコンピュータ利用の流れ



11 / 56

プログラムの準備

スパコンを利用するために プログラムやアプリケーションを準備する必要があります

当センターの計算機で使用可能な主なプログラム言語 Fortran言語、C言語、C++言語、Python、R、Julia

当センターの計算機で使用可能な主なアプリケーション OpenFOAM、LAMMPS、Gaussian、GROMACS PyTorch、QuantumESPRESSO、etc…

必要なアプリケーションをご自身でインストールすることも可能です!

## プログラムの準備:利用環境の設定

利用するプログラムやアプリケーションに応じて環境の設定が必要

Environment modulesというツールを使用

|       | Intelコンパイラ | NVIDIA HPC SDK | ベクトルコンパイラ | GNUコンパイラ |
|-------|------------|----------------|-----------|----------|
| モジュール | BaseCPU    | BaseGPU        | BaseVEC   | BaseGCC  |



## プログラムの準備:まとめ

スパコンを利用するために、プログラムやアプリケーションを準備する必要があります ① **開発したC言語やFORTRAN言語のプログラムをお持ちの方** →スパコンにプログラムを持ってきて、コンパイルしましょう

#### Pythonで機械学習をしている方

→スパコンで機械学習のフレームワーク等、Pythonパッケージを準備しましょう

③ **オープンソースのアプリケーションで計算されている方** →スパコンに入力ファイル等必要なデータを持ってきましょう →スパコンにアプリケーションをインストールしましょう

## プログラムの準備:デモ

1. サンプルプログラムをコピー

\$ cp /system/lecture/nyumon/sample.f ~/

- 2. 汎用CPUノードの環境設定を読み込み \$ module load BaseCPU
- FORTRANで書かれたsample.f を 汎用CPUノード用にコンパイル(実行できる形式へ変換する)
   \$ ifort sample.f

※文字入力時は [Tab]キーでの補完機能を活用してください

### スーパーコンピュータ利用の流れ



16 / 56

### 計算機の利用方法

### インタラクティブ利用 コマンド等を通してコンピュータに直接命令し、リアルタイムで処理を実行 操作として手軽

**バッチ利用** コンピュータにまとめて処理を命令し実行 処理の命令が終われば、ログアウトしてもOK

### バッチ利用

### 処理を「ジョブスクリプト」に記述し送信 (→ジョブ) ジョブスクリプトに基づき計算機が処理を実行



ジョブスクリプト

#!/bin/bash

#PBS -q SQUID
#PBS -l elapstim\_req=1:00:00

module load BaseCPU cd \$PBS\_O\_WORKDIR ./a.out

SQUIDのリソースや環境設定 実行したい処理を記載したシェルスクリプト

ジョブスクリプト

使用する

リソースや環境

#### #!/bin/bash

#PBS -q SQUID
#PBS -l elapstim\_req=1:00:00
#PBS -group=G12345

module load BaseCPU cd \$PBS\_O\_WORKDIR ./a.out

#### NQSオプション(#PBS~)でリソースや環境の設定を行う

| オプション     | 説明                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-----------|--------------------------------------------|----------------------------------------|
| #PBS -q   | ジョブクラスを指定し、計算に使用する優先度等を指定する                | 心识:                                    |
| #PBS -I   | 使用する資源値                                    |                                        |
|           | elapstim_req : ジョブの経過時間                    |                                        |
|           | memsz_job : 1ノードあたりのメモリ量                   |                                        |
|           | cpunum_job : 1ノード当たりのCPU数                  |                                        |
| #PBSgroup | グループ名の指定                                   |                                        |
| #PBS -v   | 環境変数の指定(setenvではなくこちらを使うことを推奨する)           |                                        |
| #PBS -T   | MPI 実行時に指定(IntelMPIの場合、#PBS -T intmpi と指定) |                                        |

#### 20 / 56

ジョブスクリプト

#### #!/bin/bash

#PBS -q SQUID
#PBS -l elapstim\_req=1:00:00
#PBS -group=G12345

module load BaseCPU cd \$PBS\_O\_WORKDIR ./a.out

| ジョブクラス  | 利用可能<br>経過時間 | 利用可能<br>コア数                        | 同時利用<br>可能ノード数 | 備考    |
|---------|--------------|------------------------------------|----------------|-------|
| SQUID   | 120時間        | 38,912Core<br>(76Core × 512ノード)    | 512ノード         |       |
| SQUID-H | 120時間        | 38,912Core<br>(76Core × 512ノード)    | 512ノード         | 高優先度  |
| SQUID-S | 120時間        | <b>38Core</b><br>(76Core × 0.5ノード) | 0.5ノード         | ノード共有 |

#### 使用する リソースや環境

21

56

ジョブスクリプト

#!/bin/bash

#PBS -q SQUID
#PBS -l elapstim\_req=1:00:00
#PBS --group=G12345

module load BaseCPU cd \$PBS\_O\_WORKDIR ./a.out SQUIDで 実行する処理

ファイルやディレクトリの実行・操作を記述(シェルスクリプト)

- 利用するプログラムやアプリケーションに応じて環境設定が必要
   →module loadを実施してください
- \$PBS\_O\_WORKDIR : ジョブ投入時のディレクトリが設定される



ジョブクラスの指定 #!/bin/bash **#PBS** –q SQUID **#PBS**-l elapstim\_req=1:00:00 **#PBS**-group=G12345

module load BaseCPU 環境設定

cd \$PBS\_O\_WORKDIR

ジョブ投入時のディレクトリへ移動

リソースの指定

./a.out

a.outを実行する

## ジョブスクリプトの作成:デモ

1. 演習用スクリプトをコピー

\$ cp /system/lecture/nyumon/jobscript.sh ~/

2. jobscript.shを元に汎用CPUノード用のジョブスクリプトを作成

\$ emacs jobscript.sh -nw

(参考)emacsの操作方法:保存 ctrl-x → ctrl-s 終了 ctrl-x → ctrl-c

※グループ名は kousyuXXX です。(XXXは利用者番号の下3桁)
利用者番号:k6b001 ⇔ グループ名:kousyu001

【参考】自身のグループ名は <u>id</u> コマンドでも確認できます。 <sup>グループ名</sup> uid=18XX(k6b001) gid=22000(ocean) groups=22000(ocean) 14465(kousyu001)

### スーパーコンピュータ利用の流れ



### バッチ利用

### 処理を「ジョブスクリプト」に記述し送信 (→ジョブ) ジョブスクリプトに基づき計算機が処理を実行



56

ジョブスケジューラとは

#### あらかじめ管理者によって設定された割当ポリシーに従い、ジョブを計算ノードに割り当てるソ フトウェア



#### 主な役割

計算機システム各ノードのストレージ容量、メモリ容量、性能、使用率を定期的に監視、管理 ユーザより実行したいジョブ要求を受信し、適切なノードを選定 ジョブ実行に伴う入出力データのファイル転送

ジョブスケジューラとは

#### 当センターではバックフィル型を採用

特徴

ジョブの実行開始時間のマップを作成する

マップに載れば、実行開始時間が保障される 実行中は指定したリソースを占有して割り当てる

ジョブスケジューラのイメージ



#### 29 / 56

### バッチ利用

### 処理を「ジョブスクリプト」に記述 スクリプトに基づき計算機が処理を実行



56

### ジョブの投入方法

JOB

3

31

フロントエンド端末からジョブスクリプトを送信 コマンド

\$ qsub [ジョブスクリプトファイル]

(参考)複数ジョブを投入する場合



## 投入済みジョブの確認方法

#### ジョブの状態を確認することが可能 コマンド

\$ qstat



## 投入済みジョブの確認方法

#### ジョブの予約状況を確認することが可能 コマンド

\$ sstat

#### 実行結果



### 投入済みジョブの操作方法

34

- ジョブのキャンセル <sup>コマンド</sup>
  - \$ qdel [RequestID]
- 実行結果
  - \$ qdel 1234.sqd Request 1234.sqd was deleted.

### 実行結果の確認方法

実行結果や実行エラーは指定しない限り 実行結果: ジョブスクリプト名.oリクエストID 実行エラー:ジョブスクリプト名.eリクエストID というファイル名で自動出力される

catやlessコマンドでファイルの内容を出力し確認

\$ cat jobscript.nqs.o123456

意図通りの結果が表示されていれば計算は成功!

## プログラムの実行:まとめ

#### スパコンでプログラムやアプリケーションを実行する際は「バッチ利用」 ① ジョブスクリプトを作成する

→右のようなファイルを作成

- ② ジョブスクリプトをSQUIDに送信する →qsubコマンドを使用
- ③ **定期的にジョブの状態を確認する** →qstatやsstatコマンドを使用

④ 実行終了したら結果を確認する →サーバ上に保存されたファイルを開いて確認

#### #!/bin/bash

#PBS -q SQUID
#PBS -l elapstim\_req=1:00:00

module load BaseCPU cd \$PBS\_O\_WORKDIR ./a.out

#### 36 / 56

## ジョブスクリプトの投入:デモ

- 1. 作成したジョブスクリプトを使用してジョブを投入
   \$ <u>qsub jobscript.sh</u>
- 2. 投入したジョブの状態を確認
  - \$ <u>sstat</u>
  - \$ <u>qstat</u>
- 3. 結果ファイルの確認
  \$ <u>cat jobscript.sh.oXXXXX</u>
  \$ <u>cat jobscript.sh.eXXXXX</u>

## より発展的な利用に向けて

#### 利用の参考になるWebページ

サイバーメディアセンター 大規模計算機システム Webページ https://www.hpc.cmc.osaka-u.ac.jp

#### 利用方法

https://www.hpc.cmc.osaka-u.ac.jp/system/manual/

FAQ

https://www.hpc.cmc.osaka-u.ac.jp/faq/

問い合わせフォーム

https://www.hpc.cmc.osaka-u.ac.jp/support/contact/auto\_form/

研究成果

https://www.hpc.cmc.osaka-u.ac.jp/researchlist/

### より発展的な利用に向けて

#### 本日以降の講習会・セミナー(全てオンライン)

| 開催日  | 講習会名                    | 概要                                            |
|------|-------------------------|-----------------------------------------------|
| 9/2  | Pythonチュートリアル(初級編) Day1 | Pythonの実行方法、プログラミングの初歩                        |
| 9/5  | 初めてのスパコン                | スーパーコンピュータの基礎的な知識と、その使い方<br>初心者向け【お試しアカウント付き】 |
| 9/9  | Pythonチュートリアル(初級編)Day2  | Pythonの実行方法、プログラミングの初歩                        |
| 9/25 | スパコンに通じる並列プログラミングの基礎    | 並列プログラミングの基礎と利用方法                             |
| 調整中  | Pythonチュートリアル(中級編)      | Pythonプログラミングの応用編                             |
|      |                         |                                               |

56

59

### 利用を希望する方へ

### 本センターの大規模計算機システムは どなたでも<mark>利用可能</mark>です!



#### 利用負担金が必要になります

56

### 利用負担金制度

#### 産業利用 成果<u>非公開型</u>

金額 × 5

41 / 56



#### 一般利用(学術利用)



HDDストレージ 初期容量5TB 2,000円/TB で追加可能



| 共有利用    |             |  |  |  |  |  |
|---------|-------------|--|--|--|--|--|
| 10万円+税  | 1,000 ポイント  |  |  |  |  |  |
| 50万円+税  | 5,250 ポイント  |  |  |  |  |  |
| 100万円+税 | 11,000 ポイント |  |  |  |  |  |
| 300万円+税 | 34,500 ポイント |  |  |  |  |  |
| 500万円+税 | 60,000 ポイント |  |  |  |  |  |
|         |             |  |  |  |  |  |



| 占有利用          |              |  |  |  |
|---------------|--------------|--|--|--|
| 1,150,000 円+税 | 汎用CPU 1ノード/年 |  |  |  |
|               |              |  |  |  |

<u>詳細は https://www.hpc.cmc.osaka-u.ac.jp/service/cost/</u>

### スパコンの提供方法

#### 共有利用

「ノード時間」or 「SQUIDポイント」単位でノードを利用

利用者全員で一定数のノードを共有

大規模なノード間並列を試せる 「待ち時間」が発生する

#### 占有利用

「年度/月」単位で ノードを利用

他のグループとノードを共有しない

大規模なノード間並列は試し難い 「待ち時間」が発生しない

## 「SQUIDポイント」とは

- <u>計算ノードの使用時間とノード数に応じて消費されるポイント</u>
  - 3つのノード群を横断的に使用可能
  - 同じ計算時間でもノード群や優先度に応じて消費量が異なる



## 「SQUIDポイント」とは

#### SQUID ポイントの消費量は以下の計算式から算出されます

#### 使用したノード時間 × 消費係数 × 季節係数 × 燃料係数



### 「ノード時間」とは

#### ノード時間 = 計算に使用するノード数 × 計算時間(単位:時間)

#### (例)

1ノードで3時間の計算 30ノードで5時間の計算 100ノードで1時間の計算 1ノードで100時間の計算

- → 3ノード時間消費
- → 150ノード時間消費
- → 100ノード時間消費
- → 100ノード時間消費

### 「ノード時間」とは



#### ノード内で使用するコアを限定しても、ノード時間は変わりません



### 「ノード時間」とは



消費するノード時間は、実際にかかった計算時間のみです

47 / 56

スケジューラのイメージ



48 / 56

### 「消費係数」について

使用したノード時間 × 消費係数 × 季節係数 × 燃料係数



| ノード群          | 高優先度   | 通常優先度  | シェア    |
|---------------|--------|--------|--------|
| 汎用CPUノード<br>群 | 0.3746 | 0.2998 | 0.2248 |
| GPUノード群       | 2.2934 | 1.8348 | 1.3762 |
| ベクトルノード群      | 1.4140 | 1.1312 | 0.848  |

同じノード時間を使用しても、 SQUIDポイントの消費量は異なる





使用したノード時間 × 消費係数 × 季節係数 × 燃料係数

| 季節係数                         | / \\\ <del>32</del> | 季節係数<br>(2024年4月1日~2025年3月31日) |      |            |      | 燃料                      |
|------------------------------|---------------------|--------------------------------|------|------------|------|-------------------------|
| 前年度の利用率を元に<br>0を超える1 以下の値を設定 | ノート群                | 4-6<br>月                       | 7-9月 | 10-12<br>月 | 1-3月 | 係数                      |
| 燃料係数                         | 汎用CPU<br>ノード群       | 1.0                            | 1.0  | 1.0        | 1.0  | 0.85                    |
| 変動する電気料金に合わせた値を設定            | GPUノード群             | 1.0                            | 1.0  | 1.0        | 1.0  | 0.85<br>(2024年<br>4日時占) |
|                              | ベクトルノード<br>群        | 1.0                            | 1.0  | 1.0        | 1.0  | <i>(הה</i> נירך)        |

(例)
 2023年度4月~6月の利用率が低い
 →2024年度4月~6月の季節係数を低く設定

(例)
 電気料金が値下げ
 →燃料係数を0.85に設定

## SQUID ポイントの例

使用したノード時間 × 消費係数 × 季節係数 × 燃料係数

#### 消費係数

| ノード群      | ノード群 高優先度 通常 |        | シェア    |
|-----------|--------------|--------|--------|
| 汎用CPUノード群 | 0.3746       | 0.2998 | 0.2248 |
| GPUノード群   | 2.2934       | 1.8348 | 1.3762 |
| ベクトルノード群  | 1.4140       | 1.1312 | 0.848  |

#### 季節係数·燃料係数

|               |      | <b>水井</b> 北以 |            |      |                 |
|---------------|------|--------------|------------|------|-----------------|
| ノード群          | 4-6月 | 7-9月         | 10-12<br>月 | 1-3月 | 係数              |
| 汎用CPUノード<br>群 | 1.0  | 1.0          | 1.0        | 1.0  | 0.85            |
| GPUノード群       | 1.0  | 1.0          | 1.0        | 1.0  | (2024年<br>4月時点) |
| ベクトルノード群      | 1.0  | 1.0          | 1.0        | 1.0  | ., 2            |
|               |      |              |            |      |                 |

SQUID 汎用CPUノードを10ノード並列実行で3時間使用した場合(季節係数:1、燃料係数:0.85) 10 × 3 × 0.2998 × 1 × 0.85 = **7.6449 SQUIDポイントを消費** 

## SQUIDポイントの目安

# 10万円コースで利用できるノード時間の目安(通常優先度で実行した場合)

| SQUID     | 消費係数   | 季節係数 | 燃料係数 | ノード時間の目安    |
|-----------|--------|------|------|-------------|
| 汎用CPUノード群 | 0.2998 |      |      | 3,924 ノード時間 |
| GPUノード群   | 1.8348 | 1    | 0.85 | 641 ノード時間   |
| ベクトルノード群  | 1.1312 |      |      | 1,040 ノード時間 |

56

52

## まずは試用制度をお試しください

#### 3カ月間無料で以下の資源をご提供





- アプリケーション等 計算環境や技術サポートは有償利用と同等に使用可能
- 有償利用へアカウントの移行も可能

## 利用申請について

大規模計算機システムの利用申請は随時受け付け中です!

利用は年度単位(4月から翌年3月まで)

- 使いきれなかったノード時間、ポイントは3月末で失効します

- 年度途中でノード時間、ポイントの追加が可能です

## 利用開始後のサポートについて







講習会/セミナー

56

55







高速化支援

対面利用相談

### スパコンの使い方のまとめ

- ご自身で開発したプログラム、オープンソースのアプリケーション等、
   柔軟に使用可能
- スパコンは「バッチ利用」
  - たくさんの人が同時に、計算規模に応じてスパコンを切り出して使う
  - ジョブスクリプトを使って、スパコンに計算を指示
- 共有利用はポイント制
- スパコンを使ってみたい方は試用制度や各種講習会へ!
- 疑問があれば system@cmc.osaka-u.ac.jp まで!