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1. Introduction

Synthetic diamond has been regarded as an ideal
material for several new technologies, particularly in
high-power electronics and quantum devices [1,2].
The device fabrication methods used in conventional
materials such as silicon are ineffective for diamond
because of diamond’s extreme hardness and chemical
inertness. Plasma and thermochemical etching are
currently used to fabricate diamond devices, though
these technologies in their

[3.4].

are arguably still

infancy Understanding the diamond’s
oxidation, thermal degradation, and wear will lead to
insights that scientists and engineers could use to
accelerate the development diamond device
fabrication methods.

While ab-initio methods have been useful in
elucidating the surface chemistry and engineering
design of materials, the high computational cost limits
its application to small and highly idealized models.
Recently, machine learning molecular dynamics
(MLMD) simulation method has been gaining
popularity. In this method, an analytic expression of
the potential energy surface and its derivatives as a
function of atomic positions is obtained by fitting onto
ab-initio calculation results to perform simulations.
The fitting procedure is performed using several

machine learning and neural network methods, among

which includes Gaussian process regression, high-

dimensional neural network, and graph neural network.

Successful construction of machine learning
interatomic potentials (MLIP) will enable large scale
and long timescale simulations with accuracies
comparable to ab-initio molecular dynamics.

In this article, we discuss the method that we used

in the construction of MLIP for the study of diamond

oxidation, graphitization, and wear. In addition, we
present some tools that we developed for the analysis

of molecular dynamics simulation results.

2. Computational Details

A database of structures with total energy and
forces is built using spin polarized density functional
theory calculations with generalized gradient
approximation exchange correlation functional. Semi
empirical van der Waals correction is implemented.
The core electrons were treated with ultrasoft
pseudopotentials. The wave functions and
augmentation charge are expanded using plane wave
basis with cutoffs of 36 Ry (490 eV) and 400 Ry (5442
eV), respectively. Special points for Brillouin-zone
integration were generated using the Monkhorst-Pack
scheme. The convergence threshold for energy
1.0 x 10~ Ha/atom ( 2.72 X

1078eV/atom ). We

minimization is
perform  geometry
optimizations until the forces on each atom is less than
1.0 x 1073 Ha/a, (5.14 x 1072 eV/A). The number
of k-points depends on the simulation cell size and
were all tested for convergence. All calculations were
performed using the STATE code package [5].

The graph neural network interatomic potential is
constructed using the Neural Equivariant Interatomic
Potential (NequlP) software package [6]. This
method implements graph message passing algorithm
analogous to the convolution filters used in image
recognition neural network models to generate
equivariant representations of atomic environment.
The message passing captures many-body interactions
between atomic species. Molecular dynamics

simulations are performed on LAMMPS code using an

NVT ensemble with Nose-Hoover thermostat [7].
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3. Results
3.1. Graph Neural Network Interatomic Potential
Construction, Fine-tuning, and Evaluation

An initial database is constructed which is
composed of equilibrium structures of diamond,
graphite, graphene, and diamond (111) and (100)
surfaces and non-equilibrium structures generated
using coordinate randomization and ab-initio
molecular dynamics of the equilibrium structures. The
initial database is used to construct an initial
interatomic potential model which is then used to
perform molecular dynamics simulations to generate
additional non-equilibrium structures. The interatomic
potential is improved though an active learning
process by evaluating its performance based on (1)
accuracy, (2) stability, and (3) reliability [8]. The
accuracy is measured based on the energy and force
mean square errors and root mean square errors with
respect to the DFT calculations. On the other hand, the
stability is monitored by checking for any exploding
atoms or formation of unphysical structures. This can
also be quantitatively checked by looking for any
sharp changes in total energy and simulation
temperature. Finally, the reliability is determined
based on sufficiency of the atomic environment in the
database. This will be discussed further in the next
section.

The active learning process allows the addition of
new structures with atomic environments that are not
represented in the database. The fine-tuning and
evaluation of the interatomic potential is continued

until all the three criteria have been satisfied. These

process is outlined in Fig. 1.
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Fig. 1. Graph Neural Network interatomic potential

construction, fine-tuning, and evaluation.

3.2. Reliability Estimation

The reliability is estimated based on the presence
or absence of atomic environment on the database
similar to the atomic environments that appear during
the molecular dynamics simulations. Machine
learning of interatomic potential is a kind of regression
modelling. Therefore, the predictions are more reliable
in interpolating between datapoints and less reliable in
extrapolating. We determine the extrapolated atomic
environment based on the feature vectors calculated
using graph message passing, where the aggregate
function or convolution is calculated using the product
of Bessel radial function R(ri ]-) and spherical

harmonics Y} (#;):

AGGREGATE
N (D
= tanh Z R(rij)f (i 1) Ya(%)
%)
. (bm
o sin(—=1;;
R(ry) = _y f(ryme) @
9]
— 1D(p +2) (rij\P
) = 1~ EZD D ()
7 \PH
+p(p+2) (r—) ®)

¢
_pp+1) (@)P“
2 T,
Here, f (rl-]-, rc) is a polynomial cutoff function which
ensures smooth the decay of the radial function at the
cutoff radius 7, . The details of this method are
discussed in our recent publication [8].

To illustrate this concept, we plot the 2-
dimensional projection of the feature vector of the
entire database (black) using TSNE method in Fig. 2.
Using the TSNE method, the feature vectors were
clustered based on their similarities. Next, we plotted
the feature vectors corresponding to the atoms in
equilibrium and slightly perturbed equilibrium
structures (SPES) of diamond bulk (blue), graphite
(orange), and surface atoms of the C(100) (violet) and

unreconstructed (green) and reconstructed (red)
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C(111) surfaces. These structures occupy the clusters
on the plot. In Figure 3a, we plotted the same feature
vectors with the addition of the feature vectors
corresponding to the sublayers of the C(100) and
C(111) surfaces. We can see that most of the clusters
of atomic environments have been identified. The
remaining unidentified atomic environments shown by
small clusters and cluster boundaries correspond to the
reactive or transition state structures from one
equilibrium state to another. The extrapolated atomic
environment will appear on the plot as isolated dots or
dots in between clusters. The lack of neighboring
atomic environments means that energy and force
predictions for the extrapolated atomic environments
are likely unreliable. The extrapolated atomic
environments are then added to the database and will
be included in the training of the next version of the

interatomic potential.

Loy

g N y
g ° @ Diemond @ Graphite
-20 a0 ) e PEPE e
- e ;x{‘ AYPY ATy
40 ‘!—,- ® coon @ canax)y @ camexn
-40 -20 [ 20 40

TSNEL

Fig. 2. Plot of feature vectors of the structures on the
database projected in 2D space (black) with the feature
vectors corresponding to diamond (blue), graphite (orange),
and the surface atoms of the C(100) (violet), unreconstructed

C(111) (green), and reconstructed C(111) (red) surfaces.
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Fig. 3. (a) Plot of feature vectors of the structures on the
database projected in 2D space (black) with the feature
vectors corresponding to slightly perturbed equilibrium
structures (SPES) (blue). (b) Regions containing atomic
environments classified as reliable, less reliable, and non-

reliable.

3.3. Hybridization Analysis Using Neural Network
Binary Classifier Model

Molecular simulation data of covalent solids like
diamond and silicon usually employs coordination
analysis  for  structure  identification  and
characterization. Using this method, 1- and 2-
coordinated atoms are classified as sp' hybridized, and
the 3- and 4-coordinated atoms are classified as sp? and
sp’ hybridized, respectively. However, sp3-hybridized
atoms can also be 3-coordinated when there is a
dangling bond. Since the properties of sp? and 3-
coordinated sp* atoms are not the same, it is necessary
to distinguish between the two type of atoms. For this

purpose, we constructed a supervised binary classifier

neural network model where we used a database of

2 3

slightly perturbed sp* and 3-coordinated sp
hybridized atoms from graphite and diamond surfaces,
respectively, with the bond lengths and bond angles as
learning representation. Figure 4 implements this
analysis on the thermally degraded C(111) and C(100)
surfaces [8]. The proportion of sp? and 3-coordinated
sp® atoms in the thermally degraded C(111) surface is
almost similar. In comparison, the proportion of 3-
coordinated sp® atoms in the thermally degraded
C(100) surface is significantly higher compared to the
sp? atoms. This analysis implies that the thermally

degraded atoms on the C(111) and C(100) surface are

expected to have different properties.

(a)C(111) (b) C(100)

Fig. 4. Comparison of the hybridization of the thermally
degraded atoms on the C(111) and C(100) surfaces [8].
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3.4. Detection and Analysis of Chemical Reactions
on the MD Simulation Using Feature Vectors
Analysis of MD trajectory will generate new
physical and chemical insights. However, isolating
individual chemical reactions is very challenging,
especially for large scale MD simulations. Here, we
propose a method of detecting chemical reactions by
monitoring the changes in atomic or chemical
environments which in turn are represented by
changes in feature vectors calculated by graph
message passing. For instance, during a simulation
where there is no ongoing chemical reaction, the
feature vector has to be constant. When a chemical
reaction happens, an inflection in the feature vector
plot must occur. We illustrate this concept in Figure 5.
We choose a central atom (grey sphere with red
highlight) and plot the radial component of the feature
vector. The plot from structures A-C shows the
metastable adsorption of O, on top of the C(100)
surface, C-D shows the O, metastable adsorption
transforming to O, molecular adsorption, and D-E
shows the O, dissociation and C-dimer bond breaking.
The structures A, B, C, D, and E all coincide on the
inflection points on the plot. The two inflection points
between A and B are caused by the O adsorption on

the neighboring atoms of the central atom.

4. Conclusion

We constructed a machine learning interatomic
potential based on graph neural network model for the
investigation of diamond surface oxidation and
thermal degradation. In this paper, we presented the
active learning method of database and interatomic
potential construction and fine tuning. In this active
learning method, we evaluated the interatomic
potential based on accuracy, stability, and reliability.
The reliability can be estimated by detecting
extrapolated atomic environments that may arise
during the MD simulation. We also presented the use

of neural network binary classifier trained using bond

lengths and bond angles as descriptors to differentiate
between sp? and sp-hybridized atoms in simulating
diamond surfaces. These method gave insights that
augment the conventional coordination analysis.
Finally, we propose the use of feature vectors
calculated using graph message passing in the
detection and analysis of chemical reactions during
MD simulations. The changes in the plot of feature
vector component over time have been shown to
indicate a change in chemical environment and the
inflection points coincide with equilibrium and

metastable structures.
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Fig. 5. Plot of the radial component of the feature vector of
central atom (grey sphere with red highlight) vs the

simulation frame, showing the changes in chemical

environment:
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