初めてのスパコン

大阪大学D3センター 招へい教授 木戸 善之 2025/10/10

目次

- 1.スパコンの概要
- 2.D3センターのスパコン

計算機ってなんだ?

- 計算機
 - 計算に用いる機械(デジタル大辞泉)
 - 計算のための機械、器具のこと。コンピュータや電卓を 指すことが多い(Wikipedia)
 - 人が不得意な、正確な演算やルーチンワークを肩代わり するための道具

計算機にも様々な種類が

- パーソナルコンピュータ
 - 主に個人で使用するために作られたコンピューター。 パソコン、PC
- 汎用機 (メインフレーム)
 - 企業の基幹業務に利用される大規模なコンピュータ
- スーパーコンピュータ
 - 高度な数値計算(量子物理、流体解析、ケモ・バイオインフォマティクス、天文地学…etc)のためのコンピュータ

• 数値だけでなく画像、文書など様々な入力に対し処理なるには、

理を行い出力する装置

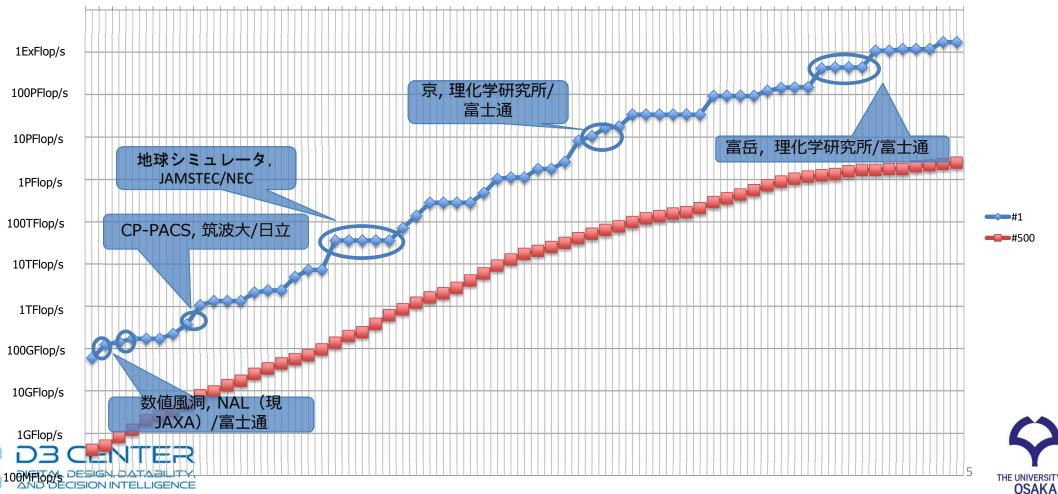
計算機の速さって?

- FLOPS (Floating-point Operations Per Second)
 - 1秒間に浮動小数点演算を何回できるか?
 - Frontair: 1Exa FLOPS over (1 x 10¹⁸回)
 - 富岳:400Peta FLOPS over (4x10¹⁷回)

Y: 39

E: エクサ P: ペタ T: テラ G: ギガ M: メガ k: キロ 7:ゼタ

1,000,000,000,000,000

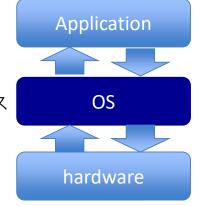


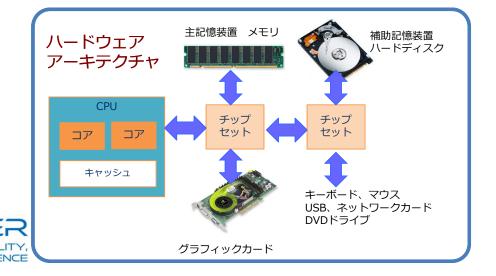
世界初のスパコン CDC 6600

3,000,000

Top500 Jun. 2025

日本のスパコン

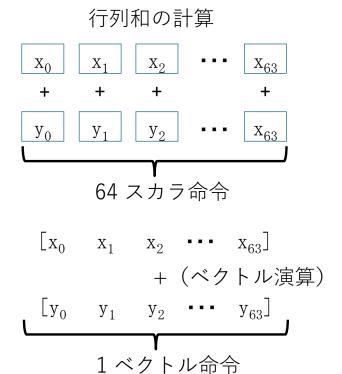

名称・愛称	設置者	メーカ	実行性能	Top 500ランク
富岳	理研	Fujitsu	442.0 PFLOPS	7
ABIC 3.0	産総研	Fujitsu	145.1 PFLOPS	15
CHIE-3	Softbank	Nvidia	91.9 PFLOPS	22
CHIE-2	Softbank	Nvida	89.8 PFLOPS	24
ABCI-Q	産総研	Fujitsu	74.6 PFLOPS	27
FPT AI Factory Japan	FPT AI Factory Japan	HPE	49.9 PFLOPS	36
Miyabi-G	筑波大/東大(JCAHPC)	Fujitsu	46.8 PFLOPS	37
TSUBAME4.0	東科大	HPE	39.6 PFLOPS	46
SAKURACORE	さくらインターネット	Supermicro	34.0 PFLOPS	49
Wisteria/BDEC-01	東大	Fujitsu	22.1 PFLOPS	73
SQUID	阪大	NEC	6.1 PFLOPS	213


計算機のアーキテクチャ

- 中央処理演算装置:CPU(プロセッサ)
 - 計算を行う頭脳
 - 命令により演算を行う
 - ベクタ部 (SIMD) とスカラ部を持つ
- 主記憶装置:メモリ
 - 揮発性が高く電源を落とすと内容は破棄
- 補助記憶装置:ハードディスク
 - 不揮発性で電源を落としても内容を保持

- グラフィックカード
 - 出力装置につなぐデバイス
- アクセラレータ
 - GPGPU
 - ベクトルプロセッサ
- 入力装置:キーボード、マウス

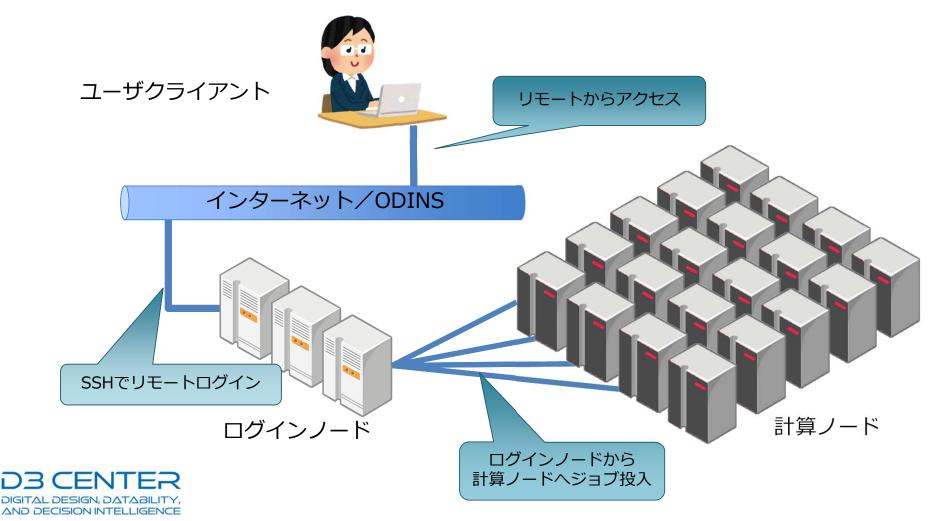
ベクトル計算とスカラ計算


スカラ

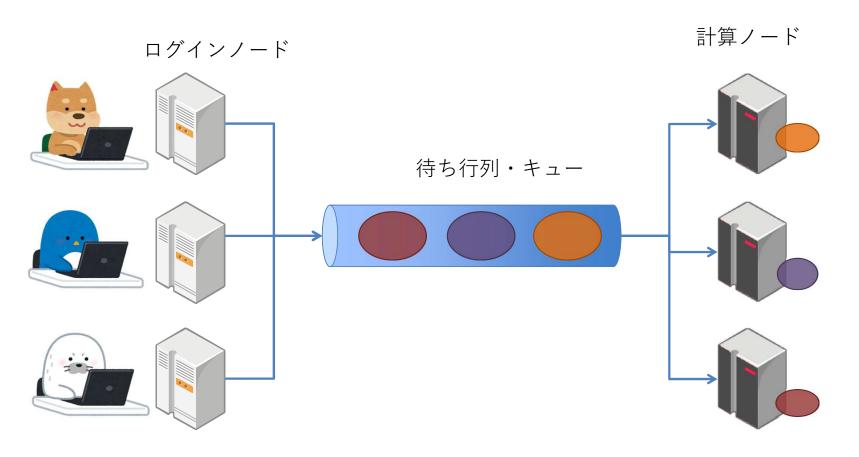
- 計算機の命令を1つづつ実行
- 逐次的に命令を実行
- 高速化:パイプライン処理,スーパースカラ
- 代表システム:富岳、Tsubame、etc.
- 得意な計算:遺伝子相同性検索

• ベクトル

- 複数の命令を一つにまとめて実行
- 同じ命令(演算)に対し異なるデータ(項)で実行する場合、1つにまとめて実行することができる
- 代表システム:阪大SQUID、地球シミュレータ
- 得意な計算:気候シミュレーション、流体解析


CPU, GPGPUとベクトルプロセッサ

- CPU (Intel AVX-512, SIMD)
 - ベクトル長:512 bit
- GPGPU (NVIDA A100)
 - ベクトル長:FP32 (32bit) ×256並列 = 8192 bit
- ベクトルプロセッサ
 - ベクトル長: 256 ×64 = 16384 bit



コンピュータ・クラスタ

ジョブ投入 ー バッチキューシステム

qsubでジョブ投入

```
#!/bin/bash
#PBS -q SQUID

#PBS --group=G01234

#PBS -I elapstim_req=1:00:00, memsz_job=60GB

#PBS -I cpunum_job=76

module load BaseCPU/2021

cd $PBS_0_WORKDIR

./a. out

$ qsub a_batch. sh
```

ジョブキューに登録

Request 88156.cmc submitted to queue: SQUID.

D3C大規模計算機システムサービス

次世代計算・ストレージ基盤 "OCTOPUS" **new!**

AND DECISION INTELLIGENCE

CPU

高性能計算・データ分 析基盤システム

"SQUID"

CPU ベクトルプロセッサ GPGPU

Osaka university Cybermedia cenTer
Over-Petascale Universal Supercomputer

データ集約基盤 オブジェクトストレージ

ONION

Supercomputer for Quest to Unsolved Interdisciplinary Datascience

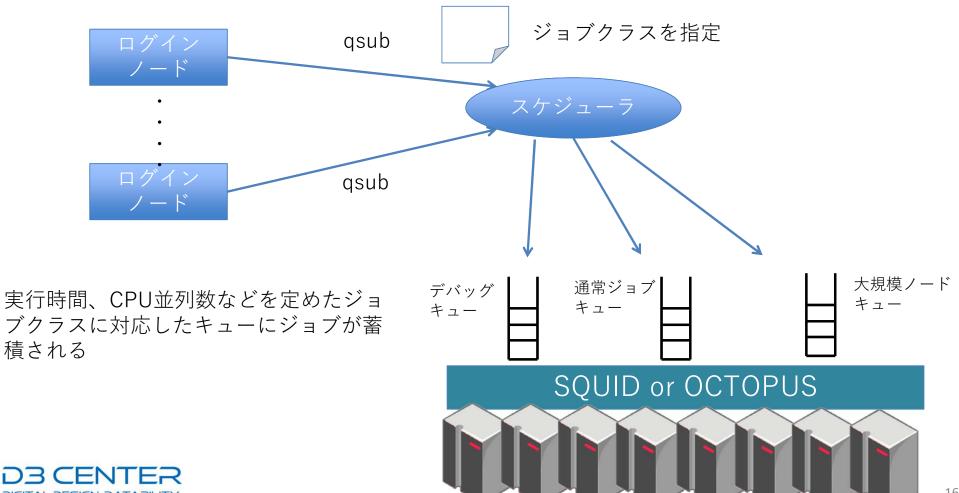
次世代計算・ストレージ基盤"OCTOPUS"

総演算性能	2.293 PFLOPS		
ノード構成	汎用CPUノード群 140 ノード (16.384TFLOPS)	CPU: Intel Xeon(Granite Rapids)2.00 GHz 128コア×2基 MEM: 768 GB	
ストレージ	DDN EXAScaler (Lustre)	HDD: 4.48 PB	
ノード間接続	Mellanox InfiniBand NDR200 (200 Gbps)		

無料お試し利用!

https://www.hpc.cmc.osaka-u.ac.jp/octopus2-free-trial/

高性能計算・データ分析基盤システム"SQUID"



Supercomputer for Quest to Unsolved Interdisciplinary Datascience

総演算性能	16.591 PFLOPS		
ノード構成	汎用CPUノード群 1520 ノード (8.8 PFLOPS)	CPU: Intel Xeon(Icelake)2.40 GHz 38 コア×2基 MEM: 256 GB	
	GPUノード群 42 ノード(6.7 PFLOPS)	CPU: Intel Xeon(Icelake)2.40 GHz 38 コア × 2基 MEM: 512 GB GPU: NVIDIA A100 × 8基	
	ベクトルノード群 36ノード(0.9 PFLOPS)	CPU: AMD EPYC 7402P 2.8 GHz 24コア × 1基 ベクトルプロセッサ: NEC SX-Aurora TSUBASA Type 20A × 8基	
ストレージ	DDN EXAScaler (Lustre)	HDD: 20.0 PB NVMe: 1.2 PB	
ノード間接続	Mellanox InfiniBand HDR (200 Gbps)		

D3センター大規模計算機システムの利用方法

講習会・セミナーの予定

- 10/2 コンテナ入門
- 10/9 AkaiKKR講習会 ハンズオン
- 10/10 初めてのスパコン <- イマココ
- 10/17 スパコンに通じる並列プログラミングの基礎
- 11/6 レーザー加工の理解と解析に向けたSALMON利用法講習会

http://www.hpc.cmc.osaka-u.ac.jp/lecture_event/lecture/

